1196 lines
48 KiB
Python
1196 lines
48 KiB
Python
|
"""
|
||
|
State Space Representation
|
||
|
|
||
|
Author: Chad Fulton
|
||
|
License: Simplified-BSD
|
||
|
"""
|
||
|
|
||
|
import warnings
|
||
|
import numpy as np
|
||
|
from .tools import (
|
||
|
find_best_blas_type, validate_matrix_shape, validate_vector_shape
|
||
|
)
|
||
|
from .initialization import Initialization
|
||
|
from . import tools
|
||
|
|
||
|
|
||
|
class OptionWrapper:
|
||
|
def __init__(self, mask_attribute, mask_value):
|
||
|
# Name of the class-level bitmask attribute
|
||
|
self.mask_attribute = mask_attribute
|
||
|
# Value of this option
|
||
|
self.mask_value = mask_value
|
||
|
|
||
|
def __get__(self, obj, objtype):
|
||
|
# Return True / False based on whether the bit is set in the bitmask
|
||
|
return bool(getattr(obj, self.mask_attribute, 0) & self.mask_value)
|
||
|
|
||
|
def __set__(self, obj, value):
|
||
|
mask_attribute_value = getattr(obj, self.mask_attribute, 0)
|
||
|
if bool(value):
|
||
|
value = mask_attribute_value | self.mask_value
|
||
|
else:
|
||
|
value = mask_attribute_value & ~self.mask_value
|
||
|
setattr(obj, self.mask_attribute, value)
|
||
|
|
||
|
|
||
|
class MatrixWrapper:
|
||
|
def __init__(self, name, attribute):
|
||
|
self.name = name
|
||
|
self.attribute = attribute
|
||
|
self._attribute = '_' + attribute
|
||
|
|
||
|
def __get__(self, obj, objtype):
|
||
|
matrix = getattr(obj, self._attribute, None)
|
||
|
# # Remove last dimension if the array is not actually time-varying
|
||
|
# if matrix is not None and matrix.shape[-1] == 1:
|
||
|
# return np.squeeze(matrix, -1)
|
||
|
return matrix
|
||
|
|
||
|
def __set__(self, obj, value):
|
||
|
value = np.asarray(value, order="F")
|
||
|
shape = obj.shapes[self.attribute]
|
||
|
|
||
|
if len(shape) == 3:
|
||
|
value = self._set_matrix(obj, value, shape)
|
||
|
else:
|
||
|
value = self._set_vector(obj, value, shape)
|
||
|
|
||
|
setattr(obj, self._attribute, value)
|
||
|
obj.shapes[self.attribute] = value.shape
|
||
|
|
||
|
def _set_matrix(self, obj, value, shape):
|
||
|
# Expand 1-dimensional array if possible
|
||
|
if (value.ndim == 1 and shape[0] == 1 and
|
||
|
value.shape[0] == shape[1]):
|
||
|
value = value[None, :]
|
||
|
|
||
|
# Enforce that the matrix is appropriate size
|
||
|
validate_matrix_shape(
|
||
|
self.name, value.shape, shape[0], shape[1], obj.nobs
|
||
|
)
|
||
|
|
||
|
# Expand time-invariant matrix
|
||
|
if value.ndim == 2:
|
||
|
value = np.array(value[:, :, None], order="F")
|
||
|
|
||
|
return value
|
||
|
|
||
|
def _set_vector(self, obj, value, shape):
|
||
|
# Enforce that the vector has appropriate length
|
||
|
validate_vector_shape(
|
||
|
self.name, value.shape, shape[0], obj.nobs
|
||
|
)
|
||
|
|
||
|
# Expand the time-invariant vector
|
||
|
if value.ndim == 1:
|
||
|
value = np.array(value[:, None], order="F")
|
||
|
|
||
|
return value
|
||
|
|
||
|
|
||
|
class Representation:
|
||
|
r"""
|
||
|
State space representation of a time series process
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
k_endog : {array_like, int}
|
||
|
The observed time-series process :math:`y` if array like or the
|
||
|
number of variables in the process if an integer.
|
||
|
k_states : int
|
||
|
The dimension of the unobserved state process.
|
||
|
k_posdef : int, optional
|
||
|
The dimension of a guaranteed positive definite covariance matrix
|
||
|
describing the shocks in the measurement equation. Must be less than
|
||
|
or equal to `k_states`. Default is `k_states`.
|
||
|
initial_variance : float, optional
|
||
|
Initial variance used when approximate diffuse initialization is
|
||
|
specified. Default is 1e6.
|
||
|
initialization : Initialization object or str, optional
|
||
|
Initialization method for the initial state. If a string, must be one
|
||
|
of {'diffuse', 'approximate_diffuse', 'stationary', 'known'}.
|
||
|
initial_state : array_like, optional
|
||
|
If `initialization='known'` is used, the mean of the initial state's
|
||
|
distribution.
|
||
|
initial_state_cov : array_like, optional
|
||
|
If `initialization='known'` is used, the covariance matrix of the
|
||
|
initial state's distribution.
|
||
|
nobs : int, optional
|
||
|
If an endogenous vector is not given (i.e. `k_endog` is an integer),
|
||
|
the number of observations can optionally be specified. If not
|
||
|
specified, they will be set to zero until data is bound to the model.
|
||
|
dtype : np.dtype, optional
|
||
|
If an endogenous vector is not given (i.e. `k_endog` is an integer),
|
||
|
the default datatype of the state space matrices can optionally be
|
||
|
specified. Default is `np.float64`.
|
||
|
design : array_like, optional
|
||
|
The design matrix, :math:`Z`. Default is set to zeros.
|
||
|
obs_intercept : array_like, optional
|
||
|
The intercept for the observation equation, :math:`d`. Default is set
|
||
|
to zeros.
|
||
|
obs_cov : array_like, optional
|
||
|
The covariance matrix for the observation equation :math:`H`. Default
|
||
|
is set to zeros.
|
||
|
transition : array_like, optional
|
||
|
The transition matrix, :math:`T`. Default is set to zeros.
|
||
|
state_intercept : array_like, optional
|
||
|
The intercept for the transition equation, :math:`c`. Default is set to
|
||
|
zeros.
|
||
|
selection : array_like, optional
|
||
|
The selection matrix, :math:`R`. Default is set to zeros.
|
||
|
state_cov : array_like, optional
|
||
|
The covariance matrix for the state equation :math:`Q`. Default is set
|
||
|
to zeros.
|
||
|
**kwargs
|
||
|
Additional keyword arguments. Not used directly. It is present to
|
||
|
improve compatibility with subclasses, so that they can use `**kwargs`
|
||
|
to specify any default state space matrices (e.g. `design`) without
|
||
|
having to clean out any other keyword arguments they might have been
|
||
|
passed.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
nobs : int
|
||
|
The number of observations.
|
||
|
k_endog : int
|
||
|
The dimension of the observation series.
|
||
|
k_states : int
|
||
|
The dimension of the unobserved state process.
|
||
|
k_posdef : int
|
||
|
The dimension of a guaranteed positive
|
||
|
definite covariance matrix describing
|
||
|
the shocks in the measurement equation.
|
||
|
shapes : dictionary of name:tuple
|
||
|
A dictionary recording the initial shapes
|
||
|
of each of the representation matrices as
|
||
|
tuples.
|
||
|
initialization : str
|
||
|
Kalman filter initialization method. Default is unset.
|
||
|
initial_variance : float
|
||
|
Initial variance for approximate diffuse
|
||
|
initialization. Default is 1e6.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
A general state space model is of the form
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
y_t & = Z_t \alpha_t + d_t + \varepsilon_t \\
|
||
|
\alpha_t & = T_t \alpha_{t-1} + c_t + R_t \eta_t \\
|
||
|
|
||
|
where :math:`y_t` refers to the observation vector at time :math:`t`,
|
||
|
:math:`\alpha_t` refers to the (unobserved) state vector at time
|
||
|
:math:`t`, and where the irregular components are defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\varepsilon_t \sim N(0, H_t) \\
|
||
|
\eta_t \sim N(0, Q_t) \\
|
||
|
|
||
|
The remaining variables (:math:`Z_t, d_t, H_t, T_t, c_t, R_t, Q_t`) in the
|
||
|
equations are matrices describing the process. Their variable names and
|
||
|
dimensions are as follows
|
||
|
|
||
|
Z : `design` :math:`(k\_endog \times k\_states \times nobs)`
|
||
|
|
||
|
d : `obs_intercept` :math:`(k\_endog \times nobs)`
|
||
|
|
||
|
H : `obs_cov` :math:`(k\_endog \times k\_endog \times nobs)`
|
||
|
|
||
|
T : `transition` :math:`(k\_states \times k\_states \times nobs)`
|
||
|
|
||
|
c : `state_intercept` :math:`(k\_states \times nobs)`
|
||
|
|
||
|
R : `selection` :math:`(k\_states \times k\_posdef \times nobs)`
|
||
|
|
||
|
Q : `state_cov` :math:`(k\_posdef \times k\_posdef \times nobs)`
|
||
|
|
||
|
In the case that one of the matrices is time-invariant (so that, for
|
||
|
example, :math:`Z_t = Z_{t+1} ~ \forall ~ t`), its last dimension may
|
||
|
be of size :math:`1` rather than size `nobs`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [*] Durbin, James, and Siem Jan Koopman. 2012.
|
||
|
Time Series Analysis by State Space Methods: Second Edition.
|
||
|
Oxford University Press.
|
||
|
"""
|
||
|
|
||
|
endog = None
|
||
|
r"""
|
||
|
(array) The observation vector, alias for `obs`.
|
||
|
"""
|
||
|
design = MatrixWrapper('design', 'design')
|
||
|
r"""
|
||
|
(array) Design matrix: :math:`Z~(k\_endog \times k\_states \times nobs)`
|
||
|
"""
|
||
|
obs_intercept = MatrixWrapper('observation intercept', 'obs_intercept')
|
||
|
r"""
|
||
|
(array) Observation intercept: :math:`d~(k\_endog \times nobs)`
|
||
|
"""
|
||
|
obs_cov = MatrixWrapper('observation covariance matrix', 'obs_cov')
|
||
|
r"""
|
||
|
(array) Observation covariance matrix:
|
||
|
:math:`H~(k\_endog \times k\_endog \times nobs)`
|
||
|
"""
|
||
|
transition = MatrixWrapper('transition', 'transition')
|
||
|
r"""
|
||
|
(array) Transition matrix:
|
||
|
:math:`T~(k\_states \times k\_states \times nobs)`
|
||
|
"""
|
||
|
state_intercept = MatrixWrapper('state intercept', 'state_intercept')
|
||
|
r"""
|
||
|
(array) State intercept: :math:`c~(k\_states \times nobs)`
|
||
|
"""
|
||
|
selection = MatrixWrapper('selection', 'selection')
|
||
|
r"""
|
||
|
(array) Selection matrix:
|
||
|
:math:`R~(k\_states \times k\_posdef \times nobs)`
|
||
|
"""
|
||
|
state_cov = MatrixWrapper('state covariance matrix', 'state_cov')
|
||
|
r"""
|
||
|
(array) State covariance matrix:
|
||
|
:math:`Q~(k\_posdef \times k\_posdef \times nobs)`
|
||
|
"""
|
||
|
|
||
|
def __init__(self, k_endog, k_states, k_posdef=None,
|
||
|
initial_variance=1e6, nobs=0, dtype=np.float64,
|
||
|
design=None, obs_intercept=None, obs_cov=None,
|
||
|
transition=None, state_intercept=None, selection=None,
|
||
|
state_cov=None, statespace_classes=None, **kwargs):
|
||
|
self.shapes = {}
|
||
|
|
||
|
# Check if k_endog is actually the endog array
|
||
|
endog = None
|
||
|
if isinstance(k_endog, np.ndarray):
|
||
|
endog = k_endog
|
||
|
# If so, assume that it is either column-ordered and in wide format
|
||
|
# or row-ordered and in long format
|
||
|
if (endog.flags['C_CONTIGUOUS'] and
|
||
|
(endog.shape[0] > 1 or nobs == 1)):
|
||
|
endog = endog.T
|
||
|
k_endog = endog.shape[0]
|
||
|
|
||
|
# Endogenous array, dimensions, dtype
|
||
|
self.k_endog = k_endog
|
||
|
if k_endog < 1:
|
||
|
raise ValueError('Number of endogenous variables in statespace'
|
||
|
' model must be a positive number.')
|
||
|
self.nobs = nobs
|
||
|
|
||
|
# Get dimensions from transition equation
|
||
|
if k_states < 1:
|
||
|
raise ValueError('Number of states in statespace model must be a'
|
||
|
' positive number.')
|
||
|
self.k_states = k_states
|
||
|
self.k_posdef = k_posdef if k_posdef is not None else k_states
|
||
|
|
||
|
# Make sure k_posdef <= k_states
|
||
|
# TODO: we could technically allow k_posdef > k_states, but the Cython
|
||
|
# code needs to be more thoroughly checked to avoid seg faults.
|
||
|
if self.k_posdef > self.k_states:
|
||
|
raise ValueError('Dimension of state innovation `k_posdef` cannot'
|
||
|
' be larger than the dimension of the state.')
|
||
|
|
||
|
# Bind endog, if it was given
|
||
|
if endog is not None:
|
||
|
self.bind(endog)
|
||
|
|
||
|
# Record the shapes of all of our matrices
|
||
|
# Note: these are time-invariant shapes; in practice the last dimension
|
||
|
# may also be `self.nobs` for any or all of these.
|
||
|
self.shapes = {
|
||
|
'obs': (self.k_endog, self.nobs),
|
||
|
'design': (self.k_endog, self.k_states, 1),
|
||
|
'obs_intercept': (self.k_endog, 1),
|
||
|
'obs_cov': (self.k_endog, self.k_endog, 1),
|
||
|
'transition': (self.k_states, self.k_states, 1),
|
||
|
'state_intercept': (self.k_states, 1),
|
||
|
'selection': (self.k_states, self.k_posdef, 1),
|
||
|
'state_cov': (self.k_posdef, self.k_posdef, 1),
|
||
|
}
|
||
|
|
||
|
# Representation matrices
|
||
|
# These matrices are only used in the Python object as containers,
|
||
|
# which will be copied to the appropriate _statespace object if a
|
||
|
# filter is called.
|
||
|
scope = locals()
|
||
|
for name, shape in self.shapes.items():
|
||
|
if name == 'obs':
|
||
|
continue
|
||
|
# Create the initial storage array for each matrix
|
||
|
setattr(self, '_' + name, np.zeros(shape, dtype=dtype, order="F"))
|
||
|
|
||
|
# If we were given an initial value for the matrix, set it
|
||
|
# (notice it is being set via the descriptor)
|
||
|
if scope[name] is not None:
|
||
|
setattr(self, name, scope[name])
|
||
|
|
||
|
# Options
|
||
|
self.initial_variance = initial_variance
|
||
|
self.prefix_statespace_map = (statespace_classes
|
||
|
if statespace_classes is not None
|
||
|
else tools.prefix_statespace_map.copy())
|
||
|
|
||
|
# State-space initialization data
|
||
|
self.initialization = kwargs.pop('initialization', None)
|
||
|
basic_inits = ['diffuse', 'approximate_diffuse', 'stationary']
|
||
|
|
||
|
if self.initialization in basic_inits:
|
||
|
self.initialize(self.initialization)
|
||
|
elif self.initialization == 'known':
|
||
|
if 'constant' in kwargs:
|
||
|
constant = kwargs.pop('constant')
|
||
|
elif 'initial_state' in kwargs:
|
||
|
# TODO deprecation warning
|
||
|
constant = kwargs.pop('initial_state')
|
||
|
else:
|
||
|
raise ValueError('Initial state must be provided when "known"'
|
||
|
' is the specified initialization method.')
|
||
|
if 'stationary_cov' in kwargs:
|
||
|
stationary_cov = kwargs.pop('stationary_cov')
|
||
|
elif 'initial_state_cov' in kwargs:
|
||
|
# TODO deprecation warning
|
||
|
stationary_cov = kwargs.pop('initial_state_cov')
|
||
|
else:
|
||
|
raise ValueError('Initial state covariance matrix must be'
|
||
|
' provided when "known" is the specified'
|
||
|
' initialization method.')
|
||
|
self.initialize('known', constant=constant,
|
||
|
stationary_cov=stationary_cov)
|
||
|
elif (not isinstance(self.initialization, Initialization) and
|
||
|
self.initialization is not None):
|
||
|
raise ValueError("Invalid state space initialization method.")
|
||
|
|
||
|
# Check for unused kwargs
|
||
|
if len(kwargs):
|
||
|
# raise TypeError(f'{__class__} constructor got unexpected keyword'
|
||
|
# f' argument(s): {kwargs}.')
|
||
|
msg = (f'Unknown keyword arguments: {kwargs.keys()}.'
|
||
|
'Passing unknown keyword arguments will raise a TypeError'
|
||
|
' beginning in version 0.15.')
|
||
|
warnings.warn(msg, FutureWarning)
|
||
|
|
||
|
# Matrix representations storage
|
||
|
self._representations = {}
|
||
|
|
||
|
# Setup the underlying statespace object storage
|
||
|
self._statespaces = {}
|
||
|
|
||
|
# Caches
|
||
|
self._time_invariant = None
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
_type = type(key)
|
||
|
# If only a string is given then we must be getting an entire matrix
|
||
|
if _type is str:
|
||
|
if key not in self.shapes:
|
||
|
raise IndexError('"%s" is an invalid state space matrix name'
|
||
|
% key)
|
||
|
matrix = getattr(self, '_' + key)
|
||
|
|
||
|
# See note on time-varying arrays, below
|
||
|
if matrix.shape[-1] == 1:
|
||
|
return matrix[(slice(None),)*(matrix.ndim-1) + (0,)]
|
||
|
else:
|
||
|
return matrix
|
||
|
# Otherwise if we have a tuple, we want a slice of a matrix
|
||
|
elif _type is tuple:
|
||
|
name, slice_ = key[0], key[1:]
|
||
|
if name not in self.shapes:
|
||
|
raise IndexError('"%s" is an invalid state space matrix name'
|
||
|
% name)
|
||
|
|
||
|
matrix = getattr(self, '_' + name)
|
||
|
|
||
|
# Since the model can support time-varying arrays, but often we
|
||
|
# will instead have time-invariant arrays, we want to allow setting
|
||
|
# a matrix slice like mod['transition',0,:] even though technically
|
||
|
# it should be mod['transition',0,:,0]. Thus if the array in
|
||
|
# question is time-invariant but the last slice was excluded,
|
||
|
# add it in as a zero.
|
||
|
if matrix.shape[-1] == 1 and len(slice_) <= matrix.ndim-1:
|
||
|
slice_ = slice_ + (0,)
|
||
|
|
||
|
return matrix[slice_]
|
||
|
# Otherwise, we have only a single slice index, but it is not a string
|
||
|
else:
|
||
|
raise IndexError('First index must the name of a valid state space'
|
||
|
' matrix.')
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
_type = type(key)
|
||
|
# If only a string is given then we must be setting an entire matrix
|
||
|
if _type is str:
|
||
|
if key not in self.shapes:
|
||
|
raise IndexError('"%s" is an invalid state space matrix name'
|
||
|
% key)
|
||
|
setattr(self, key, value)
|
||
|
# If it's a tuple (with a string as the first element) then we must be
|
||
|
# setting a slice of a matrix
|
||
|
elif _type is tuple:
|
||
|
name, slice_ = key[0], key[1:]
|
||
|
if name not in self.shapes:
|
||
|
raise IndexError('"%s" is an invalid state space matrix name'
|
||
|
% key[0])
|
||
|
|
||
|
# Change the dtype of the corresponding matrix
|
||
|
dtype = np.array(value).dtype
|
||
|
matrix = getattr(self, '_' + name)
|
||
|
valid_types = ['f', 'd', 'F', 'D']
|
||
|
if not matrix.dtype == dtype and dtype.char in valid_types:
|
||
|
matrix = getattr(self, '_' + name).real.astype(dtype)
|
||
|
|
||
|
# Since the model can support time-varying arrays, but often we
|
||
|
# will instead have time-invariant arrays, we want to allow setting
|
||
|
# a matrix slice like mod['transition',0,:] even though technically
|
||
|
# it should be mod['transition',0,:,0]. Thus if the array in
|
||
|
# question is time-invariant but the last slice was excluded,
|
||
|
# add it in as a zero.
|
||
|
if matrix.shape[-1] == 1 and len(slice_) == matrix.ndim-1:
|
||
|
slice_ = slice_ + (0,)
|
||
|
|
||
|
# Set the new value
|
||
|
matrix[slice_] = value
|
||
|
setattr(self, name, matrix)
|
||
|
# Otherwise we got a single non-string key, (e.g. mod[:]), which is
|
||
|
# invalid
|
||
|
else:
|
||
|
raise IndexError('First index must the name of a valid state space'
|
||
|
' matrix.')
|
||
|
|
||
|
def _clone_kwargs(self, endog, **kwargs):
|
||
|
"""
|
||
|
Construct keyword arguments for cloning a state space model
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
An observed time-series process :math:`y`.
|
||
|
**kwargs
|
||
|
Keyword arguments to pass to the new state space representation
|
||
|
model constructor. Those that are not specified are copied from
|
||
|
the specification of the current state space model.
|
||
|
"""
|
||
|
|
||
|
# We always need the base dimensions, but they cannot change from
|
||
|
# the base model when cloning (the idea is: if these need to change,
|
||
|
# need to make a new instance manually, since it's not really cloning).
|
||
|
kwargs['nobs'] = len(endog)
|
||
|
kwargs['k_endog'] = self.k_endog
|
||
|
for key in ['k_states', 'k_posdef']:
|
||
|
val = getattr(self, key)
|
||
|
if key not in kwargs or kwargs[key] is None:
|
||
|
kwargs[key] = val
|
||
|
if kwargs[key] != val:
|
||
|
raise ValueError('Cannot change the dimension of %s when'
|
||
|
' cloning.' % key)
|
||
|
|
||
|
# Get defaults for time-invariant system matrices, if not otherwise
|
||
|
# provided
|
||
|
# Time-varying matrices must be replaced.
|
||
|
for name in self.shapes.keys():
|
||
|
if name == 'obs':
|
||
|
continue
|
||
|
|
||
|
if name not in kwargs:
|
||
|
mat = getattr(self, name)
|
||
|
if mat.shape[-1] != 1:
|
||
|
raise ValueError('The `%s` matrix is time-varying. Cloning'
|
||
|
' this model requires specifying an'
|
||
|
' updated matrix.' % name)
|
||
|
kwargs[name] = mat
|
||
|
|
||
|
# Default is to use the same initialization
|
||
|
kwargs.setdefault('initialization', self.initialization)
|
||
|
|
||
|
return kwargs
|
||
|
|
||
|
def clone(self, endog, **kwargs):
|
||
|
"""
|
||
|
Clone a state space representation while overriding some elements
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
An observed time-series process :math:`y`.
|
||
|
**kwargs
|
||
|
Keyword arguments to pass to the new state space representation
|
||
|
model constructor. Those that are not specified are copied from
|
||
|
the specification of the current state space model.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Representation
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If some system matrices are time-varying, then new time-varying
|
||
|
matrices *must* be provided.
|
||
|
"""
|
||
|
kwargs = self._clone_kwargs(endog, **kwargs)
|
||
|
mod = self.__class__(**kwargs)
|
||
|
mod.bind(endog)
|
||
|
return mod
|
||
|
|
||
|
def extend(self, endog, start=None, end=None, **kwargs):
|
||
|
"""
|
||
|
Extend the current state space model, or a specific (time) subset
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
An observed time-series process :math:`y`.
|
||
|
start : int, optional
|
||
|
The first period of a time-varying state space model to include in
|
||
|
the new model. Has no effect if the state space model is
|
||
|
time-invariant. Default is the initial period.
|
||
|
end : int, optional
|
||
|
The last period of a time-varying state space model to include in
|
||
|
the new model. Has no effect if the state space model is
|
||
|
time-invariant. Default is the final period.
|
||
|
**kwargs
|
||
|
Keyword arguments to pass to the new state space representation
|
||
|
model constructor. Those that are not specified are copied from
|
||
|
the specification of the current state space model.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Representation
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method does not allow replacing a time-varying system matrix with
|
||
|
a time-invariant one (or vice-versa). If that is required, use `clone`.
|
||
|
"""
|
||
|
endog = np.atleast_1d(endog)
|
||
|
if endog.ndim == 1:
|
||
|
endog = endog[:, np.newaxis]
|
||
|
nobs = len(endog)
|
||
|
|
||
|
if start is None:
|
||
|
start = 0
|
||
|
if end is None:
|
||
|
end = self.nobs
|
||
|
|
||
|
if start < 0:
|
||
|
start = self.nobs + start
|
||
|
if end < 0:
|
||
|
end = self.nobs + end
|
||
|
if start > self.nobs:
|
||
|
raise ValueError('The `start` argument of the extension within the'
|
||
|
' base model cannot be after the end of the'
|
||
|
' base model.')
|
||
|
if end > self.nobs:
|
||
|
raise ValueError('The `end` argument of the extension within the'
|
||
|
' base model cannot be after the end of the'
|
||
|
' base model.')
|
||
|
if start > end:
|
||
|
raise ValueError('The `start` argument of the extension within the'
|
||
|
' base model cannot be after the `end` argument.')
|
||
|
|
||
|
# Note: if start == end or if end < self.nobs, then we're just cloning
|
||
|
# (no extension)
|
||
|
endog = tools.concat([self.endog[:, start:end].T, endog])
|
||
|
|
||
|
# Extend any time-varying arrays
|
||
|
error_ti = ('Model has time-invariant %s matrix, so cannot provide'
|
||
|
' an extended matrix.')
|
||
|
error_tv = ('Model has time-varying %s matrix, so an updated'
|
||
|
' time-varying matrix for the extension period'
|
||
|
' is required.')
|
||
|
for name, shape in self.shapes.items():
|
||
|
if name == 'obs':
|
||
|
continue
|
||
|
|
||
|
mat = getattr(self, name)
|
||
|
|
||
|
# If we were *not* given an extended value for this matrix...
|
||
|
if name not in kwargs:
|
||
|
# If this is a time-varying matrix in the existing model
|
||
|
if mat.shape[-1] > 1:
|
||
|
# If we have an extension period, then raise an error
|
||
|
# because we should have been given an extended value
|
||
|
if end + nobs > self.nobs:
|
||
|
raise ValueError(error_tv % name)
|
||
|
# If we do not have an extension period, then set the new
|
||
|
# time-varying matrix to be the portion of the existing
|
||
|
# time-varying matrix that corresponds to the period of
|
||
|
# interest
|
||
|
else:
|
||
|
kwargs[name] = mat[..., start:end + nobs]
|
||
|
elif nobs == 0:
|
||
|
raise ValueError('Extension is being performed within-sample'
|
||
|
' so cannot provide an extended matrix')
|
||
|
# If we were given an extended value for this matrix
|
||
|
else:
|
||
|
# TODO: Need to add a check for ndim, and if the matrix has
|
||
|
# one fewer dimensions than the existing matrix, add a new axis
|
||
|
|
||
|
# If this is a time-invariant matrix in the existing model,
|
||
|
# raise an error
|
||
|
if mat.shape[-1] == 1 and self.nobs > 1:
|
||
|
raise ValueError(error_ti % name)
|
||
|
|
||
|
# Otherwise, validate the shape of the given extended value
|
||
|
# Note: we do not validate the number of observations here
|
||
|
# (so we pass in updated_mat.shape[-1] as the nobs argument
|
||
|
# in the validate_* calls); instead, we check below that we
|
||
|
# at least `nobs` values were passed in and then only take the
|
||
|
# first of them as required. This can be useful when e.g. the
|
||
|
# end user knows the extension values up to some maximum
|
||
|
# endpoint, but does not know what the calling methods may
|
||
|
# specifically require.
|
||
|
updated_mat = np.asarray(kwargs[name])
|
||
|
if len(shape) == 2:
|
||
|
validate_vector_shape(name, updated_mat.shape, shape[0],
|
||
|
updated_mat.shape[-1])
|
||
|
else:
|
||
|
validate_matrix_shape(name, updated_mat.shape, shape[0],
|
||
|
shape[1], updated_mat.shape[-1])
|
||
|
|
||
|
if updated_mat.shape[-1] < nobs:
|
||
|
raise ValueError(error_tv % name)
|
||
|
else:
|
||
|
updated_mat = updated_mat[..., :nobs]
|
||
|
|
||
|
# Concatenate to get the new time-varying matrix
|
||
|
kwargs[name] = np.c_[mat[..., start:end], updated_mat]
|
||
|
|
||
|
return self.clone(endog, **kwargs)
|
||
|
|
||
|
def diff_endog(self, new_endog, tolerance=1e-10):
|
||
|
# TODO: move this function to tools?
|
||
|
endog = self.endog.T
|
||
|
if len(new_endog) < len(endog):
|
||
|
raise ValueError('Given data (length %d) is too short to diff'
|
||
|
' against model data (length %d).'
|
||
|
% (len(new_endog), len(endog)))
|
||
|
if len(new_endog) > len(endog):
|
||
|
nobs_append = len(new_endog) - len(endog)
|
||
|
endog = np.c_[endog.T, new_endog[-nobs_append:].T * np.nan].T
|
||
|
|
||
|
new_nan = np.isnan(new_endog)
|
||
|
existing_nan = np.isnan(endog)
|
||
|
diff = np.abs(new_endog - endog)
|
||
|
diff[new_nan ^ existing_nan] = np.inf
|
||
|
diff[new_nan & existing_nan] = 0.
|
||
|
|
||
|
is_revision = (diff > tolerance)
|
||
|
is_new = existing_nan & ~new_nan
|
||
|
is_revision[is_new] = False
|
||
|
|
||
|
revision_ix = list(zip(*np.where(is_revision)))
|
||
|
new_ix = list(zip(*np.where(is_new)))
|
||
|
|
||
|
return revision_ix, new_ix
|
||
|
|
||
|
@property
|
||
|
def prefix(self):
|
||
|
"""
|
||
|
(str) BLAS prefix of currently active representation matrices
|
||
|
"""
|
||
|
arrays = (
|
||
|
self._design, self._obs_intercept, self._obs_cov,
|
||
|
self._transition, self._state_intercept, self._selection,
|
||
|
self._state_cov
|
||
|
)
|
||
|
if self.endog is not None:
|
||
|
arrays = (self.endog,) + arrays
|
||
|
return find_best_blas_type(arrays)[0]
|
||
|
|
||
|
@property
|
||
|
def dtype(self):
|
||
|
"""
|
||
|
(dtype) Datatype of currently active representation matrices
|
||
|
"""
|
||
|
return tools.prefix_dtype_map[self.prefix]
|
||
|
|
||
|
@property
|
||
|
def time_invariant(self):
|
||
|
"""
|
||
|
(bool) Whether or not currently active representation matrices are
|
||
|
time-invariant
|
||
|
"""
|
||
|
if self._time_invariant is None:
|
||
|
return (
|
||
|
self._design.shape[2] == self._obs_intercept.shape[1] ==
|
||
|
self._obs_cov.shape[2] == self._transition.shape[2] ==
|
||
|
self._state_intercept.shape[1] == self._selection.shape[2] ==
|
||
|
self._state_cov.shape[2]
|
||
|
)
|
||
|
else:
|
||
|
return self._time_invariant
|
||
|
|
||
|
@property
|
||
|
def _statespace(self):
|
||
|
prefix = self.prefix
|
||
|
if prefix in self._statespaces:
|
||
|
return self._statespaces[prefix]
|
||
|
return None
|
||
|
|
||
|
@property
|
||
|
def obs(self):
|
||
|
r"""
|
||
|
(array) Observation vector: :math:`y~(k\_endog \times nobs)`
|
||
|
"""
|
||
|
return self.endog
|
||
|
|
||
|
def bind(self, endog):
|
||
|
"""
|
||
|
Bind data to the statespace representation
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : ndarray
|
||
|
Endogenous data to bind to the model. Must be column-ordered
|
||
|
ndarray with shape (`k_endog`, `nobs`) or row-ordered ndarray with
|
||
|
shape (`nobs`, `k_endog`).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The strict requirements arise because the underlying statespace and
|
||
|
Kalman filtering classes require Fortran-ordered arrays in the wide
|
||
|
format (shaped (`k_endog`, `nobs`)), and this structure is setup to
|
||
|
prevent copying arrays in memory.
|
||
|
|
||
|
By default, numpy arrays are row (C)-ordered and most time series are
|
||
|
represented in the long format (with time on the 0-th axis). In this
|
||
|
case, no copying or re-ordering needs to be performed, instead the
|
||
|
array can simply be transposed to get it in the right order and shape.
|
||
|
|
||
|
Although this class (Representation) has stringent `bind` requirements,
|
||
|
it is assumed that it will rarely be used directly.
|
||
|
"""
|
||
|
if not isinstance(endog, np.ndarray):
|
||
|
raise ValueError("Invalid endogenous array; must be an ndarray.")
|
||
|
|
||
|
# Make sure we have a 2-dimensional array
|
||
|
# Note: reshaping a 1-dim array into a 2-dim array by changing the
|
||
|
# shape tuple always results in a row (C)-ordered array, so it
|
||
|
# must be shaped (nobs, k_endog)
|
||
|
if endog.ndim == 1:
|
||
|
# In the case of nobs x 0 arrays
|
||
|
if self.k_endog == 1:
|
||
|
endog.shape = (endog.shape[0], 1)
|
||
|
# In the case of k_endog x 0 arrays
|
||
|
else:
|
||
|
endog.shape = (1, endog.shape[0])
|
||
|
if not endog.ndim == 2:
|
||
|
raise ValueError('Invalid endogenous array provided; must be'
|
||
|
' 2-dimensional.')
|
||
|
|
||
|
# Check for valid column-ordered arrays
|
||
|
if endog.flags['F_CONTIGUOUS'] and endog.shape[0] == self.k_endog:
|
||
|
pass
|
||
|
# Check for valid row-ordered arrays, and transpose them to be the
|
||
|
# correct column-ordered array
|
||
|
elif endog.flags['C_CONTIGUOUS'] and endog.shape[1] == self.k_endog:
|
||
|
endog = endog.T
|
||
|
# Invalid column-ordered arrays
|
||
|
elif endog.flags['F_CONTIGUOUS']:
|
||
|
raise ValueError('Invalid endogenous array; column-ordered'
|
||
|
' arrays must have first axis shape of'
|
||
|
' `k_endog`.')
|
||
|
# Invalid row-ordered arrays
|
||
|
elif endog.flags['C_CONTIGUOUS']:
|
||
|
raise ValueError('Invalid endogenous array; row-ordered'
|
||
|
' arrays must have last axis shape of'
|
||
|
' `k_endog`.')
|
||
|
# Non-contiguous arrays
|
||
|
else:
|
||
|
raise ValueError('Invalid endogenous array; must be ordered in'
|
||
|
' contiguous memory.')
|
||
|
|
||
|
# We may still have a non-fortran contiguous array, so double-check
|
||
|
if not endog.flags['F_CONTIGUOUS']:
|
||
|
endog = np.asfortranarray(endog)
|
||
|
|
||
|
# Set a flag for complex data
|
||
|
self._complex_endog = np.iscomplexobj(endog)
|
||
|
|
||
|
# Set the data
|
||
|
self.endog = endog
|
||
|
self.nobs = self.endog.shape[1]
|
||
|
|
||
|
# Reset shapes
|
||
|
if hasattr(self, 'shapes'):
|
||
|
self.shapes['obs'] = self.endog.shape
|
||
|
|
||
|
def initialize(self, initialization, approximate_diffuse_variance=None,
|
||
|
constant=None, stationary_cov=None, a=None, Pstar=None,
|
||
|
Pinf=None, A=None, R0=None, Q0=None):
|
||
|
"""Create an Initialization object if necessary"""
|
||
|
if initialization == 'known':
|
||
|
initialization = Initialization(self.k_states, 'known',
|
||
|
constant=constant,
|
||
|
stationary_cov=stationary_cov)
|
||
|
elif initialization == 'components':
|
||
|
initialization = Initialization.from_components(
|
||
|
a=a, Pstar=Pstar, Pinf=Pinf, A=A, R0=R0, Q0=Q0)
|
||
|
elif initialization == 'approximate_diffuse':
|
||
|
if approximate_diffuse_variance is None:
|
||
|
approximate_diffuse_variance = self.initial_variance
|
||
|
initialization = Initialization(
|
||
|
self.k_states, 'approximate_diffuse',
|
||
|
approximate_diffuse_variance=approximate_diffuse_variance)
|
||
|
elif initialization == 'stationary':
|
||
|
initialization = Initialization(self.k_states, 'stationary')
|
||
|
elif initialization == 'diffuse':
|
||
|
initialization = Initialization(self.k_states, 'diffuse')
|
||
|
|
||
|
# We must have an initialization object at this point
|
||
|
if not isinstance(initialization, Initialization):
|
||
|
raise ValueError("Invalid state space initialization method.")
|
||
|
|
||
|
self.initialization = initialization
|
||
|
|
||
|
def initialize_known(self, constant, stationary_cov):
|
||
|
"""
|
||
|
Initialize the statespace model with known distribution for initial
|
||
|
state.
|
||
|
|
||
|
These values are assumed to be known with certainty or else
|
||
|
filled with parameters during, for example, maximum likelihood
|
||
|
estimation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
constant : array_like
|
||
|
Known mean of the initial state vector.
|
||
|
stationary_cov : array_like
|
||
|
Known covariance matrix of the initial state vector.
|
||
|
"""
|
||
|
constant = np.asarray(constant, order="F")
|
||
|
stationary_cov = np.asarray(stationary_cov, order="F")
|
||
|
|
||
|
if not constant.shape == (self.k_states,):
|
||
|
raise ValueError('Invalid dimensions for constant state vector.'
|
||
|
' Requires shape (%d,), got %s' %
|
||
|
(self.k_states, str(constant.shape)))
|
||
|
if not stationary_cov.shape == (self.k_states, self.k_states):
|
||
|
raise ValueError('Invalid dimensions for stationary covariance'
|
||
|
' matrix. Requires shape (%d,%d), got %s' %
|
||
|
(self.k_states, self.k_states,
|
||
|
str(stationary_cov.shape)))
|
||
|
|
||
|
self.initialize('known', constant=constant,
|
||
|
stationary_cov=stationary_cov)
|
||
|
|
||
|
def initialize_approximate_diffuse(self, variance=None):
|
||
|
"""
|
||
|
Initialize the statespace model with approximate diffuse values.
|
||
|
|
||
|
Rather than following the exact diffuse treatment (which is developed
|
||
|
for the case that the variance becomes infinitely large), this assigns
|
||
|
an arbitrary large number for the variance.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
variance : float, optional
|
||
|
The variance for approximating diffuse initial conditions. Default
|
||
|
is 1e6.
|
||
|
"""
|
||
|
if variance is None:
|
||
|
variance = self.initial_variance
|
||
|
|
||
|
self.initialize('approximate_diffuse',
|
||
|
approximate_diffuse_variance=variance)
|
||
|
|
||
|
def initialize_components(self, a=None, Pstar=None, Pinf=None, A=None,
|
||
|
R0=None, Q0=None):
|
||
|
"""
|
||
|
Initialize the statespace model with component matrices
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like, optional
|
||
|
Vector of constant values describing the mean of the stationary
|
||
|
component of the initial state.
|
||
|
Pstar : array_like, optional
|
||
|
Stationary component of the initial state covariance matrix. If
|
||
|
given, should be a matrix shaped `k_states x k_states`. The
|
||
|
submatrix associated with the diffuse states should contain zeros.
|
||
|
Note that by definition, `Pstar = R0 @ Q0 @ R0.T`, so either
|
||
|
`R0,Q0` or `Pstar` may be given, but not both.
|
||
|
Pinf : array_like, optional
|
||
|
Diffuse component of the initial state covariance matrix. If given,
|
||
|
should be a matrix shaped `k_states x k_states` with ones in the
|
||
|
diagonal positions corresponding to states with diffuse
|
||
|
initialization and zeros otherwise. Note that by definition,
|
||
|
`Pinf = A @ A.T`, so either `A` or `Pinf` may be given, but not
|
||
|
both.
|
||
|
A : array_like, optional
|
||
|
Diffuse selection matrix, used in the definition of the diffuse
|
||
|
initial state covariance matrix. If given, should be a
|
||
|
`k_states x k_diffuse_states` matrix that contains the subset of
|
||
|
the columns of the identity matrix that correspond to states with
|
||
|
diffuse initialization. Note that by definition, `Pinf = A @ A.T`,
|
||
|
so either `A` or `Pinf` may be given, but not both.
|
||
|
R0 : array_like, optional
|
||
|
Stationary selection matrix, used in the definition of the
|
||
|
stationary initial state covariance matrix. If given, should be a
|
||
|
`k_states x k_nondiffuse_states` matrix that contains the subset of
|
||
|
the columns of the identity matrix that correspond to states with a
|
||
|
non-diffuse initialization. Note that by definition,
|
||
|
`Pstar = R0 @ Q0 @ R0.T`, so either `R0,Q0` or `Pstar` may be
|
||
|
given, but not both.
|
||
|
Q0 : array_like, optional
|
||
|
Covariance matrix associated with stationary initial states. If
|
||
|
given, should be a matrix shaped
|
||
|
`k_nondiffuse_states x k_nondiffuse_states`.
|
||
|
Note that by definition, `Pstar = R0 @ Q0 @ R0.T`, so either
|
||
|
`R0,Q0` or `Pstar` may be given, but not both.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The matrices `a, Pstar, Pinf, A, R0, Q0` and the process for
|
||
|
initializing the state space model is as given in Chapter 5 of [1]_.
|
||
|
For the definitions of these matrices, see equation (5.2) and the
|
||
|
subsequent discussion there.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Durbin, James, and Siem Jan Koopman. 2012.
|
||
|
Time Series Analysis by State Space Methods: Second Edition.
|
||
|
Oxford University Press.
|
||
|
"""
|
||
|
self.initialize('components', a=a, Pstar=Pstar, Pinf=Pinf, A=A, R0=R0,
|
||
|
Q0=Q0)
|
||
|
|
||
|
def initialize_stationary(self):
|
||
|
"""
|
||
|
Initialize the statespace model as stationary.
|
||
|
"""
|
||
|
self.initialize('stationary')
|
||
|
|
||
|
def initialize_diffuse(self):
|
||
|
"""
|
||
|
Initialize the statespace model as diffuse.
|
||
|
"""
|
||
|
self.initialize('diffuse')
|
||
|
|
||
|
def _initialize_representation(self, prefix=None):
|
||
|
if prefix is None:
|
||
|
prefix = self.prefix
|
||
|
dtype = tools.prefix_dtype_map[prefix]
|
||
|
|
||
|
# If the dtype-specific representation matrices do not exist, create
|
||
|
# them
|
||
|
if prefix not in self._representations:
|
||
|
# Copy the statespace representation matrices
|
||
|
self._representations[prefix] = {}
|
||
|
for matrix in self.shapes.keys():
|
||
|
if matrix == 'obs':
|
||
|
self._representations[prefix][matrix] = (
|
||
|
self.obs.astype(dtype)
|
||
|
)
|
||
|
else:
|
||
|
# Note: this always makes a copy
|
||
|
self._representations[prefix][matrix] = (
|
||
|
getattr(self, '_' + matrix).astype(dtype)
|
||
|
)
|
||
|
# If they do exist, update them
|
||
|
else:
|
||
|
for matrix in self.shapes.keys():
|
||
|
existing = self._representations[prefix][matrix]
|
||
|
if matrix == 'obs':
|
||
|
# existing[:] = self.obs.astype(dtype)
|
||
|
pass
|
||
|
else:
|
||
|
new = getattr(self, '_' + matrix).astype(dtype)
|
||
|
if existing.shape == new.shape:
|
||
|
existing[:] = new[:]
|
||
|
else:
|
||
|
self._representations[prefix][matrix] = new
|
||
|
|
||
|
# Determine if we need to (re-)create the _statespace models
|
||
|
# (if time-varying matrices changed)
|
||
|
if prefix in self._statespaces:
|
||
|
ss = self._statespaces[prefix]
|
||
|
create = (
|
||
|
not ss.obs.shape[1] == self.endog.shape[1] or
|
||
|
not ss.design.shape[2] == self.design.shape[2] or
|
||
|
not ss.obs_intercept.shape[1] == self.obs_intercept.shape[1] or
|
||
|
not ss.obs_cov.shape[2] == self.obs_cov.shape[2] or
|
||
|
not ss.transition.shape[2] == self.transition.shape[2] or
|
||
|
not (ss.state_intercept.shape[1] ==
|
||
|
self.state_intercept.shape[1]) or
|
||
|
not ss.selection.shape[2] == self.selection.shape[2] or
|
||
|
not ss.state_cov.shape[2] == self.state_cov.shape[2]
|
||
|
)
|
||
|
else:
|
||
|
create = True
|
||
|
|
||
|
# (re-)create if necessary
|
||
|
if create:
|
||
|
if prefix in self._statespaces:
|
||
|
del self._statespaces[prefix]
|
||
|
|
||
|
# Setup the base statespace object
|
||
|
cls = self.prefix_statespace_map[prefix]
|
||
|
self._statespaces[prefix] = cls(
|
||
|
self._representations[prefix]['obs'],
|
||
|
self._representations[prefix]['design'],
|
||
|
self._representations[prefix]['obs_intercept'],
|
||
|
self._representations[prefix]['obs_cov'],
|
||
|
self._representations[prefix]['transition'],
|
||
|
self._representations[prefix]['state_intercept'],
|
||
|
self._representations[prefix]['selection'],
|
||
|
self._representations[prefix]['state_cov']
|
||
|
)
|
||
|
|
||
|
return prefix, dtype, create
|
||
|
|
||
|
def _initialize_state(self, prefix=None, complex_step=False):
|
||
|
# TODO once the transition to using the Initialization objects is
|
||
|
# complete, this should be moved entirely to the _{{prefix}}Statespace
|
||
|
# object.
|
||
|
if prefix is None:
|
||
|
prefix = self.prefix
|
||
|
|
||
|
# (Re-)initialize the statespace model
|
||
|
if isinstance(self.initialization, Initialization):
|
||
|
if not self.initialization.initialized:
|
||
|
raise RuntimeError('Initialization is incomplete.')
|
||
|
self._statespaces[prefix].initialize(self.initialization,
|
||
|
complex_step=complex_step)
|
||
|
else:
|
||
|
raise RuntimeError('Statespace model not initialized.')
|
||
|
|
||
|
|
||
|
class FrozenRepresentation:
|
||
|
"""
|
||
|
Frozen Statespace Model
|
||
|
|
||
|
Takes a snapshot of a Statespace model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
model : Representation
|
||
|
A Statespace representation
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
nobs : int
|
||
|
Number of observations.
|
||
|
k_endog : int
|
||
|
The dimension of the observation series.
|
||
|
k_states : int
|
||
|
The dimension of the unobserved state process.
|
||
|
k_posdef : int
|
||
|
The dimension of a guaranteed positive definite
|
||
|
covariance matrix describing the shocks in the
|
||
|
measurement equation.
|
||
|
dtype : dtype
|
||
|
Datatype of representation matrices
|
||
|
prefix : str
|
||
|
BLAS prefix of representation matrices
|
||
|
shapes : dictionary of name:tuple
|
||
|
A dictionary recording the shapes of each of
|
||
|
the representation matrices as tuples.
|
||
|
endog : ndarray
|
||
|
The observation vector.
|
||
|
design : ndarray
|
||
|
The design matrix, :math:`Z`.
|
||
|
obs_intercept : ndarray
|
||
|
The intercept for the observation equation, :math:`d`.
|
||
|
obs_cov : ndarray
|
||
|
The covariance matrix for the observation equation :math:`H`.
|
||
|
transition : ndarray
|
||
|
The transition matrix, :math:`T`.
|
||
|
state_intercept : ndarray
|
||
|
The intercept for the transition equation, :math:`c`.
|
||
|
selection : ndarray
|
||
|
The selection matrix, :math:`R`.
|
||
|
state_cov : ndarray
|
||
|
The covariance matrix for the state equation :math:`Q`.
|
||
|
missing : array of bool
|
||
|
An array of the same size as `endog`, filled
|
||
|
with boolean values that are True if the
|
||
|
corresponding entry in `endog` is NaN and False
|
||
|
otherwise.
|
||
|
nmissing : array of int
|
||
|
An array of size `nobs`, where the ith entry
|
||
|
is the number (between 0 and `k_endog`) of NaNs in
|
||
|
the ith row of the `endog` array.
|
||
|
time_invariant : bool
|
||
|
Whether or not the representation matrices are time-invariant
|
||
|
initialization : Initialization object
|
||
|
Kalman filter initialization method.
|
||
|
initial_state : array_like
|
||
|
The state vector used to initialize the Kalamn filter.
|
||
|
initial_state_cov : array_like
|
||
|
The state covariance matrix used to initialize the Kalamn filter.
|
||
|
"""
|
||
|
_model_attributes = [
|
||
|
'model', 'prefix', 'dtype', 'nobs', 'k_endog', 'k_states',
|
||
|
'k_posdef', 'time_invariant', 'endog', 'design', 'obs_intercept',
|
||
|
'obs_cov', 'transition', 'state_intercept', 'selection',
|
||
|
'state_cov', 'missing', 'nmissing', 'shapes', 'initialization',
|
||
|
'initial_state', 'initial_state_cov', 'initial_variance'
|
||
|
]
|
||
|
_attributes = _model_attributes
|
||
|
|
||
|
def __init__(self, model):
|
||
|
# Initialize all attributes to None
|
||
|
for name in self._attributes:
|
||
|
setattr(self, name, None)
|
||
|
|
||
|
# Update the representation attributes
|
||
|
self.update_representation(model)
|
||
|
|
||
|
def update_representation(self, model):
|
||
|
"""Update model Representation"""
|
||
|
# Model
|
||
|
self.model = model
|
||
|
|
||
|
# Data type
|
||
|
self.prefix = model.prefix
|
||
|
self.dtype = model.dtype
|
||
|
|
||
|
# Copy the model dimensions
|
||
|
self.nobs = model.nobs
|
||
|
self.k_endog = model.k_endog
|
||
|
self.k_states = model.k_states
|
||
|
self.k_posdef = model.k_posdef
|
||
|
self.time_invariant = model.time_invariant
|
||
|
|
||
|
# Save the state space representation at the time
|
||
|
self.endog = model.endog
|
||
|
self.design = model._design.copy()
|
||
|
self.obs_intercept = model._obs_intercept.copy()
|
||
|
self.obs_cov = model._obs_cov.copy()
|
||
|
self.transition = model._transition.copy()
|
||
|
self.state_intercept = model._state_intercept.copy()
|
||
|
self.selection = model._selection.copy()
|
||
|
self.state_cov = model._state_cov.copy()
|
||
|
|
||
|
self.missing = np.array(model._statespaces[self.prefix].missing,
|
||
|
copy=True)
|
||
|
self.nmissing = np.array(model._statespaces[self.prefix].nmissing,
|
||
|
copy=True)
|
||
|
|
||
|
# Save the final shapes of the matrices
|
||
|
self.shapes = dict(model.shapes)
|
||
|
for name in self.shapes.keys():
|
||
|
if name == 'obs':
|
||
|
continue
|
||
|
self.shapes[name] = getattr(self, name).shape
|
||
|
self.shapes['obs'] = self.endog.shape
|
||
|
|
||
|
# Save the state space initialization
|
||
|
self.initialization = model.initialization
|
||
|
|
||
|
if model.initialization is not None:
|
||
|
model._initialize_state()
|
||
|
self.initial_state = np.array(
|
||
|
model._statespaces[self.prefix].initial_state, copy=True)
|
||
|
self.initial_state_cov = np.array(
|
||
|
model._statespaces[self.prefix].initial_state_cov, copy=True)
|
||
|
self.initial_diffuse_state_cov = np.array(
|
||
|
model._statespaces[self.prefix].initial_diffuse_state_cov,
|
||
|
copy=True)
|