2283 lines
78 KiB
Python
2283 lines
78 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from statsmodels.compat.pandas import (
|
||
|
Appender,
|
||
|
Substitution,
|
||
|
call_cached_func,
|
||
|
to_numpy,
|
||
|
)
|
||
|
|
||
|
from collections.abc import Iterable
|
||
|
import datetime
|
||
|
import datetime as dt
|
||
|
from types import SimpleNamespace
|
||
|
from typing import Any, Literal, cast
|
||
|
from collections.abc import Sequence
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
from scipy.stats import gaussian_kde, norm
|
||
|
|
||
|
import statsmodels.base.wrapper as wrap
|
||
|
from statsmodels.iolib.summary import Summary
|
||
|
from statsmodels.regression.linear_model import OLS
|
||
|
from statsmodels.tools import eval_measures
|
||
|
from statsmodels.tools.decorators import cache_readonly, cache_writable
|
||
|
from statsmodels.tools.docstring import Docstring, remove_parameters
|
||
|
from statsmodels.tools.sm_exceptions import SpecificationWarning
|
||
|
from statsmodels.tools.typing import (
|
||
|
ArrayLike,
|
||
|
ArrayLike1D,
|
||
|
ArrayLike2D,
|
||
|
Float64Array,
|
||
|
NDArray,
|
||
|
)
|
||
|
from statsmodels.tools.validation import (
|
||
|
array_like,
|
||
|
bool_like,
|
||
|
int_like,
|
||
|
string_like,
|
||
|
)
|
||
|
from statsmodels.tsa.arima_process import arma2ma
|
||
|
from statsmodels.tsa.base import tsa_model
|
||
|
from statsmodels.tsa.base.prediction import PredictionResults
|
||
|
from statsmodels.tsa.deterministic import (
|
||
|
DeterministicProcess,
|
||
|
DeterministicTerm,
|
||
|
Seasonality,
|
||
|
TimeTrend,
|
||
|
)
|
||
|
from statsmodels.tsa.tsatools import freq_to_period, lagmat
|
||
|
|
||
|
__all__ = ["AR", "AutoReg"]
|
||
|
|
||
|
AR_DEPRECATION_WARN = """
|
||
|
statsmodels.tsa.AR has been deprecated in favor of statsmodels.tsa.AutoReg and
|
||
|
statsmodels.tsa.SARIMAX.
|
||
|
|
||
|
AutoReg adds the ability to specify exogenous variables, include time trends,
|
||
|
and add seasonal dummies. The AutoReg API differs from AR since the model is
|
||
|
treated as immutable, and so the entire specification including the lag
|
||
|
length must be specified when creating the model. This change is too
|
||
|
substantial to incorporate into the existing AR api. The function
|
||
|
ar_select_order performs lag length selection for AutoReg models.
|
||
|
|
||
|
AutoReg only estimates parameters using conditional MLE (OLS). Use SARIMAX to
|
||
|
estimate ARX and related models using full MLE via the Kalman Filter.
|
||
|
|
||
|
To silence this warning and continue using AR until it is removed, use:
|
||
|
|
||
|
import warnings
|
||
|
warnings.filterwarnings('ignore', 'statsmodels.tsa.ar_model.AR', FutureWarning)
|
||
|
"""
|
||
|
|
||
|
REPEATED_FIT_ERROR = """
|
||
|
Model has been fit using maxlag={0}, method={1}, ic={2}, trend={3}. These
|
||
|
cannot be changed in subsequent calls to `fit`. Instead, use a new instance of
|
||
|
AR.
|
||
|
"""
|
||
|
|
||
|
|
||
|
def sumofsq(x: np.ndarray, axis: int = 0) -> float | np.ndarray:
|
||
|
"""Helper function to calculate sum of squares along first axis"""
|
||
|
return np.sum(x**2, axis=axis)
|
||
|
|
||
|
|
||
|
def _get_period(data: pd.DatetimeIndex | pd.PeriodIndex, index_freq) -> int:
|
||
|
"""Shared helper to get period from frequenc or raise"""
|
||
|
if data.freq:
|
||
|
return freq_to_period(index_freq)
|
||
|
raise ValueError(
|
||
|
"freq cannot be inferred from endog and model includes seasonal "
|
||
|
"terms. The number of periods must be explicitly set when the "
|
||
|
"endog's index does not contain a frequency."
|
||
|
)
|
||
|
|
||
|
|
||
|
class AutoReg(tsa_model.TimeSeriesModel):
|
||
|
"""
|
||
|
Autoregressive AR-X(p) model
|
||
|
|
||
|
Estimate an AR-X model using Conditional Maximum Likelihood (OLS).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
A 1-d endogenous response variable. The dependent variable.
|
||
|
lags : {None, int, list[int]}
|
||
|
The number of lags to include in the model if an integer or the
|
||
|
list of lag indices to include. For example, [1, 4] will only
|
||
|
include lags 1 and 4 while lags=4 will include lags 1, 2, 3, and 4.
|
||
|
None excludes all AR lags, and behave identically to 0.
|
||
|
trend : {'n', 'c', 't', 'ct'}
|
||
|
The trend to include in the model:
|
||
|
|
||
|
* 'n' - No trend.
|
||
|
* 'c' - Constant only.
|
||
|
* 't' - Time trend only.
|
||
|
* 'ct' - Constant and time trend.
|
||
|
|
||
|
seasonal : bool
|
||
|
Flag indicating whether to include seasonal dummies in the model. If
|
||
|
seasonal is True and trend includes 'c', then the first period
|
||
|
is excluded from the seasonal terms.
|
||
|
exog : array_like, optional
|
||
|
Exogenous variables to include in the model. Must have the same number
|
||
|
of observations as endog and should be aligned so that endog[i] is
|
||
|
regressed on exog[i].
|
||
|
hold_back : {None, int}
|
||
|
Initial observations to exclude from the estimation sample. If None,
|
||
|
then hold_back is equal to the maximum lag in the model. Set to a
|
||
|
non-zero value to produce comparable models with different lag
|
||
|
length. For example, to compare the fit of a model with lags=3 and
|
||
|
lags=1, set hold_back=3 which ensures that both models are estimated
|
||
|
using observations 3,...,nobs. hold_back must be >= the maximum lag in
|
||
|
the model.
|
||
|
period : {None, int}
|
||
|
The period of the data. Only used if seasonal is True. This parameter
|
||
|
can be omitted if using a pandas object for endog that contains a
|
||
|
recognized frequency.
|
||
|
missing : str
|
||
|
Available options are 'none', 'drop', and 'raise'. If 'none', no nan
|
||
|
checking is done. If 'drop', any observations with nans are dropped.
|
||
|
If 'raise', an error is raised. Default is 'none'.
|
||
|
deterministic : DeterministicProcess
|
||
|
A deterministic process. If provided, trend and seasonal are ignored.
|
||
|
A warning is raised if trend is not "n" or seasonal is not False.
|
||
|
old_names : bool
|
||
|
Flag indicating whether to use the v0.11 names or the v0.12+ names.
|
||
|
|
||
|
.. deprecated:: 0.13.0
|
||
|
|
||
|
old_names is deprecated and will be removed after 0.14 is
|
||
|
released. You must update any code reliant on the old variable
|
||
|
names to use the new names.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.tsa.statespace.sarimax.SARIMAX
|
||
|
Estimation of SARIMAX models using exact likelihood and the
|
||
|
Kalman Filter.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
See the notebook `Autoregressions
|
||
|
<../examples/notebooks/generated/autoregressions.html>`__ for an overview.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import statsmodels.api as sm
|
||
|
>>> from statsmodels.tsa.ar_model import AutoReg
|
||
|
>>> data = sm.datasets.sunspots.load_pandas().data['SUNACTIVITY']
|
||
|
>>> out = 'AIC: {0:0.3f}, HQIC: {1:0.3f}, BIC: {2:0.3f}'
|
||
|
|
||
|
Start by fitting an unrestricted Seasonal AR model
|
||
|
|
||
|
>>> res = AutoReg(data, lags = [1, 11, 12]).fit()
|
||
|
>>> print(out.format(res.aic, res.hqic, res.bic))
|
||
|
AIC: 5.945, HQIC: 5.970, BIC: 6.007
|
||
|
|
||
|
An alternative used seasonal dummies
|
||
|
|
||
|
>>> res = AutoReg(data, lags=1, seasonal=True, period=11).fit()
|
||
|
>>> print(out.format(res.aic, res.hqic, res.bic))
|
||
|
AIC: 6.017, HQIC: 6.080, BIC: 6.175
|
||
|
|
||
|
Finally, both the seasonal AR structure and dummies can be included
|
||
|
|
||
|
>>> res = AutoReg(data, lags=[1, 11, 12], seasonal=True, period=11).fit()
|
||
|
>>> print(out.format(res.aic, res.hqic, res.bic))
|
||
|
AIC: 5.884, HQIC: 5.959, BIC: 6.071
|
||
|
"""
|
||
|
|
||
|
_y: Float64Array
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
endog: ArrayLike1D,
|
||
|
lags: int | Sequence[int] | None,
|
||
|
trend: Literal["n", "c", "t", "ct"] = "c",
|
||
|
seasonal: bool = False,
|
||
|
exog: ArrayLike2D | None = None,
|
||
|
hold_back: int | None = None,
|
||
|
period: int | None = None,
|
||
|
missing: str = "none",
|
||
|
*,
|
||
|
deterministic: DeterministicProcess | None = None,
|
||
|
old_names: bool = False,
|
||
|
):
|
||
|
super().__init__(endog, exog, None, None, missing=missing)
|
||
|
self._trend = cast(
|
||
|
Literal["n", "c", "t", "ct"],
|
||
|
string_like(
|
||
|
trend, "trend", options=("n", "c", "t", "ct"), optional=False
|
||
|
),
|
||
|
)
|
||
|
self._seasonal = bool_like(seasonal, "seasonal")
|
||
|
self._period = int_like(period, "period", optional=True)
|
||
|
if self._period is None and self._seasonal:
|
||
|
self._period = _get_period(self.data, self._index_freq)
|
||
|
terms: list[DeterministicTerm] = [TimeTrend.from_string(self._trend)]
|
||
|
if seasonal:
|
||
|
assert isinstance(self._period, int)
|
||
|
terms.append(Seasonality(self._period))
|
||
|
if hasattr(self.data.orig_endog, "index"):
|
||
|
index = self.data.orig_endog.index
|
||
|
else:
|
||
|
index = np.arange(self.data.endog.shape[0])
|
||
|
self._user_deterministic = False
|
||
|
if deterministic is not None:
|
||
|
if not isinstance(deterministic, DeterministicProcess):
|
||
|
raise TypeError("deterministic must be a DeterministicProcess")
|
||
|
self._deterministics = deterministic
|
||
|
self._user_deterministic = True
|
||
|
else:
|
||
|
self._deterministics = DeterministicProcess(
|
||
|
index, additional_terms=terms
|
||
|
)
|
||
|
self._exog_names: list[str] = []
|
||
|
self._k_ar = 0
|
||
|
self._old_names = bool_like(old_names, "old_names", optional=False)
|
||
|
if deterministic is not None and (
|
||
|
self._trend != "n" or self._seasonal
|
||
|
):
|
||
|
warnings.warn(
|
||
|
'When using deterministic, trend must be "n" and '
|
||
|
"seasonal must be False.",
|
||
|
SpecificationWarning,
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
if self._old_names:
|
||
|
warnings.warn(
|
||
|
"old_names will be removed after the 0.14 release. You should "
|
||
|
"stop setting this parameter and use the new names.",
|
||
|
FutureWarning,
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
self._lags, self._hold_back = self._check_lags(
|
||
|
lags, int_like(hold_back, "hold_back", optional=True)
|
||
|
)
|
||
|
self._setup_regressors()
|
||
|
self.nobs = self._y.shape[0]
|
||
|
self.data.xnames = self.exog_names
|
||
|
|
||
|
@property
|
||
|
def ar_lags(self) -> list[int] | None:
|
||
|
"""The autoregressive lags included in the model"""
|
||
|
lags = list(self._lags)
|
||
|
return None if not lags else lags
|
||
|
|
||
|
@property
|
||
|
def hold_back(self) -> int | None:
|
||
|
"""The number of initial obs. excluded from the estimation sample."""
|
||
|
return self._hold_back
|
||
|
|
||
|
@property
|
||
|
def trend(self) -> Literal["n", "c", "ct", "ctt"]:
|
||
|
"""The trend used in the model."""
|
||
|
return self._trend
|
||
|
|
||
|
@property
|
||
|
def seasonal(self) -> bool:
|
||
|
"""Flag indicating that the model contains a seasonal component."""
|
||
|
return self._seasonal
|
||
|
|
||
|
@property
|
||
|
def deterministic(self) -> DeterministicProcess | None:
|
||
|
"""The deterministic used to construct the model"""
|
||
|
return self._deterministics if self._user_deterministic else None
|
||
|
|
||
|
@property
|
||
|
def period(self) -> int | None:
|
||
|
"""The period of the seasonal component."""
|
||
|
return self._period
|
||
|
|
||
|
@property
|
||
|
def df_model(self) -> int:
|
||
|
"""The model degrees of freedom."""
|
||
|
return self._x.shape[1]
|
||
|
|
||
|
@property
|
||
|
def exog_names(self) -> list[str] | None:
|
||
|
"""Names of exogenous variables included in model"""
|
||
|
return self._exog_names
|
||
|
|
||
|
def initialize(self) -> None:
|
||
|
"""Initialize the model (no-op)."""
|
||
|
pass
|
||
|
|
||
|
def _check_lags(
|
||
|
self, lags: int | Sequence[int] | None, hold_back: int | None
|
||
|
) -> tuple[list[int], int]:
|
||
|
if lags is None:
|
||
|
_lags: list[int] = []
|
||
|
self._maxlag = 0
|
||
|
elif isinstance(lags, Iterable):
|
||
|
_lags = []
|
||
|
for lag in lags:
|
||
|
val = int_like(lag, "lags")
|
||
|
assert isinstance(val, int)
|
||
|
_lags.append(val)
|
||
|
_lags_arr: NDArray = np.array(sorted(_lags))
|
||
|
if (
|
||
|
np.any(_lags_arr < 1)
|
||
|
or np.unique(_lags_arr).shape[0] != _lags_arr.shape[0]
|
||
|
):
|
||
|
raise ValueError(
|
||
|
"All values in lags must be positive and distinct."
|
||
|
)
|
||
|
self._maxlag = np.max(_lags_arr)
|
||
|
_lags = [int(v) for v in _lags_arr]
|
||
|
else:
|
||
|
val = int_like(lags, "lags")
|
||
|
assert isinstance(val, int)
|
||
|
self._maxlag = val
|
||
|
if self._maxlag < 0:
|
||
|
raise ValueError("lags must be a non-negative scalar.")
|
||
|
_lags_arr = np.arange(1, self._maxlag + 1)
|
||
|
_lags = [int(v) for v in _lags_arr]
|
||
|
|
||
|
if hold_back is None:
|
||
|
hold_back = self._maxlag
|
||
|
if hold_back < self._maxlag:
|
||
|
raise ValueError(
|
||
|
"hold_back must be >= lags if lags is an int or"
|
||
|
"max(lags) if lags is array_like."
|
||
|
)
|
||
|
return _lags, int(hold_back)
|
||
|
|
||
|
def _setup_regressors(self) -> None:
|
||
|
maxlag = self._maxlag
|
||
|
hold_back = self._hold_back
|
||
|
exog_names = []
|
||
|
endog_names = self.endog_names
|
||
|
x, y = lagmat(self.endog, maxlag, original="sep")
|
||
|
exog_names.extend(
|
||
|
[endog_names + f".L{lag}" for lag in self._lags]
|
||
|
)
|
||
|
if len(self._lags) < maxlag:
|
||
|
x = x[:, np.asarray(self._lags) - 1]
|
||
|
self._k_ar = x.shape[1]
|
||
|
deterministic = self._deterministics.in_sample()
|
||
|
if deterministic.shape[1]:
|
||
|
x = np.c_[to_numpy(deterministic), x]
|
||
|
if self._old_names:
|
||
|
deterministic_names = []
|
||
|
if "c" in self._trend:
|
||
|
deterministic_names.append("intercept")
|
||
|
if "t" in self._trend:
|
||
|
deterministic_names.append("trend")
|
||
|
if self._seasonal:
|
||
|
period = self._period
|
||
|
assert isinstance(period, int)
|
||
|
names = [f"seasonal.{i}" for i in range(period)]
|
||
|
if "c" in self._trend:
|
||
|
names = names[1:]
|
||
|
deterministic_names.extend(names)
|
||
|
else:
|
||
|
deterministic_names = list(deterministic.columns)
|
||
|
exog_names = deterministic_names + exog_names
|
||
|
if self.exog is not None:
|
||
|
x = np.c_[x, self.exog]
|
||
|
exog_names.extend(self.data.param_names)
|
||
|
y = y[hold_back:]
|
||
|
x = x[hold_back:]
|
||
|
if y.shape[0] < x.shape[1]:
|
||
|
reg = x.shape[1]
|
||
|
period = self._period
|
||
|
trend = 0 if self._trend == "n" else len(self._trend)
|
||
|
if self._seasonal:
|
||
|
assert isinstance(period, int)
|
||
|
seas = period - int("c" in self._trend)
|
||
|
else:
|
||
|
seas = 0
|
||
|
lags = len(self._lags)
|
||
|
nobs = y.shape[0]
|
||
|
raise ValueError(
|
||
|
"The model specification cannot be estimated. "
|
||
|
f"The model contains {reg} regressors ({trend} trend, "
|
||
|
f"{seas} seasonal, {lags} lags) but after adjustment "
|
||
|
"for hold_back and creation of the lags, there "
|
||
|
f"are only {nobs} data points available to estimate "
|
||
|
"parameters."
|
||
|
)
|
||
|
self._y, self._x = y, x
|
||
|
self._exog_names = exog_names
|
||
|
|
||
|
def fit(
|
||
|
self,
|
||
|
cov_type: str = "nonrobust",
|
||
|
cov_kwds: dict[str, Any] | None = None,
|
||
|
use_t: bool = False,
|
||
|
) -> AutoRegResultsWrapper:
|
||
|
"""
|
||
|
Estimate the model parameters.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
cov_type : str
|
||
|
The covariance estimator to use. The most common choices are listed
|
||
|
below. Supports all covariance estimators that are available
|
||
|
in ``OLS.fit``.
|
||
|
|
||
|
* 'nonrobust' - The class OLS covariance estimator that assumes
|
||
|
homoskedasticity.
|
||
|
* 'HC0', 'HC1', 'HC2', 'HC3' - Variants of White's
|
||
|
(or Eiker-Huber-White) covariance estimator. `HC0` is the
|
||
|
standard implementation. The other make corrections to improve
|
||
|
the finite sample performance of the heteroskedasticity robust
|
||
|
covariance estimator.
|
||
|
* 'HAC' - Heteroskedasticity-autocorrelation robust covariance
|
||
|
estimation. Supports cov_kwds.
|
||
|
|
||
|
- `maxlags` integer (required) : number of lags to use.
|
||
|
- `kernel` callable or str (optional) : kernel
|
||
|
currently available kernels are ['bartlett', 'uniform'],
|
||
|
default is Bartlett.
|
||
|
- `use_correction` bool (optional) : If true, use small sample
|
||
|
correction.
|
||
|
cov_kwds : dict, optional
|
||
|
A dictionary of keyword arguments to pass to the covariance
|
||
|
estimator. `nonrobust` and `HC#` do not support cov_kwds.
|
||
|
use_t : bool, optional
|
||
|
A flag indicating that inference should use the Student's t
|
||
|
distribution that accounts for model degree of freedom. If False,
|
||
|
uses the normal distribution. If None, defers the choice to
|
||
|
the cov_type. It also removes degree of freedom corrections from
|
||
|
the covariance estimator when cov_type is 'nonrobust'.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
AutoRegResults
|
||
|
Estimation results.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.regression.linear_model.OLS
|
||
|
Ordinary Least Squares estimation.
|
||
|
statsmodels.regression.linear_model.RegressionResults
|
||
|
See ``get_robustcov_results`` for a detailed list of available
|
||
|
covariance estimators and options.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Use ``OLS`` to estimate model parameters and to estimate parameter
|
||
|
covariance.
|
||
|
"""
|
||
|
# TODO: Determine correction for degree-of-freedom
|
||
|
# Special case parameterless model
|
||
|
if self._x.shape[1] == 0:
|
||
|
return AutoRegResultsWrapper(
|
||
|
AutoRegResults(self, np.empty(0), np.empty((0, 0)))
|
||
|
)
|
||
|
|
||
|
ols_mod = OLS(self._y, self._x)
|
||
|
ols_res = ols_mod.fit(
|
||
|
cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t
|
||
|
)
|
||
|
cov_params = ols_res.cov_params()
|
||
|
use_t = ols_res.use_t
|
||
|
if cov_type == "nonrobust" and not use_t:
|
||
|
nobs = self._y.shape[0]
|
||
|
k = self._x.shape[1]
|
||
|
scale = nobs / (nobs - k)
|
||
|
cov_params /= scale
|
||
|
res = AutoRegResults(
|
||
|
self,
|
||
|
ols_res.params,
|
||
|
cov_params,
|
||
|
ols_res.normalized_cov_params,
|
||
|
use_t=use_t,
|
||
|
)
|
||
|
|
||
|
return AutoRegResultsWrapper(res)
|
||
|
|
||
|
def _resid(self, params: ArrayLike) -> np.ndarray:
|
||
|
params = array_like(params, "params", ndim=2)
|
||
|
return self._y.squeeze() - (self._x @ params).squeeze()
|
||
|
|
||
|
def loglike(self, params: ArrayLike) -> float:
|
||
|
"""
|
||
|
Log-likelihood of model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
The model parameters used to compute the log-likelihood.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
float
|
||
|
The log-likelihood value.
|
||
|
"""
|
||
|
nobs = self.nobs
|
||
|
resid = self._resid(params)
|
||
|
ssr = resid @ resid
|
||
|
llf = -(nobs / 2) * (np.log(2 * np.pi) + np.log(ssr / nobs) + 1)
|
||
|
return llf
|
||
|
|
||
|
def score(self, params: ArrayLike) -> np.ndarray:
|
||
|
"""
|
||
|
Score vector of model.
|
||
|
|
||
|
The gradient of logL with respect to each parameter.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
The parameters to use when evaluating the Hessian.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
The score vector evaluated at the parameters.
|
||
|
"""
|
||
|
resid = self._resid(params)
|
||
|
return self._x.T @ resid
|
||
|
|
||
|
def information(self, params: ArrayLike) -> np.ndarray:
|
||
|
"""
|
||
|
Fisher information matrix of model.
|
||
|
|
||
|
Returns -1 * Hessian of the log-likelihood evaluated at params.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
The model parameters.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
The information matrix.
|
||
|
"""
|
||
|
resid = self._resid(params)
|
||
|
sigma2 = resid @ resid / self.nobs
|
||
|
return (self._x.T @ self._x) * (1 / sigma2)
|
||
|
|
||
|
def hessian(self, params: ArrayLike) -> np.ndarray:
|
||
|
"""
|
||
|
The Hessian matrix of the model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
The parameters to use when evaluating the Hessian.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
The hessian evaluated at the parameters.
|
||
|
"""
|
||
|
return -self.information(params)
|
||
|
|
||
|
def _setup_oos_forecast(
|
||
|
self, add_forecasts: int, exog_oos: ArrayLike2D
|
||
|
) -> np.ndarray:
|
||
|
x = np.zeros((add_forecasts, self._x.shape[1]))
|
||
|
oos_exog = self._deterministics.out_of_sample(steps=add_forecasts)
|
||
|
n_deterministic = oos_exog.shape[1]
|
||
|
x[:, :n_deterministic] = to_numpy(oos_exog)
|
||
|
# skip the AR columns
|
||
|
loc = n_deterministic + len(self._lags)
|
||
|
if self.exog is not None:
|
||
|
exog_oos_a = np.asarray(exog_oos)
|
||
|
x[:, loc:] = exog_oos_a[:add_forecasts]
|
||
|
return x
|
||
|
|
||
|
def _wrap_prediction(
|
||
|
self, prediction: np.ndarray, start: int, end: int, pad: int
|
||
|
) -> pd.Series:
|
||
|
prediction = np.hstack([np.full(pad, np.nan), prediction])
|
||
|
n_values = end - start + pad
|
||
|
if not isinstance(self.data.orig_endog, (pd.Series, pd.DataFrame)):
|
||
|
return prediction[-n_values:]
|
||
|
index = self._index
|
||
|
if end > self.endog.shape[0]:
|
||
|
freq = getattr(index, "freq", None)
|
||
|
if freq:
|
||
|
if isinstance(index, pd.PeriodIndex):
|
||
|
index = pd.period_range(index[0], freq=freq, periods=end)
|
||
|
else:
|
||
|
index = pd.date_range(index[0], freq=freq, periods=end)
|
||
|
else:
|
||
|
index = pd.RangeIndex(end)
|
||
|
index = index[start - pad : end]
|
||
|
prediction = prediction[-n_values:]
|
||
|
return pd.Series(prediction, index=index)
|
||
|
|
||
|
def _dynamic_predict(
|
||
|
self,
|
||
|
params: ArrayLike,
|
||
|
start: int,
|
||
|
end: int,
|
||
|
dynamic: int,
|
||
|
num_oos: int,
|
||
|
exog: Float64Array | None,
|
||
|
exog_oos: Float64Array | None,
|
||
|
) -> pd.Series:
|
||
|
"""
|
||
|
|
||
|
:param params:
|
||
|
:param start:
|
||
|
:param end:
|
||
|
:param dynamic:
|
||
|
:param num_oos:
|
||
|
:param exog:
|
||
|
:param exog_oos:
|
||
|
:return:
|
||
|
"""
|
||
|
reg = []
|
||
|
hold_back = self._hold_back
|
||
|
adj = 0
|
||
|
if start < hold_back:
|
||
|
# Adjust start and dynamic
|
||
|
adj = hold_back - start
|
||
|
start += adj
|
||
|
# New offset shifts, but must remain non-negative
|
||
|
dynamic = max(dynamic - adj, 0)
|
||
|
|
||
|
if (start - hold_back) <= self.nobs:
|
||
|
# _x is missing hold_back observations, which is why
|
||
|
# it is shifted by this amount
|
||
|
is_loc = slice(start - hold_back, end + 1 - hold_back)
|
||
|
x = self._x[is_loc]
|
||
|
if exog is not None:
|
||
|
x = x.copy()
|
||
|
# Replace final columns
|
||
|
x[:, -exog.shape[1] :] = exog[start : end + 1]
|
||
|
reg.append(x)
|
||
|
if num_oos > 0:
|
||
|
reg.append(self._setup_oos_forecast(num_oos, exog_oos))
|
||
|
_reg = np.vstack(reg)
|
||
|
det_col_idx = self._x.shape[1] - len(self._lags)
|
||
|
det_col_idx -= 0 if self.exog is None else self.exog.shape[1]
|
||
|
# Simple 1-step static forecasts for dynamic observations
|
||
|
forecasts = np.empty(_reg.shape[0])
|
||
|
forecasts[:dynamic] = _reg[:dynamic] @ params
|
||
|
for h in range(dynamic, _reg.shape[0]):
|
||
|
# Fill in regressor matrix
|
||
|
for j, lag in enumerate(self._lags):
|
||
|
fcast_loc = h - lag
|
||
|
if fcast_loc >= dynamic:
|
||
|
val = forecasts[fcast_loc]
|
||
|
else:
|
||
|
# If before the start of the forecasts, use actual values
|
||
|
val = self.endog[fcast_loc + start]
|
||
|
_reg[h, det_col_idx + j] = val
|
||
|
forecasts[h] = np.squeeze(_reg[h : h + 1] @ params)
|
||
|
return self._wrap_prediction(forecasts, start, end + 1 + num_oos, adj)
|
||
|
|
||
|
def _static_oos_predict(
|
||
|
self, params: ArrayLike, num_oos: int, exog_oos: ArrayLike2D
|
||
|
) -> np.ndarray:
|
||
|
new_x = self._setup_oos_forecast(num_oos, exog_oos)
|
||
|
if self._maxlag == 0:
|
||
|
return new_x @ params
|
||
|
forecasts = np.empty(num_oos)
|
||
|
nexog = 0 if self.exog is None else self.exog.shape[1]
|
||
|
ar_offset = self._x.shape[1] - nexog - len(self._lags)
|
||
|
for i in range(num_oos):
|
||
|
for j, lag in enumerate(self._lags):
|
||
|
loc = i - lag
|
||
|
val = self._y[loc] if loc < 0 else forecasts[loc]
|
||
|
new_x[i, ar_offset + j] = np.squeeze(val)
|
||
|
forecasts[i] = np.squeeze(new_x[i : i + 1] @ params)
|
||
|
return forecasts
|
||
|
|
||
|
def _static_predict(
|
||
|
self,
|
||
|
params: Float64Array,
|
||
|
start: int,
|
||
|
end: int,
|
||
|
num_oos: int,
|
||
|
exog: Float64Array | None,
|
||
|
exog_oos: Float64Array | None,
|
||
|
) -> pd.Series:
|
||
|
"""
|
||
|
Path for static predictions
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
The model parameters
|
||
|
start : int
|
||
|
Index of first observation
|
||
|
end : int
|
||
|
Index of last in-sample observation. Inclusive, so start:end+1
|
||
|
in slice notation.
|
||
|
num_oos : int
|
||
|
Number of out-of-sample observations, so that the returned size is
|
||
|
num_oos + (end - start + 1).
|
||
|
exog : {ndarray, DataFrame}
|
||
|
Array containing replacement exog values
|
||
|
exog_oos : {ndarray, DataFrame}
|
||
|
Containing forecast exog values
|
||
|
"""
|
||
|
hold_back = self._hold_back
|
||
|
nobs = self.endog.shape[0]
|
||
|
|
||
|
x = np.empty((0, self._x.shape[1]))
|
||
|
|
||
|
# Adjust start to reflect observations lost
|
||
|
adj = max(0, hold_back - start)
|
||
|
start += adj
|
||
|
if start <= nobs:
|
||
|
# Use existing regressors
|
||
|
is_loc = slice(start - hold_back, end + 1 - hold_back)
|
||
|
x = self._x[is_loc]
|
||
|
if exog is not None:
|
||
|
exog_a = np.asarray(exog)
|
||
|
x = x.copy()
|
||
|
# Replace final columns
|
||
|
x[:, -exog_a.shape[1] :] = exog_a[start : end + 1]
|
||
|
in_sample = x @ params
|
||
|
if num_oos == 0: # No out of sample
|
||
|
return self._wrap_prediction(in_sample, start, end + 1, adj)
|
||
|
|
||
|
out_of_sample = self._static_oos_predict(params, num_oos, exog_oos)
|
||
|
prediction = np.hstack((in_sample, out_of_sample))
|
||
|
return self._wrap_prediction(prediction, start, end + 1 + num_oos, adj)
|
||
|
|
||
|
def _prepare_prediction(
|
||
|
self,
|
||
|
params: ArrayLike,
|
||
|
exog: ArrayLike2D,
|
||
|
exog_oos: ArrayLike2D,
|
||
|
start: int | str | datetime.datetime | pd.Timestamp | None,
|
||
|
end: int | str | datetime.datetime | pd.Timestamp | None,
|
||
|
) -> tuple[
|
||
|
np.ndarray,
|
||
|
np.ndarray | pd.DataFrame | None,
|
||
|
np.ndarray | pd.DataFrame | None,
|
||
|
int,
|
||
|
int,
|
||
|
int,
|
||
|
]:
|
||
|
params = array_like(params, "params")
|
||
|
assert isinstance(params, np.ndarray)
|
||
|
if isinstance(exog, pd.DataFrame):
|
||
|
_exog = exog
|
||
|
else:
|
||
|
_exog = array_like(exog, "exog", ndim=2, optional=True)
|
||
|
if isinstance(exog_oos, pd.DataFrame):
|
||
|
_exog_oos = exog_oos
|
||
|
else:
|
||
|
_exog_oos = array_like(exog_oos, "exog_oos", ndim=2, optional=True)
|
||
|
start = 0 if start is None else start
|
||
|
end = self._index[-1] if end is None else end
|
||
|
start, end, num_oos, _ = self._get_prediction_index(start, end)
|
||
|
return params, _exog, _exog_oos, start, end, num_oos
|
||
|
|
||
|
def _parse_dynamic(self, dynamic, start):
|
||
|
if isinstance(
|
||
|
dynamic, (str, bytes, pd.Timestamp, dt.datetime, pd.Period)
|
||
|
):
|
||
|
dynamic_loc, _, _ = self._get_index_loc(dynamic)
|
||
|
# Adjust since relative to start
|
||
|
dynamic_loc -= start
|
||
|
elif dynamic is True:
|
||
|
# if True, all forecasts are dynamic
|
||
|
dynamic_loc = 0
|
||
|
else:
|
||
|
dynamic_loc = int(dynamic)
|
||
|
# At this point dynamic is an offset relative to start
|
||
|
# and it must be non-negative
|
||
|
if dynamic_loc < 0:
|
||
|
raise ValueError(
|
||
|
"Dynamic prediction cannot begin prior to the "
|
||
|
"first observation in the sample."
|
||
|
)
|
||
|
return dynamic_loc
|
||
|
|
||
|
def predict(
|
||
|
self,
|
||
|
params: ArrayLike,
|
||
|
start: int | str | datetime.datetime | pd.Timestamp | None = None,
|
||
|
end: int | str | datetime.datetime | pd.Timestamp | None = None,
|
||
|
dynamic: bool | int = False,
|
||
|
exog: ArrayLike2D | None = None,
|
||
|
exog_oos: ArrayLike2D | None = None,
|
||
|
) -> pd.Series:
|
||
|
"""
|
||
|
In-sample prediction and out-of-sample forecasting.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
The fitted model parameters.
|
||
|
start : int, str, or datetime, optional
|
||
|
Zero-indexed observation number at which to start forecasting,
|
||
|
i.e., the first forecast is start. Can also be a date string to
|
||
|
parse or a datetime type. Default is the the zeroth observation.
|
||
|
end : int, str, or datetime, optional
|
||
|
Zero-indexed observation number at which to end forecasting, i.e.,
|
||
|
the last forecast is end. Can also be a date string to
|
||
|
parse or a datetime type. However, if the dates index does not
|
||
|
have a fixed frequency, end must be an integer index if you
|
||
|
want out-of-sample prediction. Default is the last observation in
|
||
|
the sample. Unlike standard python slices, end is inclusive so
|
||
|
that all the predictions [start, start+1, ..., end-1, end] are
|
||
|
returned.
|
||
|
dynamic : {bool, int, str, datetime, Timestamp}, optional
|
||
|
Integer offset relative to `start` at which to begin dynamic
|
||
|
prediction. Prior to this observation, true endogenous values
|
||
|
will be used for prediction; starting with this observation and
|
||
|
continuing through the end of prediction, forecasted endogenous
|
||
|
values will be used instead. Datetime-like objects are not
|
||
|
interpreted as offsets. They are instead used to find the index
|
||
|
location of `dynamic` which is then used to to compute the offset.
|
||
|
exog : array_like
|
||
|
A replacement exogenous array. Must have the same shape as the
|
||
|
exogenous data array used when the model was created.
|
||
|
exog_oos : array_like
|
||
|
An array containing out-of-sample values of the exogenous variable.
|
||
|
Must has the same number of columns as the exog used when the
|
||
|
model was created, and at least as many rows as the number of
|
||
|
out-of-sample forecasts.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
predictions : {ndarray, Series}
|
||
|
Array of out of in-sample predictions and / or out-of-sample
|
||
|
forecasts.
|
||
|
"""
|
||
|
|
||
|
params, exog, exog_oos, start, end, num_oos = self._prepare_prediction(
|
||
|
params, exog, exog_oos, start, end
|
||
|
)
|
||
|
if self.exog is None and (exog is not None or exog_oos is not None):
|
||
|
raise ValueError(
|
||
|
"exog and exog_oos cannot be used when the model "
|
||
|
"does not contains exogenous regressors."
|
||
|
)
|
||
|
elif self.exog is not None:
|
||
|
if exog is not None and exog.shape != self.exog.shape:
|
||
|
msg = (
|
||
|
"The shape of exog {0} must match the shape of the "
|
||
|
"exog variable used to create the model {1}."
|
||
|
)
|
||
|
raise ValueError(msg.format(exog.shape, self.exog.shape))
|
||
|
if (
|
||
|
exog_oos is not None
|
||
|
and exog_oos.shape[1] != self.exog.shape[1]
|
||
|
):
|
||
|
msg = (
|
||
|
"The number of columns in exog_oos ({0}) must match "
|
||
|
"the number of columns in the exog variable used to "
|
||
|
"create the model ({1})."
|
||
|
)
|
||
|
raise ValueError(
|
||
|
msg.format(exog_oos.shape[1], self.exog.shape[1])
|
||
|
)
|
||
|
if num_oos > 0 and exog_oos is None:
|
||
|
raise ValueError(
|
||
|
"exog_oos must be provided when producing "
|
||
|
"out-of-sample forecasts."
|
||
|
)
|
||
|
elif exog_oos is not None and num_oos > exog_oos.shape[0]:
|
||
|
msg = (
|
||
|
"start and end indicate that {0} out-of-sample "
|
||
|
"predictions must be computed. exog_oos has {1} rows "
|
||
|
"but must have at least {0}."
|
||
|
)
|
||
|
raise ValueError(msg.format(num_oos, exog_oos.shape[0]))
|
||
|
|
||
|
if (isinstance(dynamic, bool) and not dynamic) or self._maxlag == 0:
|
||
|
# If model has no lags, static and dynamic are identical
|
||
|
return self._static_predict(
|
||
|
params, start, end, num_oos, exog, exog_oos
|
||
|
)
|
||
|
dynamic = self._parse_dynamic(dynamic, start)
|
||
|
|
||
|
return self._dynamic_predict(
|
||
|
params, start, end, dynamic, num_oos, exog, exog_oos
|
||
|
)
|
||
|
|
||
|
|
||
|
class AR:
|
||
|
"""
|
||
|
The AR class has been removed and replaced with AutoReg
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
AutoReg
|
||
|
The replacement for AR that improved deterministic modeling
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
raise NotImplementedError(
|
||
|
"AR has been removed from statsmodels and replaced with "
|
||
|
"statsmodels.tsa.ar_model.AutoReg."
|
||
|
)
|
||
|
|
||
|
|
||
|
class ARResults:
|
||
|
"""
|
||
|
Removed and replaced by AutoRegResults.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
AutoReg
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
raise NotImplementedError(
|
||
|
"AR and ARResults have been removed and replaced by "
|
||
|
"AutoReg And AutoRegResults."
|
||
|
)
|
||
|
|
||
|
|
||
|
doc = Docstring(AutoReg.predict.__doc__)
|
||
|
_predict_params = doc.extract_parameters(
|
||
|
["start", "end", "dynamic", "exog", "exog_oos"], 8
|
||
|
)
|
||
|
|
||
|
|
||
|
class AutoRegResults(tsa_model.TimeSeriesModelResults):
|
||
|
"""
|
||
|
Class to hold results from fitting an AutoReg model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
model : AutoReg
|
||
|
Reference to the model that is fit.
|
||
|
params : ndarray
|
||
|
The fitted parameters from the AR Model.
|
||
|
cov_params : ndarray
|
||
|
The estimated covariance matrix of the model parameters.
|
||
|
normalized_cov_params : ndarray
|
||
|
The array inv(dot(x.T,x)) where x contains the regressors in the
|
||
|
model.
|
||
|
scale : float, optional
|
||
|
An estimate of the scale of the model.
|
||
|
use_t : bool, optional
|
||
|
Whether use_t was set in fit
|
||
|
summary_text : str, optional
|
||
|
Additional text to append to results summary
|
||
|
"""
|
||
|
|
||
|
_cache: dict[str, Any] = {} # for scale setter
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model,
|
||
|
params,
|
||
|
cov_params,
|
||
|
normalized_cov_params=None,
|
||
|
scale=1.0,
|
||
|
use_t=False,
|
||
|
summary_text="",
|
||
|
):
|
||
|
super().__init__(model, params, normalized_cov_params, scale)
|
||
|
self._cache = {}
|
||
|
self._params = params
|
||
|
self._nobs = model.nobs
|
||
|
self._n_totobs = model.endog.shape[0]
|
||
|
self._df_model = model.df_model
|
||
|
self._ar_lags = model.ar_lags
|
||
|
self._use_t = use_t
|
||
|
if self._ar_lags is not None:
|
||
|
self._max_lag = max(self._ar_lags)
|
||
|
else:
|
||
|
self._max_lag = 0
|
||
|
self._hold_back = self.model.hold_back
|
||
|
self.cov_params_default = cov_params
|
||
|
self._summary_text = summary_text
|
||
|
|
||
|
def initialize(self, model, params, **kwargs):
|
||
|
"""
|
||
|
Initialize (possibly re-initialize) a Results instance.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
model : Model
|
||
|
The model instance.
|
||
|
params : ndarray
|
||
|
The model parameters.
|
||
|
**kwargs
|
||
|
Any additional keyword arguments required to initialize the model.
|
||
|
"""
|
||
|
self._params = params
|
||
|
self.model = model
|
||
|
|
||
|
@property
|
||
|
def ar_lags(self):
|
||
|
"""The autoregressive lags included in the model"""
|
||
|
return self._ar_lags
|
||
|
|
||
|
@property
|
||
|
def params(self):
|
||
|
"""The estimated parameters."""
|
||
|
return self._params
|
||
|
|
||
|
@property
|
||
|
def df_model(self):
|
||
|
"""The degrees of freedom consumed by the model."""
|
||
|
return self._df_model
|
||
|
|
||
|
@property
|
||
|
def df_resid(self):
|
||
|
"""The remaining degrees of freedom in the residuals."""
|
||
|
return self.nobs - self._df_model
|
||
|
|
||
|
@property
|
||
|
def nobs(self):
|
||
|
"""
|
||
|
The number of observations after adjusting for losses due to lags.
|
||
|
"""
|
||
|
return self._nobs
|
||
|
|
||
|
@cache_writable()
|
||
|
def sigma2(self):
|
||
|
return 1.0 / self.nobs * sumofsq(self.resid)
|
||
|
|
||
|
@cache_writable() # for compatability with RegressionResults
|
||
|
def scale(self):
|
||
|
return self.sigma2
|
||
|
|
||
|
@cache_readonly
|
||
|
def bse(self): # allow user to specify?
|
||
|
"""
|
||
|
The standard errors of the estimated parameters.
|
||
|
|
||
|
If `method` is 'cmle', then the standard errors that are returned are
|
||
|
the OLS standard errors of the coefficients. If the `method` is 'mle'
|
||
|
then they are computed using the numerical Hessian.
|
||
|
"""
|
||
|
return np.sqrt(np.diag(self.cov_params()))
|
||
|
|
||
|
@cache_readonly
|
||
|
def aic(self):
|
||
|
r"""
|
||
|
Akaike Information Criterion using Lutkepohl's definition.
|
||
|
|
||
|
:math:`-2 llf + \ln(nobs) (1 + df_{model})`
|
||
|
"""
|
||
|
# This is based on loglike with dropped constant terms ?
|
||
|
# Lutkepohl
|
||
|
# return np.log(self.sigma2) + 1./self.model.nobs * self.k_ar
|
||
|
# Include constant as estimated free parameter and double the loss
|
||
|
# Stata defintion
|
||
|
# nobs = self.nobs
|
||
|
# return -2 * self.llf/nobs + 2 * (self.k_ar+self.k_trend)/nobs
|
||
|
return eval_measures.aic(self.llf, self.nobs, self.df_model + 1)
|
||
|
|
||
|
@cache_readonly
|
||
|
def hqic(self):
|
||
|
r"""
|
||
|
Hannan-Quinn Information Criterion using Lutkepohl's definition.
|
||
|
|
||
|
:math:`-2 llf + 2 \ln(\ln(nobs)) (1 + df_{model})`
|
||
|
"""
|
||
|
# Lutkepohl
|
||
|
# return np.log(self.sigma2)+ 2 * np.log(np.log(nobs))/nobs * self.k_ar
|
||
|
# R uses all estimated parameters rather than just lags
|
||
|
# Stata
|
||
|
# nobs = self.nobs
|
||
|
# return -2 * self.llf/nobs + 2 * np.log(np.log(nobs))/nobs * \
|
||
|
# (self.k_ar + self.k_trend)
|
||
|
return eval_measures.hqic(self.llf, self.nobs, self.df_model + 1)
|
||
|
|
||
|
@cache_readonly
|
||
|
def fpe(self):
|
||
|
r"""
|
||
|
Final prediction error using Lütkepohl's definition.
|
||
|
|
||
|
:math:`((nobs+df_{model})/(nobs-df_{model})) \sigma^2`
|
||
|
"""
|
||
|
nobs = self.nobs
|
||
|
df_model = self.df_model
|
||
|
# Lutkepohl
|
||
|
return self.sigma2 * ((nobs + df_model) / (nobs - df_model))
|
||
|
|
||
|
@cache_readonly
|
||
|
def aicc(self):
|
||
|
r"""
|
||
|
Akaike Information Criterion with small sample correction
|
||
|
|
||
|
:math:`2.0 * df_{model} * nobs / (nobs - df_{model} - 1.0)`
|
||
|
"""
|
||
|
return eval_measures.aicc(self.llf, self.nobs, self.df_model + 1)
|
||
|
|
||
|
@cache_readonly
|
||
|
def bic(self):
|
||
|
r"""
|
||
|
Bayes Information Criterion
|
||
|
|
||
|
:math:`-2 llf + \ln(nobs) (1 + df_{model})`
|
||
|
"""
|
||
|
# Lutkepohl
|
||
|
# np.log(self.sigma2) + np.log(nobs)/nobs * self.k_ar
|
||
|
# Include constant as est. free parameter
|
||
|
# Stata
|
||
|
# -2 * self.llf/nobs + np.log(nobs)/nobs * (self.k_ar + self.k_trend)
|
||
|
return eval_measures.bic(self.llf, self.nobs, self.df_model + 1)
|
||
|
|
||
|
@cache_readonly
|
||
|
def resid(self):
|
||
|
"""
|
||
|
The residuals of the model.
|
||
|
"""
|
||
|
model = self.model
|
||
|
endog = model.endog.squeeze()
|
||
|
return endog[self._hold_back :] - self.fittedvalues
|
||
|
|
||
|
def _lag_repr(self):
|
||
|
"""Returns poly repr of an AR, (1 -phi1 L -phi2 L^2-...)"""
|
||
|
ar_lags = self._ar_lags if self._ar_lags is not None else []
|
||
|
k_ar = len(ar_lags)
|
||
|
ar_params = np.zeros(self._max_lag + 1)
|
||
|
ar_params[0] = 1
|
||
|
df_model = self._df_model
|
||
|
exog = self.model.exog
|
||
|
k_exog = exog.shape[1] if exog is not None else 0
|
||
|
params = self._params[df_model - k_ar - k_exog : df_model - k_exog]
|
||
|
for i, lag in enumerate(ar_lags):
|
||
|
ar_params[lag] = -params[i]
|
||
|
return ar_params
|
||
|
|
||
|
@cache_readonly
|
||
|
def roots(self):
|
||
|
"""
|
||
|
The roots of the AR process.
|
||
|
|
||
|
The roots are the solution to
|
||
|
(1 - arparams[0]*z - arparams[1]*z**2 -...- arparams[p-1]*z**k_ar) = 0.
|
||
|
Stability requires that the roots in modulus lie outside the unit
|
||
|
circle.
|
||
|
"""
|
||
|
# TODO: Specific to AR
|
||
|
lag_repr = self._lag_repr()
|
||
|
if lag_repr.shape[0] == 1:
|
||
|
return np.empty(0)
|
||
|
|
||
|
return np.roots(lag_repr) ** -1
|
||
|
|
||
|
@cache_readonly
|
||
|
def arfreq(self):
|
||
|
r"""
|
||
|
Returns the frequency of the AR roots.
|
||
|
|
||
|
This is the solution, x, to z = abs(z)*exp(2j*np.pi*x) where z are the
|
||
|
roots.
|
||
|
"""
|
||
|
# TODO: Specific to AR
|
||
|
z = self.roots
|
||
|
return np.arctan2(z.imag, z.real) / (2 * np.pi)
|
||
|
|
||
|
@cache_readonly
|
||
|
def fittedvalues(self):
|
||
|
"""
|
||
|
The in-sample predicted values of the fitted AR model.
|
||
|
|
||
|
The `k_ar` initial values are computed via the Kalman Filter if the
|
||
|
model is fit by `mle`.
|
||
|
"""
|
||
|
return self.model.predict(self.params)[self._hold_back :]
|
||
|
|
||
|
def test_serial_correlation(self, lags=None, model_df=None):
|
||
|
"""
|
||
|
Ljung-Box test for residual serial correlation
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
lags : int
|
||
|
The maximum number of lags to use in the test. Jointly tests that
|
||
|
all autocorrelations up to and including lag j are zero for
|
||
|
j = 1, 2, ..., lags. If None, uses min(10, nobs // 5).
|
||
|
model_df : int
|
||
|
The model degree of freedom to use when adjusting computing the
|
||
|
test statistic to account for parameter estimation. If None, uses
|
||
|
the number of AR lags included in the model.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
output : DataFrame
|
||
|
DataFrame containing three columns: the test statistic, the
|
||
|
p-value of the test, and the degree of freedom used in the test.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Null hypothesis is no serial correlation.
|
||
|
|
||
|
The the test degree-of-freedom is 0 or negative once accounting for
|
||
|
model_df, then the test statistic's p-value is missing.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.stats.diagnostic.acorr_ljungbox
|
||
|
Ljung-Box test for serial correlation.
|
||
|
"""
|
||
|
# Deferred to prevent circular import
|
||
|
from statsmodels.stats.diagnostic import acorr_ljungbox
|
||
|
|
||
|
lags = int_like(lags, "lags", optional=True)
|
||
|
model_df = int_like(model_df, "df_model", optional=True)
|
||
|
model_df = self.df_model if model_df is None else model_df
|
||
|
nobs_effective = self.resid.shape[0]
|
||
|
if lags is None:
|
||
|
lags = min(nobs_effective // 5, 10)
|
||
|
test_stats = acorr_ljungbox(
|
||
|
self.resid,
|
||
|
lags=lags,
|
||
|
boxpierce=False,
|
||
|
model_df=model_df,
|
||
|
)
|
||
|
cols = ["Ljung-Box", "LB P-value", "DF"]
|
||
|
if lags == 1:
|
||
|
df = max(0, 1 - model_df)
|
||
|
else:
|
||
|
df = np.clip(np.arange(1, lags + 1) - model_df, 0, np.inf)
|
||
|
df = df.astype(int)
|
||
|
test_stats["df"] = df
|
||
|
index = pd.RangeIndex(1, lags + 1, name="Lag")
|
||
|
return pd.DataFrame(test_stats, columns=cols, index=index)
|
||
|
|
||
|
def test_normality(self):
|
||
|
"""
|
||
|
Test for normality of standardized residuals.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Series
|
||
|
Series containing four values, the test statistic and its p-value,
|
||
|
the skewness and the kurtosis.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Null hypothesis is normality.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.stats.stattools.jarque_bera
|
||
|
The Jarque-Bera test of normality.
|
||
|
"""
|
||
|
# Deferred to prevent circular import
|
||
|
from statsmodels.stats.stattools import jarque_bera
|
||
|
|
||
|
index = ["Jarque-Bera", "P-value", "Skewness", "Kurtosis"]
|
||
|
return pd.Series(jarque_bera(self.resid), index=index)
|
||
|
|
||
|
def test_heteroskedasticity(self, lags=None):
|
||
|
"""
|
||
|
ARCH-LM test of residual heteroskedasticity
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
lags : int
|
||
|
The maximum number of lags to use in the test. Jointly tests that
|
||
|
all squared autocorrelations up to and including lag j are zero for
|
||
|
j = 1, 2, ..., lags. If None, uses lag=12*(nobs/100)^{1/4}.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Series
|
||
|
Series containing the test statistic and its p-values.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.stats.diagnostic.het_arch
|
||
|
ARCH-LM test.
|
||
|
statsmodels.stats.diagnostic.acorr_lm
|
||
|
LM test for autocorrelation.
|
||
|
"""
|
||
|
from statsmodels.stats.diagnostic import het_arch
|
||
|
|
||
|
lags = int_like(lags, "lags", optional=True)
|
||
|
nobs_effective = self.resid.shape[0]
|
||
|
if lags is None:
|
||
|
lags = min(nobs_effective // 5, 10)
|
||
|
out = []
|
||
|
for lag in range(1, lags + 1):
|
||
|
res = het_arch(self.resid, nlags=lag)
|
||
|
out.append([res[0], res[1], lag])
|
||
|
index = pd.RangeIndex(1, lags + 1, name="Lag")
|
||
|
cols = ["ARCH-LM", "P-value", "DF"]
|
||
|
return pd.DataFrame(out, columns=cols, index=index)
|
||
|
|
||
|
def diagnostic_summary(self):
|
||
|
"""
|
||
|
Returns a summary containing standard model diagnostic tests
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Summary
|
||
|
A summary instance with panels for serial correlation tests,
|
||
|
normality tests and heteroskedasticity tests.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
test_serial_correlation
|
||
|
Test models residuals for serial correlation.
|
||
|
test_normality
|
||
|
Test models residuals for deviations from normality.
|
||
|
test_heteroskedasticity
|
||
|
Test models residuals for conditional heteroskedasticity.
|
||
|
"""
|
||
|
from statsmodels.iolib.table import SimpleTable
|
||
|
|
||
|
spacer = SimpleTable([""])
|
||
|
smry = Summary()
|
||
|
sc = self.test_serial_correlation()
|
||
|
sc = sc.loc[sc.DF > 0]
|
||
|
values = [[i + 1] + row for i, row in enumerate(sc.values.tolist())]
|
||
|
data_fmts = ("%10d", "%10.3f", "%10.3f", "%10d")
|
||
|
if sc.shape[0]:
|
||
|
tab = SimpleTable(
|
||
|
values,
|
||
|
headers=["Lag"] + list(sc.columns),
|
||
|
title="Test of No Serial Correlation",
|
||
|
header_align="r",
|
||
|
data_fmts=data_fmts,
|
||
|
)
|
||
|
smry.tables.append(tab)
|
||
|
smry.tables.append(spacer)
|
||
|
jb = self.test_normality()
|
||
|
data_fmts = ("%10.3f", "%10.3f", "%10.3f", "%10.3f")
|
||
|
tab = SimpleTable(
|
||
|
[jb.values],
|
||
|
headers=list(jb.index),
|
||
|
title="Test of Normality",
|
||
|
header_align="r",
|
||
|
data_fmts=data_fmts,
|
||
|
)
|
||
|
smry.tables.append(tab)
|
||
|
smry.tables.append(spacer)
|
||
|
arch_lm = self.test_heteroskedasticity()
|
||
|
values = [
|
||
|
[i + 1] + row for i, row in enumerate(arch_lm.values.tolist())
|
||
|
]
|
||
|
data_fmts = ("%10d", "%10.3f", "%10.3f", "%10d")
|
||
|
tab = SimpleTable(
|
||
|
values,
|
||
|
headers=["Lag"] + list(arch_lm.columns),
|
||
|
title="Test of Conditional Homoskedasticity",
|
||
|
header_align="r",
|
||
|
data_fmts=data_fmts,
|
||
|
)
|
||
|
smry.tables.append(tab)
|
||
|
return smry
|
||
|
|
||
|
@Appender(remove_parameters(AutoReg.predict.__doc__, "params"))
|
||
|
def predict(
|
||
|
self, start=None, end=None, dynamic=False, exog=None, exog_oos=None
|
||
|
):
|
||
|
return self.model.predict(
|
||
|
self._params,
|
||
|
start=start,
|
||
|
end=end,
|
||
|
dynamic=dynamic,
|
||
|
exog=exog,
|
||
|
exog_oos=exog_oos,
|
||
|
)
|
||
|
|
||
|
def get_prediction(
|
||
|
self, start=None, end=None, dynamic=False, exog=None, exog_oos=None
|
||
|
):
|
||
|
"""
|
||
|
Predictions and prediction intervals
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : int, str, or datetime, optional
|
||
|
Zero-indexed observation number at which to start forecasting,
|
||
|
i.e., the first forecast is start. Can also be a date string to
|
||
|
parse or a datetime type. Default is the the zeroth observation.
|
||
|
end : int, str, or datetime, optional
|
||
|
Zero-indexed observation number at which to end forecasting, i.e.,
|
||
|
the last forecast is end. Can also be a date string to
|
||
|
parse or a datetime type. However, if the dates index does not
|
||
|
have a fixed frequency, end must be an integer index if you
|
||
|
want out-of-sample prediction. Default is the last observation in
|
||
|
the sample. Unlike standard python slices, end is inclusive so
|
||
|
that all the predictions [start, start+1, ..., end-1, end] are
|
||
|
returned.
|
||
|
dynamic : {bool, int, str, datetime, Timestamp}, optional
|
||
|
Integer offset relative to `start` at which to begin dynamic
|
||
|
prediction. Prior to this observation, true endogenous values
|
||
|
will be used for prediction; starting with this observation and
|
||
|
continuing through the end of prediction, forecasted endogenous
|
||
|
values will be used instead. Datetime-like objects are not
|
||
|
interpreted as offsets. They are instead used to find the index
|
||
|
location of `dynamic` which is then used to to compute the offset.
|
||
|
exog : array_like
|
||
|
A replacement exogenous array. Must have the same shape as the
|
||
|
exogenous data array used when the model was created.
|
||
|
exog_oos : array_like
|
||
|
An array containing out-of-sample values of the exogenous variable.
|
||
|
Must has the same number of columns as the exog used when the
|
||
|
model was created, and at least as many rows as the number of
|
||
|
out-of-sample forecasts.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
PredictionResults
|
||
|
Prediction results with mean and prediction intervals
|
||
|
"""
|
||
|
mean = self.predict(
|
||
|
start=start, end=end, dynamic=dynamic, exog=exog, exog_oos=exog_oos
|
||
|
)
|
||
|
mean_var = np.full_like(mean, self.sigma2)
|
||
|
mean_var[np.isnan(mean)] = np.nan
|
||
|
start = 0 if start is None else start
|
||
|
end = self.model._index[-1] if end is None else end
|
||
|
_, _, oos, _ = self.model._get_prediction_index(start, end)
|
||
|
if oos > 0:
|
||
|
ar_params = self._lag_repr()
|
||
|
ma = arma2ma(ar_params, np.ones(1), lags=oos)
|
||
|
mean_var[-oos:] = self.sigma2 * np.cumsum(ma**2)
|
||
|
if isinstance(mean, pd.Series):
|
||
|
mean_var = pd.Series(mean_var, index=mean.index)
|
||
|
|
||
|
return PredictionResults(mean, mean_var)
|
||
|
|
||
|
def forecast(self, steps=1, exog=None):
|
||
|
"""
|
||
|
Out-of-sample forecasts
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
steps : {int, str, datetime}, default 1
|
||
|
If an integer, the number of steps to forecast from the end of the
|
||
|
sample. Can also be a date string to parse or a datetime type.
|
||
|
However, if the dates index does not have a fixed frequency,
|
||
|
steps must be an integer.
|
||
|
exog : {ndarray, DataFrame}
|
||
|
Exogenous values to use out-of-sample. Must have same number of
|
||
|
columns as original exog data and at least `steps` rows
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
array_like
|
||
|
Array of out of in-sample predictions and / or out-of-sample
|
||
|
forecasts.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
AutoRegResults.predict
|
||
|
In- and out-of-sample predictions
|
||
|
AutoRegResults.get_prediction
|
||
|
In- and out-of-sample predictions and confidence intervals
|
||
|
"""
|
||
|
start = self.model.data.orig_endog.shape[0]
|
||
|
if isinstance(steps, (int, np.integer)):
|
||
|
end = start + steps - 1
|
||
|
else:
|
||
|
end = steps
|
||
|
return self.predict(start=start, end=end, dynamic=False, exog_oos=exog)
|
||
|
|
||
|
def _plot_predictions(
|
||
|
self,
|
||
|
predictions,
|
||
|
start,
|
||
|
end,
|
||
|
alpha,
|
||
|
in_sample,
|
||
|
fig,
|
||
|
figsize,
|
||
|
):
|
||
|
"""Shared helper for plotting predictions"""
|
||
|
from statsmodels.graphics.utils import _import_mpl, create_mpl_fig
|
||
|
|
||
|
_import_mpl()
|
||
|
fig = create_mpl_fig(fig, figsize)
|
||
|
start = 0 if start is None else start
|
||
|
end = self.model._index[-1] if end is None else end
|
||
|
_, _, oos, _ = self.model._get_prediction_index(start, end)
|
||
|
|
||
|
ax = fig.add_subplot(111)
|
||
|
mean = predictions.predicted_mean
|
||
|
if not in_sample and oos:
|
||
|
if isinstance(mean, pd.Series):
|
||
|
mean = mean.iloc[-oos:]
|
||
|
elif not in_sample:
|
||
|
raise ValueError(
|
||
|
"in_sample is False but there are no"
|
||
|
"out-of-sample forecasts to plot."
|
||
|
)
|
||
|
ax.plot(mean, zorder=2, label="Forecast")
|
||
|
|
||
|
if oos and alpha is not None:
|
||
|
ci = np.asarray(predictions.conf_int(alpha))
|
||
|
lower, upper = ci[-oos:, 0], ci[-oos:, 1]
|
||
|
label = f"{1 - alpha:.0%} confidence interval"
|
||
|
x = ax.get_lines()[-1].get_xdata()
|
||
|
ax.fill_between(
|
||
|
x[-oos:],
|
||
|
lower,
|
||
|
upper,
|
||
|
color="gray",
|
||
|
alpha=0.5,
|
||
|
label=label,
|
||
|
zorder=1,
|
||
|
)
|
||
|
ax.legend(loc="best")
|
||
|
|
||
|
return fig
|
||
|
|
||
|
@Substitution(predict_params=_predict_params)
|
||
|
def plot_predict(
|
||
|
self,
|
||
|
start=None,
|
||
|
end=None,
|
||
|
dynamic=False,
|
||
|
exog=None,
|
||
|
exog_oos=None,
|
||
|
alpha=0.05,
|
||
|
in_sample=True,
|
||
|
fig=None,
|
||
|
figsize=None,
|
||
|
):
|
||
|
"""
|
||
|
Plot in- and out-of-sample predictions
|
||
|
|
||
|
Parameters
|
||
|
----------\n%(predict_params)s
|
||
|
alpha : {float, None}
|
||
|
The tail probability not covered by the confidence interval. Must
|
||
|
be in (0, 1). Confidence interval is constructed assuming normally
|
||
|
distributed shocks. If None, figure will not show the confidence
|
||
|
interval.
|
||
|
in_sample : bool
|
||
|
Flag indicating whether to include the in-sample period in the
|
||
|
plot.
|
||
|
fig : Figure
|
||
|
An existing figure handle. If not provided, a new figure is
|
||
|
created.
|
||
|
figsize: tuple[float, float]
|
||
|
Tuple containing the figure size values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Figure
|
||
|
Figure handle containing the plot.
|
||
|
"""
|
||
|
predictions = self.get_prediction(
|
||
|
start=start, end=end, dynamic=dynamic, exog=exog, exog_oos=exog_oos
|
||
|
)
|
||
|
return self._plot_predictions(
|
||
|
predictions, start, end, alpha, in_sample, fig, figsize
|
||
|
)
|
||
|
|
||
|
def plot_diagnostics(self, lags=10, fig=None, figsize=None):
|
||
|
"""
|
||
|
Diagnostic plots for standardized residuals
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
lags : int, optional
|
||
|
Number of lags to include in the correlogram. Default is 10.
|
||
|
fig : Figure, optional
|
||
|
If given, subplots are created in this figure instead of in a new
|
||
|
figure. Note that the 2x2 grid will be created in the provided
|
||
|
figure using `fig.add_subplot()`.
|
||
|
figsize : tuple, optional
|
||
|
If a figure is created, this argument allows specifying a size.
|
||
|
The tuple is (width, height).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Produces a 2x2 plot grid with the following plots (ordered clockwise
|
||
|
from top left):
|
||
|
|
||
|
1. Standardized residuals over time
|
||
|
2. Histogram plus estimated density of standardized residuals, along
|
||
|
with a Normal(0,1) density plotted for reference.
|
||
|
3. Normal Q-Q plot, with Normal reference line.
|
||
|
4. Correlogram
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.graphics.gofplots.qqplot
|
||
|
statsmodels.graphics.tsaplots.plot_acf
|
||
|
"""
|
||
|
from statsmodels.graphics.utils import _import_mpl, create_mpl_fig
|
||
|
|
||
|
_import_mpl()
|
||
|
fig = create_mpl_fig(fig, figsize)
|
||
|
# Eliminate residuals associated with burned or diffuse likelihoods
|
||
|
resid = self.resid
|
||
|
|
||
|
# Top-left: residuals vs time
|
||
|
ax = fig.add_subplot(221)
|
||
|
if hasattr(self.model.data, "dates") and self.data.dates is not None:
|
||
|
x = self.model.data.dates._mpl_repr()
|
||
|
x = x[self.model.hold_back :]
|
||
|
else:
|
||
|
hold_back = self.model.hold_back
|
||
|
x = hold_back + np.arange(self.resid.shape[0])
|
||
|
std_resid = resid / np.sqrt(self.sigma2)
|
||
|
ax.plot(x, std_resid)
|
||
|
ax.hlines(0, x[0], x[-1], alpha=0.5)
|
||
|
ax.set_xlim(x[0], x[-1])
|
||
|
ax.set_title("Standardized residual")
|
||
|
|
||
|
# Top-right: histogram, Gaussian kernel density, Normal density
|
||
|
# Can only do histogram and Gaussian kernel density on the non-null
|
||
|
# elements
|
||
|
std_resid_nonmissing = std_resid[~(np.isnan(resid))]
|
||
|
ax = fig.add_subplot(222)
|
||
|
|
||
|
ax.hist(std_resid_nonmissing, density=True, label="Hist")
|
||
|
|
||
|
kde = gaussian_kde(std_resid)
|
||
|
xlim = (-1.96 * 2, 1.96 * 2)
|
||
|
x = np.linspace(xlim[0], xlim[1])
|
||
|
ax.plot(x, kde(x), label="KDE")
|
||
|
ax.plot(x, norm.pdf(x), label="N(0,1)")
|
||
|
ax.set_xlim(xlim)
|
||
|
ax.legend()
|
||
|
ax.set_title("Histogram plus estimated density")
|
||
|
|
||
|
# Bottom-left: QQ plot
|
||
|
ax = fig.add_subplot(223)
|
||
|
from statsmodels.graphics.gofplots import qqplot
|
||
|
|
||
|
qqplot(std_resid, line="s", ax=ax)
|
||
|
ax.set_title("Normal Q-Q")
|
||
|
|
||
|
# Bottom-right: Correlogram
|
||
|
ax = fig.add_subplot(224)
|
||
|
from statsmodels.graphics.tsaplots import plot_acf
|
||
|
|
||
|
plot_acf(resid, ax=ax, lags=lags)
|
||
|
ax.set_title("Correlogram")
|
||
|
|
||
|
ax.set_ylim(-1, 1)
|
||
|
|
||
|
return fig
|
||
|
|
||
|
def summary(self, alpha=0.05):
|
||
|
"""
|
||
|
Summarize the Model
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
alpha : float, optional
|
||
|
Significance level for the confidence intervals.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
smry : Summary instance
|
||
|
This holds the summary table and text, which can be printed or
|
||
|
converted to various output formats.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.iolib.summary.Summary
|
||
|
"""
|
||
|
model = self.model
|
||
|
|
||
|
title = model.__class__.__name__ + " Model Results"
|
||
|
method = "Conditional MLE"
|
||
|
# get sample
|
||
|
start = self._hold_back
|
||
|
if self.data.dates is not None:
|
||
|
dates = self.data.dates
|
||
|
sample = [dates[start].strftime("%m-%d-%Y")]
|
||
|
sample += ["- " + dates[-1].strftime("%m-%d-%Y")]
|
||
|
else:
|
||
|
sample = [str(start), str(len(self.data.orig_endog))]
|
||
|
model = model.__class__.__name__
|
||
|
if self.model.seasonal:
|
||
|
model = "Seas. " + model
|
||
|
if self.ar_lags is not None and len(self.ar_lags) < self._max_lag:
|
||
|
model = "Restr. " + model
|
||
|
if self.model.exog is not None:
|
||
|
model += "-X"
|
||
|
|
||
|
order = f"({self._max_lag})"
|
||
|
dep_name = str(self.model.endog_names)
|
||
|
top_left = [
|
||
|
("Dep. Variable:", [dep_name]),
|
||
|
("Model:", [model + order]),
|
||
|
("Method:", [method]),
|
||
|
("Date:", None),
|
||
|
("Time:", None),
|
||
|
("Sample:", [sample[0]]),
|
||
|
("", [sample[1]]),
|
||
|
]
|
||
|
|
||
|
top_right = [
|
||
|
("No. Observations:", [str(len(self.model.endog))]),
|
||
|
("Log Likelihood", ["%#5.3f" % self.llf]),
|
||
|
("S.D. of innovations", ["%#5.3f" % self.sigma2**0.5]),
|
||
|
("AIC", ["%#5.3f" % self.aic]),
|
||
|
("BIC", ["%#5.3f" % self.bic]),
|
||
|
("HQIC", ["%#5.3f" % self.hqic]),
|
||
|
]
|
||
|
|
||
|
smry = Summary()
|
||
|
smry.add_table_2cols(
|
||
|
self, gleft=top_left, gright=top_right, title=title
|
||
|
)
|
||
|
smry.add_table_params(self, alpha=alpha, use_t=False)
|
||
|
|
||
|
# Make the roots table
|
||
|
from statsmodels.iolib.table import SimpleTable
|
||
|
|
||
|
if self._max_lag:
|
||
|
arstubs = ["AR.%d" % i for i in range(1, self._max_lag + 1)]
|
||
|
stubs = arstubs
|
||
|
roots = self.roots
|
||
|
freq = self.arfreq
|
||
|
modulus = np.abs(roots)
|
||
|
data = np.column_stack((roots.real, roots.imag, modulus, freq))
|
||
|
roots_table = SimpleTable(
|
||
|
[
|
||
|
(
|
||
|
"%17.4f" % row[0],
|
||
|
"%+17.4fj" % row[1],
|
||
|
"%17.4f" % row[2],
|
||
|
"%17.4f" % row[3],
|
||
|
)
|
||
|
for row in data
|
||
|
],
|
||
|
headers=[
|
||
|
" Real",
|
||
|
" Imaginary",
|
||
|
" Modulus",
|
||
|
" Frequency",
|
||
|
],
|
||
|
title="Roots",
|
||
|
stubs=stubs,
|
||
|
)
|
||
|
|
||
|
smry.tables.append(roots_table)
|
||
|
if self._summary_text:
|
||
|
extra_txt = smry.extra_txt if smry.extra_txt is not None else []
|
||
|
smry.add_extra_txt(extra_txt + [self._summary_text])
|
||
|
return smry
|
||
|
|
||
|
def apply(self, endog, exog=None, refit=False, fit_kwargs=None):
|
||
|
"""
|
||
|
Apply the fitted parameters to new data unrelated to the original data
|
||
|
|
||
|
Creates a new result object using the current fitted parameters,
|
||
|
applied to a completely new dataset that is assumed to be unrelated to
|
||
|
the model's original data. The new results can then be used for
|
||
|
analysis or forecasting.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
New observations from the modeled time-series process.
|
||
|
exog : array_like, optional
|
||
|
New observations of exogenous regressors, if applicable.
|
||
|
refit : bool, optional
|
||
|
Whether to re-fit the parameters, using the new dataset.
|
||
|
Default is False (so parameters from the current results object
|
||
|
are used to create the new results object).
|
||
|
fit_kwargs : dict, optional
|
||
|
Keyword arguments to pass to `fit` (if `refit=True`).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
AutoRegResults
|
||
|
Updated results object containing results for the new dataset.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
AutoRegResults.append
|
||
|
statsmodels.tsa.statespace.mlemodel.MLEResults.apply
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The `endog` argument to this method should consist of new observations
|
||
|
that are not necessarily related to the original model's `endog`
|
||
|
dataset.
|
||
|
|
||
|
Care is needed when using deterministic processes with cyclical
|
||
|
components such as seasonal dummies or Fourier series. These
|
||
|
deterministic components will align to the first observation
|
||
|
in the data and so it is essential that any new data have the
|
||
|
same initial period.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import pandas as pd
|
||
|
>>> from statsmodels.tsa.ar_model import AutoReg
|
||
|
>>> index = pd.period_range(start='2000', periods=3, freq='Y')
|
||
|
>>> original_observations = pd.Series([1.2, 1.5, 1.8], index=index)
|
||
|
>>> mod = AutoReg(original_observations, lags=1, trend="n")
|
||
|
>>> res = mod.fit()
|
||
|
>>> print(res.params)
|
||
|
y.L1 1.219512
|
||
|
dtype: float64
|
||
|
>>> print(res.fittedvalues)
|
||
|
2001 1.463415
|
||
|
2002 1.829268
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
>>> print(res.forecast(1))
|
||
|
2003 2.195122
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
|
||
|
>>> new_index = pd.period_range(start='1980', periods=3, freq='Y')
|
||
|
>>> new_observations = pd.Series([1.4, 0.3, 1.2], index=new_index)
|
||
|
>>> new_res = res.apply(new_observations)
|
||
|
>>> print(new_res.params)
|
||
|
y.L1 1.219512
|
||
|
dtype: float64
|
||
|
>>> print(new_res.fittedvalues)
|
||
|
1981 1.707317
|
||
|
1982 0.365854
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
>>> print(new_res.forecast(1))
|
||
|
1983 1.463415
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
"""
|
||
|
existing = self.model
|
||
|
try:
|
||
|
deterministic = existing.deterministic
|
||
|
if deterministic is not None:
|
||
|
if isinstance(endog, (pd.Series, pd.DataFrame)):
|
||
|
index = endog.index
|
||
|
else:
|
||
|
index = np.arange(endog.shape[0])
|
||
|
deterministic = deterministic.apply(index)
|
||
|
mod = AutoReg(
|
||
|
endog,
|
||
|
lags=existing.ar_lags,
|
||
|
trend=existing.trend,
|
||
|
seasonal=existing.seasonal,
|
||
|
exog=exog,
|
||
|
hold_back=existing.hold_back,
|
||
|
period=existing.period,
|
||
|
deterministic=deterministic,
|
||
|
old_names=False,
|
||
|
)
|
||
|
except Exception as exc:
|
||
|
error = (
|
||
|
"An exception occured during the creation of the cloned "
|
||
|
"AutoReg instance when applying the existing model "
|
||
|
"specification to the new data. The original traceback "
|
||
|
"appears below."
|
||
|
)
|
||
|
exc.args = (error,) + exc.args
|
||
|
raise exc.with_traceback(exc.__traceback__)
|
||
|
|
||
|
if (mod.exog is None) != (existing.exog is None):
|
||
|
if existing.exog is not None:
|
||
|
raise ValueError(
|
||
|
"exog must be provided when the original model contained "
|
||
|
"exog variables"
|
||
|
)
|
||
|
raise ValueError(
|
||
|
"exog must be None when the original model did not contain "
|
||
|
"exog variables"
|
||
|
)
|
||
|
if (
|
||
|
existing.exog is not None
|
||
|
and existing.exog.shape[1] != mod.exog.shape[1]
|
||
|
):
|
||
|
raise ValueError(
|
||
|
"The number of exog variables passed must match the original "
|
||
|
f"number of exog values ({existing.exog.shape[1]})"
|
||
|
)
|
||
|
if refit:
|
||
|
fit_kwargs = {} if fit_kwargs is None else fit_kwargs
|
||
|
return mod.fit(**fit_kwargs)
|
||
|
smry_txt = (
|
||
|
"Parameters and standard errors were estimated using a different "
|
||
|
"dataset and were then applied to this dataset."
|
||
|
)
|
||
|
res = AutoRegResults(
|
||
|
mod,
|
||
|
self.params,
|
||
|
self.cov_params_default,
|
||
|
self.normalized_cov_params,
|
||
|
use_t=self.use_t,
|
||
|
summary_text=smry_txt,
|
||
|
)
|
||
|
|
||
|
return AutoRegResultsWrapper(res)
|
||
|
|
||
|
def append(self, endog, exog=None, refit=False, fit_kwargs=None):
|
||
|
"""
|
||
|
Append observations to the ones used to fit the model
|
||
|
|
||
|
Creates a new result object using the current fitted parameters
|
||
|
where additional observations are appended to the data used
|
||
|
to fit the model. The new results can then be used for
|
||
|
analysis or forecasting.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
New observations from the modeled time-series process.
|
||
|
exog : array_like, optional
|
||
|
New observations of exogenous regressors, if applicable.
|
||
|
refit : bool, optional
|
||
|
Whether to re-fit the parameters, using the new dataset.
|
||
|
Default is False (so parameters from the current results object
|
||
|
are used to create the new results object).
|
||
|
fit_kwargs : dict, optional
|
||
|
Keyword arguments to pass to `fit` (if `refit=True`).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
AutoRegResults
|
||
|
Updated results object containing results for the new dataset.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
AutoRegResults.apply
|
||
|
statsmodels.tsa.statespace.mlemodel.MLEResults.append
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The endog and exog arguments to this method must be formatted in the
|
||
|
same way (e.g. Pandas Series versus Numpy array) as were the endog
|
||
|
and exog arrays passed to the original model.
|
||
|
|
||
|
The endog argument to this method should consist of new observations
|
||
|
that occurred directly after the last element of endog. For any other
|
||
|
kind of dataset, see the apply method.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import pandas as pd
|
||
|
>>> from statsmodels.tsa.ar_model import AutoReg
|
||
|
>>> index = pd.period_range(start='2000', periods=3, freq='Y')
|
||
|
>>> original_observations = pd.Series([1.2, 1.4, 1.8], index=index)
|
||
|
>>> mod = AutoReg(original_observations, lags=1, trend="n")
|
||
|
>>> res = mod.fit()
|
||
|
>>> print(res.params)
|
||
|
y.L1 1.235294
|
||
|
dtype: float64
|
||
|
>>> print(res.fittedvalues)
|
||
|
2001 1.482353
|
||
|
2002 1.729412
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
>>> print(res.forecast(1))
|
||
|
2003 2.223529
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
|
||
|
>>> new_index = pd.period_range(start='2003', periods=3, freq='Y')
|
||
|
>>> new_observations = pd.Series([2.1, 2.4, 2.7], index=new_index)
|
||
|
>>> updated_res = res.append(new_observations)
|
||
|
>>> print(updated_res.params)
|
||
|
y.L1 1.235294
|
||
|
dtype: float64
|
||
|
>>> print(updated_res.fittedvalues)
|
||
|
dtype: float64
|
||
|
2001 1.482353
|
||
|
2002 1.729412
|
||
|
2003 2.223529
|
||
|
2004 2.594118
|
||
|
2005 2.964706
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
>>> print(updated_res.forecast(1))
|
||
|
2006 3.335294
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
"""
|
||
|
|
||
|
def _check(orig, new, name, use_pandas=True):
|
||
|
from statsmodels.tsa.statespace.mlemodel import _check_index
|
||
|
|
||
|
typ = type(orig)
|
||
|
if not isinstance(new, typ):
|
||
|
raise TypeError(
|
||
|
f"{name} must have the same type as the {name} used to "
|
||
|
f"originally create the model ({typ.__name__})."
|
||
|
)
|
||
|
if not use_pandas:
|
||
|
return np.concatenate([orig, new])
|
||
|
start = len(orig)
|
||
|
end = start + len(new) - 1
|
||
|
_, _, _, append_ix = self.model._get_prediction_index(start, end)
|
||
|
_check_index(append_ix, new, title=name)
|
||
|
return pd.concat([orig, new], axis=0)
|
||
|
|
||
|
existing = self.model
|
||
|
no_exog = existing.exog is None
|
||
|
if no_exog != (exog is None):
|
||
|
if no_exog:
|
||
|
err = (
|
||
|
"Original model does not contain exog data but exog data "
|
||
|
"passed"
|
||
|
)
|
||
|
else:
|
||
|
err = "Original model has exog data but not exog data passed"
|
||
|
raise ValueError(err)
|
||
|
if isinstance(existing.data.orig_endog, (pd.Series, pd.DataFrame)):
|
||
|
endog = _check(existing.data.orig_endog, endog, "endog")
|
||
|
else:
|
||
|
endog = _check(
|
||
|
existing.endog, np.asarray(endog), "endog", use_pandas=False
|
||
|
)
|
||
|
if isinstance(existing.data.orig_exog, (pd.Series, pd.DataFrame)):
|
||
|
exog = _check(existing.data.orig_exog, exog, "exog")
|
||
|
elif exog is not None:
|
||
|
exog = _check(
|
||
|
existing.exog, np.asarray(exog), "endog", use_pandas=False
|
||
|
)
|
||
|
return self.apply(endog, exog, refit=refit, fit_kwargs=fit_kwargs)
|
||
|
|
||
|
|
||
|
class AutoRegResultsWrapper(wrap.ResultsWrapper):
|
||
|
_attrs = {}
|
||
|
_wrap_attrs = wrap.union_dicts(
|
||
|
tsa_model.TimeSeriesResultsWrapper._wrap_attrs, _attrs
|
||
|
)
|
||
|
_methods = {}
|
||
|
_wrap_methods = wrap.union_dicts(
|
||
|
tsa_model.TimeSeriesResultsWrapper._wrap_methods, _methods
|
||
|
)
|
||
|
|
||
|
|
||
|
wrap.populate_wrapper(AutoRegResultsWrapper, AutoRegResults)
|
||
|
|
||
|
doc = Docstring(AutoReg.__doc__)
|
||
|
_auto_reg_params = doc.extract_parameters(
|
||
|
[
|
||
|
"trend",
|
||
|
"seasonal",
|
||
|
"exog",
|
||
|
"hold_back",
|
||
|
"period",
|
||
|
"missing",
|
||
|
"old_names",
|
||
|
],
|
||
|
4,
|
||
|
)
|
||
|
|
||
|
|
||
|
@Substitution(auto_reg_params=_auto_reg_params)
|
||
|
def ar_select_order(
|
||
|
endog,
|
||
|
maxlag,
|
||
|
ic="bic",
|
||
|
glob=False,
|
||
|
trend: Literal["n", "c", "ct", "ctt"] = "c",
|
||
|
seasonal=False,
|
||
|
exog=None,
|
||
|
hold_back=None,
|
||
|
period=None,
|
||
|
missing="none",
|
||
|
old_names=False,
|
||
|
):
|
||
|
"""
|
||
|
Autoregressive AR-X(p) model order selection.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
A 1-d endogenous response variable. The independent variable.
|
||
|
maxlag : int
|
||
|
The maximum lag to consider.
|
||
|
ic : {'aic', 'hqic', 'bic'}
|
||
|
The information criterion to use in the selection.
|
||
|
glob : bool
|
||
|
Flag indicating where to use a global search across all combinations
|
||
|
of lags. In practice, this option is not computational feasible when
|
||
|
maxlag is larger than 15 (or perhaps 20) since the global search
|
||
|
requires fitting 2**maxlag models.\n%(auto_reg_params)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
AROrderSelectionResults
|
||
|
A results holder containing the model and the complete set of
|
||
|
information criteria for all models fit.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from statsmodels.tsa.ar_model import ar_select_order
|
||
|
>>> data = sm.datasets.sunspots.load_pandas().data['SUNACTIVITY']
|
||
|
|
||
|
Determine the optimal lag structure
|
||
|
|
||
|
>>> mod = ar_select_order(data, maxlag=13)
|
||
|
>>> mod.ar_lags
|
||
|
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
|
||
|
|
||
|
Determine the optimal lag structure with seasonal terms
|
||
|
|
||
|
>>> mod = ar_select_order(data, maxlag=13, seasonal=True, period=12)
|
||
|
>>> mod.ar_lags
|
||
|
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
|
||
|
|
||
|
Globally determine the optimal lag structure
|
||
|
|
||
|
>>> mod = ar_select_order(data, maxlag=13, glob=True)
|
||
|
>>> mod.ar_lags
|
||
|
array([1, 2, 9])
|
||
|
"""
|
||
|
full_mod = AutoReg(
|
||
|
endog,
|
||
|
maxlag,
|
||
|
trend=trend,
|
||
|
seasonal=seasonal,
|
||
|
exog=exog,
|
||
|
hold_back=hold_back,
|
||
|
period=period,
|
||
|
missing=missing,
|
||
|
old_names=old_names,
|
||
|
)
|
||
|
nexog = full_mod.exog.shape[1] if full_mod.exog is not None else 0
|
||
|
y, x = full_mod._y, full_mod._x
|
||
|
base_col = x.shape[1] - nexog - maxlag
|
||
|
sel = np.ones(x.shape[1], dtype=bool)
|
||
|
ics: list[tuple[int | tuple[int, ...], tuple[float, float, float]]] = []
|
||
|
|
||
|
def compute_ics(res):
|
||
|
nobs = res.nobs
|
||
|
df_model = res.df_model
|
||
|
sigma2 = 1.0 / nobs * sumofsq(res.resid)
|
||
|
llf = -nobs * (np.log(2 * np.pi * sigma2) + 1) / 2
|
||
|
res = SimpleNamespace(
|
||
|
nobs=nobs, df_model=df_model, sigma2=sigma2, llf=llf
|
||
|
)
|
||
|
|
||
|
aic = call_cached_func(AutoRegResults.aic, res)
|
||
|
bic = call_cached_func(AutoRegResults.bic, res)
|
||
|
hqic = call_cached_func(AutoRegResults.hqic, res)
|
||
|
|
||
|
return aic, bic, hqic
|
||
|
|
||
|
def ic_no_data():
|
||
|
"""Fake mod and results to handle no regressor case"""
|
||
|
mod = SimpleNamespace(
|
||
|
nobs=y.shape[0], endog=y, exog=np.empty((y.shape[0], 0))
|
||
|
)
|
||
|
llf = OLS.loglike(mod, np.empty(0))
|
||
|
res = SimpleNamespace(
|
||
|
resid=y, nobs=y.shape[0], llf=llf, df_model=0, k_constant=0
|
||
|
)
|
||
|
|
||
|
return compute_ics(res)
|
||
|
|
||
|
if not glob:
|
||
|
sel[base_col : base_col + maxlag] = False
|
||
|
for i in range(maxlag + 1):
|
||
|
sel[base_col : base_col + i] = True
|
||
|
if not np.any(sel):
|
||
|
ics.append((0, ic_no_data()))
|
||
|
continue
|
||
|
res = OLS(y, x[:, sel]).fit()
|
||
|
lags = tuple(j for j in range(1, i + 1))
|
||
|
lags = 0 if not lags else lags
|
||
|
ics.append((lags, compute_ics(res)))
|
||
|
else:
|
||
|
bits = np.arange(2**maxlag, dtype=np.int32)[:, None]
|
||
|
bits = bits.view(np.uint8)
|
||
|
bits = np.unpackbits(bits).reshape(-1, 32)
|
||
|
for i in range(4):
|
||
|
bits[:, 8 * i : 8 * (i + 1)] = bits[:, 8 * i : 8 * (i + 1)][
|
||
|
:, ::-1
|
||
|
]
|
||
|
masks = bits[:, :maxlag]
|
||
|
for mask in masks:
|
||
|
sel[base_col : base_col + maxlag] = mask
|
||
|
if not np.any(sel):
|
||
|
ics.append((0, ic_no_data()))
|
||
|
continue
|
||
|
res = OLS(y, x[:, sel]).fit()
|
||
|
lags = tuple(np.where(mask)[0] + 1)
|
||
|
lags = 0 if not lags else lags
|
||
|
ics.append((lags, compute_ics(res)))
|
||
|
|
||
|
key_loc = {"aic": 0, "bic": 1, "hqic": 2}[ic]
|
||
|
ics = sorted(ics, key=lambda x: x[1][key_loc])
|
||
|
selected_model = ics[0][0]
|
||
|
mod = AutoReg(
|
||
|
endog,
|
||
|
selected_model,
|
||
|
trend=trend,
|
||
|
seasonal=seasonal,
|
||
|
exog=exog,
|
||
|
hold_back=hold_back,
|
||
|
period=period,
|
||
|
missing=missing,
|
||
|
old_names=old_names,
|
||
|
)
|
||
|
return AROrderSelectionResults(mod, ics, trend, seasonal, period)
|
||
|
|
||
|
|
||
|
class AROrderSelectionResults:
|
||
|
"""
|
||
|
Results from an AR order selection
|
||
|
|
||
|
Contains the information criteria for all fitted model orders.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model: AutoReg,
|
||
|
ics: list[tuple[int | tuple[int, ...], tuple[float, float, float]]],
|
||
|
trend: Literal["n", "c", "ct", "ctt"],
|
||
|
seasonal: bool,
|
||
|
period: int | None,
|
||
|
):
|
||
|
self._model = model
|
||
|
self._ics = ics
|
||
|
self._trend = trend
|
||
|
self._seasonal = seasonal
|
||
|
self._period = period
|
||
|
aic = sorted(ics, key=lambda r: r[1][0])
|
||
|
self._aic = {key: val[0] for key, val in aic}
|
||
|
bic = sorted(ics, key=lambda r: r[1][1])
|
||
|
self._bic = {key: val[1] for key, val in bic}
|
||
|
hqic = sorted(ics, key=lambda r: r[1][2])
|
||
|
self._hqic = {key: val[2] for key, val in hqic}
|
||
|
|
||
|
@property
|
||
|
def model(self) -> AutoReg:
|
||
|
"""The model selected using the chosen information criterion."""
|
||
|
return self._model
|
||
|
|
||
|
@property
|
||
|
def seasonal(self) -> bool:
|
||
|
"""Flag indicating if a seasonal component is included."""
|
||
|
return self._seasonal
|
||
|
|
||
|
@property
|
||
|
def trend(self) -> Literal["n", "c", "ct", "ctt"]:
|
||
|
"""The trend included in the model selection."""
|
||
|
return self._trend
|
||
|
|
||
|
@property
|
||
|
def period(self) -> int | None:
|
||
|
"""The period of the seasonal component."""
|
||
|
return self._period
|
||
|
|
||
|
@property
|
||
|
def aic(self) -> dict[int | tuple[int, ...], float]:
|
||
|
"""
|
||
|
The Akaike information criterion for the models fit.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dict[tuple, float]
|
||
|
"""
|
||
|
return self._aic
|
||
|
|
||
|
@property
|
||
|
def bic(self) -> dict[int | tuple[int, ...], float]:
|
||
|
"""
|
||
|
The Bayesian (Schwarz) information criteria for the models fit.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dict[tuple, float]
|
||
|
"""
|
||
|
return self._bic
|
||
|
|
||
|
@property
|
||
|
def hqic(self) -> dict[int | tuple[int, ...], float]:
|
||
|
"""
|
||
|
The Hannan-Quinn information criteria for the models fit.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dict[tuple, float]
|
||
|
"""
|
||
|
return self._hqic
|
||
|
|
||
|
@property
|
||
|
def ar_lags(self) -> list[int] | None:
|
||
|
"""The lags included in the selected model."""
|
||
|
return self._model.ar_lags
|