AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/stats/tests/test_knockoff.py

158 lines
4.3 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
import numpy as np
from numpy.testing import assert_allclose, assert_array_equal, assert_equal
import pytest
import statsmodels.api as sm
from statsmodels.stats import knockoff_regeffects as kr
from statsmodels.stats._knockoff import (RegressionFDR,
_design_knockoff_equi,
_design_knockoff_sdp)
try:
import cvxopt # noqa:F401
has_cvxopt = True
except ImportError:
has_cvxopt = False
def test_equi():
# Test the structure of the equivariant knockoff construction.
np.random.seed(2342)
exog = np.random.normal(size=(10, 4))
exog1, exog2, sl = _design_knockoff_equi(exog)
exoga = np.concatenate((exog1, exog2), axis=1)
gmat = np.dot(exoga.T, exoga)
cm1 = gmat[0:4, 0:4]
cm2 = gmat[4:, 4:]
cm3 = gmat[0:4, 4:]
assert_allclose(cm1, cm2, rtol=1e-4, atol=1e-4)
assert_allclose(cm1 - cm3, np.diag(sl * np.ones(4)), rtol=1e-4, atol=1e-4)
def test_sdp():
# Test the structure of the SDP knockoff construction.
if not has_cvxopt:
return
np.random.seed(2342)
exog = np.random.normal(size=(10, 4))
exog1, exog2, sl = _design_knockoff_sdp(exog)
exoga = np.concatenate((exog1, exog2), axis=1)
gmat = np.dot(exoga.T, exoga)
cm1 = gmat[0:4, 0:4]
cm2 = gmat[4:, 4:]
cm3 = gmat[0:4, 4:]
assert_allclose(cm1, cm2, rtol=1e-4, atol=1e-4)
assert_allclose(cm1 - cm3, np.diag(sl * np.ones(4)), rtol=1e-5, atol=1e-5)
@pytest.mark.parametrize("p", [49, 50])
@pytest.mark.parametrize("tester", [
kr.CorrelationEffects(),
kr.ForwardEffects(pursuit=False),
kr.ForwardEffects(pursuit=True),
kr.OLSEffects(),
kr.RegModelEffects(sm.OLS),
kr.RegModelEffects(sm.OLS, True,
fit_kws={"L1_wt": 0, "alpha": 1}),
])
@pytest.mark.parametrize("method", ["equi", "sdp"])
def test_testers(p, tester, method):
if method == "sdp" and not has_cvxopt:
return
np.random.seed(2432)
n = 200
y = np.random.normal(size=n)
x = np.random.normal(size=(n, p))
kn = RegressionFDR(y, x, tester, design_method=method)
assert_equal(len(kn.stats), p)
assert_equal(len(kn.fdr), p)
kn.summary() # smoke test
@pytest.mark.slow
@pytest.mark.parametrize("method", ["equi", "sdp"])
@pytest.mark.parametrize("tester,n,p,es", [
[kr.CorrelationEffects(), 300, 100, 6],
[kr.ForwardEffects(pursuit=False), 300, 100, 3.5],
[kr.ForwardEffects(pursuit=True), 300, 100, 3.5],
[kr.OLSEffects(), 3000, 200, 3.5],
])
def test_sim(method, tester, n, p, es):
# This function assesses the performance of the knockoff approach
# relative to its theoretical claims.
if method == "sdp" and not has_cvxopt:
return
np.random.seed(43234)
# Number of variables with a non-zero coefficient
npos = 30
# Aim to control FDR to this level
target_fdr = 0.2
# Number of siumulation replications
nrep = 10
if method == "sdp" and not has_cvxopt:
return
fdr, power = 0, 0
for k in range(nrep):
# Generate the predictors
x = np.random.normal(size=(n, p))
x /= np.sqrt(np.sum(x*x, 0))
# Generate the response variable
coeff = es * (-1)**np.arange(npos)
y = np.dot(x[:, 0:npos], coeff) + np.random.normal(size=n)
kn = RegressionFDR(y, x, tester)
# Threshold to achieve the target FDR
tr = kn.threshold(target_fdr)
# Number of selected coefficients
cp = np.sum(kn.stats >= tr)
# Number of false positives
fp = np.sum(kn.stats[npos:] >= tr)
# Observed FDR
fdr += fp / max(cp, 1)
# Proportion of true positives that are detected
power += np.mean(kn.stats[0:npos] >= tr)
# The estimated FDR may never exceed the target FDR
estimated_fdr = (np.sum(kn.stats <= -tr) /
(1 + np.sum(kn.stats >= tr)))
assert_equal(estimated_fdr < target_fdr, True)
power /= nrep
fdr /= nrep
# Check for reasonable power
assert_array_equal(power > 0.6, True)
# Check that we are close to the target FDR
assert_array_equal(fdr < target_fdr + 0.1, True)