AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/stats/tests/test_gof.py

102 lines
3.3 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
"""
Created on Thu Feb 28 13:24:59 2013
Author: Josef Perktold
"""
import numpy as np
from numpy.testing import assert_almost_equal, assert_equal
from statsmodels.stats.gof import (chisquare, chisquare_power,
chisquare_effectsize)
from statsmodels.tools.testing import Holder
def test_chisquare_power():
from .results.results_power import pwr_chisquare
for case in pwr_chisquare.values():
power = chisquare_power(case.w, case.N, case.df + 1,
alpha=case.sig_level)
assert_almost_equal(power, case.power, decimal=6,
err_msg=repr(vars(case)))
def test_chisquare():
# TODO: no tests for ``value`` yet
res1 = Holder()
res2 = Holder()
#> freq = c(1048, 660, 510, 420, 362)
#> pr1 = c(1020, 690, 510, 420, 360)
#> pr2 = c(1050, 660, 510, 420, 360)
#> c = chisq.test(freq, p=pr1, rescale.p = TRUE)
#> cat_items(c, "res1.")
res1.statistic = 2.084086388178453
res1.parameter = 4
res1.p_value = 0.72029651761105
res1.method = 'Chi-squared test for given probabilities'
res1.data_name = 'freq'
res1.observed = np.array([
1048, 660, 510, 420, 362
])
res1.expected = np.array([
1020, 690, 510, 420, 360
])
res1.residuals = np.array([
0.876714007519206, -1.142080481440321, -2.517068894406109e-15,
-2.773674830645328e-15, 0.105409255338946
])
#> c = chisq.test(freq, p=pr2, rescale.p = TRUE)
#> cat_items(c, "res2.")
res2.statistic = 0.01492063492063492
res2.parameter = 4
res2.p_value = 0.999972309849908
res2.method = 'Chi-squared test for given probabilities'
res2.data_name = 'freq'
res2.observed = np.array([
1048, 660, 510, 420, 362
])
res2.expected = np.array([
1050, 660, 510, 420, 360
])
res2.residuals = np.array([
-0.06172133998483677, 0, -2.517068894406109e-15,
-2.773674830645328e-15, 0.105409255338946
])
freq = np.array([1048, 660, 510, 420, 362])
pr1 = np.array([1020, 690, 510, 420, 360])
pr2 = np.array([1050, 660, 510, 420, 360])
for pr, res in zip([pr1, pr2], [res1, res2]):
stat, pval = chisquare(freq, pr)
assert_almost_equal(stat, res.statistic, decimal=12)
assert_almost_equal(pval, res.p_value, decimal=13)
def test_chisquare_effectsize():
pr1 = np.array([1020, 690, 510, 420, 360])
pr2 = np.array([1050, 660, 510, 420, 360])
#> library(pwr)
#> ES.w1(pr1/3000, pr2/3000)
es_r = 0.02699815282115563
es1 = chisquare_effectsize(pr1, pr2)
es2 = chisquare_effectsize(pr1, pr2, cohen=False)
assert_almost_equal(es1, es_r, decimal=14)
assert_almost_equal(es2, es_r**2, decimal=14)
# regression tests for correction
res1 = chisquare_effectsize(pr1, pr2, cohen=False,
correction=(3000, len(pr1)-1))
res0 = 0 #-0.00059994422693327625
assert_equal(res1, res0)
pr3 = pr2 + [0,0,0,50,50]
res1 = chisquare_effectsize(pr1, pr3, cohen=False,
correction=(3000, len(pr1)-1))
res0 = 0.0023106468846296755
assert_almost_equal(res1, res0, decimal=14)
# compare
# res_nc = chisquare_effectsize(pr1, pr3, cohen=False)
# 0.0036681143072077533