291 lines
9.5 KiB
Python
291 lines
9.5 KiB
Python
|
"""
|
||
|
Created on Sat Oct 01 20:20:16 2011
|
||
|
|
||
|
Author: Josef Perktold
|
||
|
License: BSD-3
|
||
|
|
||
|
TODO:
|
||
|
check orientation, size and alpha should be increasing for interp1d,
|
||
|
but what is alpha? can be either sf or cdf probability
|
||
|
change it to use one consistent notation
|
||
|
|
||
|
check: instead of bound checking I could use the fill-value of the
|
||
|
interpolators
|
||
|
"""
|
||
|
import numpy as np
|
||
|
from scipy.interpolate import interp1d, interp2d, Rbf
|
||
|
|
||
|
from statsmodels.tools.decorators import cache_readonly
|
||
|
|
||
|
|
||
|
class TableDist:
|
||
|
"""
|
||
|
Distribution, critical values and p-values from tables
|
||
|
|
||
|
currently only 1 extra parameter, e.g. sample size
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
alpha : array_like, 1d
|
||
|
probabiliy in the table, could be either sf (right tail) or cdf (left
|
||
|
tail)
|
||
|
size : array_like, 1d
|
||
|
The sample sizes for the table
|
||
|
crit_table : array_like, 2d
|
||
|
The sample sizes in the table
|
||
|
array with critical values for sample size in rows and probability in
|
||
|
columns
|
||
|
asymptotic : callable, optional
|
||
|
Callable function with the form fn(nobs) that returns len(alpha)
|
||
|
critical values where the critical value in position i corresponds to
|
||
|
alpha[i]
|
||
|
min_nobs : int, optional
|
||
|
Minimum number of observations to use the asymptotic distribution. If
|
||
|
not provided, uses max(size).
|
||
|
max_nobs : int, optional
|
||
|
Maximum number of observations to use the tabular distribution. If not
|
||
|
provided, uses max(size)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
size and alpha must be sorted and increasing.
|
||
|
|
||
|
If both min_nobs and max_nobs are provided, then
|
||
|
the critical values from the tabular distribution and the asymptotic
|
||
|
distribution are linearly blended using the formula
|
||
|
:math:`w cv_a + (1-w) cv_t` where the weight is
|
||
|
:math:`w = (n - a_{min}) / (a_{max} - a_{min})`. This ensures the
|
||
|
transition between the tabular and the asymptotic critical values is
|
||
|
continuous. If these are not provided, then the asymptotic critical value
|
||
|
is used for nobs > max(size).
|
||
|
"""
|
||
|
|
||
|
def __init__(self, alpha, size, crit_table, asymptotic=None,
|
||
|
min_nobs=None, max_nobs=None):
|
||
|
self.alpha = np.asarray(alpha)
|
||
|
if self.alpha.ndim != 1:
|
||
|
raise ValueError('alpha is not 1d')
|
||
|
elif (np.diff(self.alpha) <= 0).any():
|
||
|
raise ValueError('alpha is not sorted')
|
||
|
self.size = np.asarray(size)
|
||
|
if self.size.ndim != 1:
|
||
|
raise ValueError('size is not 1d')
|
||
|
elif (np.diff(self.size) <= 0).any():
|
||
|
raise ValueError('size is not sorted')
|
||
|
if self.size.ndim == 1:
|
||
|
if (np.diff(alpha) <= 0).any():
|
||
|
raise ValueError('alpha is not sorted')
|
||
|
self.crit_table = np.asarray(crit_table)
|
||
|
if self.crit_table.shape != (self.size.shape[0], self.alpha.shape[0]):
|
||
|
raise ValueError('crit_table must have shape'
|
||
|
'(len(size), len(alpha))')
|
||
|
|
||
|
self.n_alpha = len(alpha)
|
||
|
self.signcrit = np.sign(np.diff(self.crit_table, 1).mean())
|
||
|
if self.signcrit > 0: # increasing
|
||
|
self.critv_bounds = self.crit_table[:, [0, 1]]
|
||
|
else:
|
||
|
self.critv_bounds = self.crit_table[:, [1, 0]]
|
||
|
self.asymptotic = None
|
||
|
max_size = self.max_size = max(size)
|
||
|
|
||
|
if asymptotic is not None:
|
||
|
try:
|
||
|
cv = asymptotic(self.max_size + 1)
|
||
|
except Exception as exc:
|
||
|
raise type(exc)('Calling asymptotic(self.size+1) failed. The '
|
||
|
'error message was:'
|
||
|
'\n\n{err_msg}'.format(err_msg=exc.args[0]))
|
||
|
if len(cv) != len(alpha):
|
||
|
raise ValueError('asymptotic does not return len(alpha) '
|
||
|
'values')
|
||
|
self.asymptotic = asymptotic
|
||
|
|
||
|
self.min_nobs = max_size if min_nobs is None else min_nobs
|
||
|
self.max_nobs = max_size if max_nobs is None else max_nobs
|
||
|
if self.min_nobs > max_size:
|
||
|
raise ValueError('min_nobs > max(size)')
|
||
|
if self.max_nobs > max_size:
|
||
|
raise ValueError('max_nobs > max(size)')
|
||
|
|
||
|
@cache_readonly
|
||
|
def polyn(self):
|
||
|
polyn = [interp1d(self.size, self.crit_table[:, i])
|
||
|
for i in range(self.n_alpha)]
|
||
|
return polyn
|
||
|
|
||
|
@cache_readonly
|
||
|
def poly2d(self):
|
||
|
# check for monotonicity ?
|
||
|
# fix this, interp needs increasing
|
||
|
poly2d = interp2d(self.size, self.alpha, self.crit_table)
|
||
|
return poly2d
|
||
|
|
||
|
@cache_readonly
|
||
|
def polyrbf(self):
|
||
|
xs, xa = np.meshgrid(self.size.astype(float), self.alpha)
|
||
|
polyrbf = Rbf(xs.ravel(), xa.ravel(), self.crit_table.T.ravel(),
|
||
|
function='linear')
|
||
|
return polyrbf
|
||
|
|
||
|
def _critvals(self, n):
|
||
|
"""
|
||
|
Rows of the table, linearly interpolated for given sample size
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : float
|
||
|
sample size, second parameter of the table
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
critv : ndarray, 1d
|
||
|
critical values (ppf) corresponding to a row of the table
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is used in two step interpolation, or if we want to know the
|
||
|
critical values for all alphas for any sample size that we can obtain
|
||
|
through interpolation
|
||
|
"""
|
||
|
if n > self.max_size:
|
||
|
if self.asymptotic is not None:
|
||
|
cv = self.asymptotic(n)
|
||
|
else:
|
||
|
raise ValueError('n is above max(size) and no asymptotic '
|
||
|
'distribtuion is provided')
|
||
|
else:
|
||
|
cv = ([p(n) for p in self.polyn])
|
||
|
if n > self.min_nobs:
|
||
|
w = (n - self.min_nobs) / (self.max_nobs - self.min_nobs)
|
||
|
w = min(1.0, w)
|
||
|
a_cv = self.asymptotic(n)
|
||
|
cv = w * a_cv + (1 - w) * cv
|
||
|
|
||
|
return cv
|
||
|
|
||
|
def prob(self, x, n):
|
||
|
"""
|
||
|
Find pvalues by interpolation, either cdf(x)
|
||
|
|
||
|
Returns extreme probabilities, 0.001 and 0.2, for out of range
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
observed value, assumed to follow the distribution in the table
|
||
|
n : float
|
||
|
sample size, second parameter of the table
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
prob : array_like
|
||
|
This is the probability for each value of x, the p-value in
|
||
|
underlying distribution is for a statistical test.
|
||
|
"""
|
||
|
critv = self._critvals(n)
|
||
|
alpha = self.alpha
|
||
|
|
||
|
if self.signcrit < 1:
|
||
|
# reverse if critv is decreasing
|
||
|
critv, alpha = critv[::-1], alpha[::-1]
|
||
|
|
||
|
# now critv is increasing
|
||
|
if np.size(x) == 1:
|
||
|
if x < critv[0]:
|
||
|
return alpha[0]
|
||
|
elif x > critv[-1]:
|
||
|
return alpha[-1]
|
||
|
return interp1d(critv, alpha)(x)[()]
|
||
|
else:
|
||
|
# vectorized
|
||
|
cond_low = (x < critv[0])
|
||
|
cond_high = (x > critv[-1])
|
||
|
cond_interior = ~np.logical_or(cond_low, cond_high)
|
||
|
|
||
|
probs = np.nan * np.ones(x.shape) # mistake if nan left
|
||
|
probs[cond_low] = alpha[0]
|
||
|
probs[cond_low] = alpha[-1]
|
||
|
probs[cond_interior] = interp1d(critv, alpha)(x[cond_interior])
|
||
|
|
||
|
return probs
|
||
|
|
||
|
def crit(self, prob, n):
|
||
|
"""
|
||
|
Returns interpolated quantiles, similar to ppf or isf
|
||
|
|
||
|
use two sequential 1d interpolation, first by n then by prob
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
prob : array_like
|
||
|
probabilities corresponding to the definition of table columns
|
||
|
n : int or float
|
||
|
sample size, second parameter of the table
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ppf : array_like
|
||
|
critical values with same shape as prob
|
||
|
"""
|
||
|
prob = np.asarray(prob)
|
||
|
alpha = self.alpha
|
||
|
critv = self._critvals(n)
|
||
|
|
||
|
# vectorized
|
||
|
cond_ilow = (prob > alpha[0])
|
||
|
cond_ihigh = (prob < alpha[-1])
|
||
|
cond_interior = np.logical_or(cond_ilow, cond_ihigh)
|
||
|
|
||
|
# scalar
|
||
|
if prob.size == 1:
|
||
|
if cond_interior:
|
||
|
return interp1d(alpha, critv)(prob)
|
||
|
else:
|
||
|
return np.nan
|
||
|
|
||
|
# vectorized
|
||
|
quantile = np.nan * np.ones(prob.shape) # nans for outside
|
||
|
quantile[cond_interior] = interp1d(alpha, critv)(prob[cond_interior])
|
||
|
return quantile
|
||
|
|
||
|
def crit3(self, prob, n):
|
||
|
"""
|
||
|
Returns interpolated quantiles, similar to ppf or isf
|
||
|
|
||
|
uses Rbf to interpolate critical values as function of `prob` and `n`
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
prob : array_like
|
||
|
probabilities corresponding to the definition of table columns
|
||
|
n : int or float
|
||
|
sample size, second parameter of the table
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ppf : array_like
|
||
|
critical values with same shape as prob, returns nan for arguments
|
||
|
that are outside of the table bounds
|
||
|
"""
|
||
|
prob = np.asarray(prob)
|
||
|
alpha = self.alpha
|
||
|
|
||
|
# vectorized
|
||
|
cond_ilow = (prob > alpha[0])
|
||
|
cond_ihigh = (prob < alpha[-1])
|
||
|
cond_interior = np.logical_or(cond_ilow, cond_ihigh)
|
||
|
|
||
|
# scalar
|
||
|
if prob.size == 1:
|
||
|
if cond_interior:
|
||
|
return self.polyrbf(n, prob)
|
||
|
else:
|
||
|
return np.nan
|
||
|
|
||
|
# vectorized
|
||
|
quantile = np.nan * np.ones(prob.shape) # nans for outside
|
||
|
|
||
|
quantile[cond_interior] = self.polyrbf(n, prob[cond_interior])
|
||
|
return quantile
|