593 lines
18 KiB
Python
593 lines
18 KiB
Python
|
'''getting started with diffusions, continuous time stochastic processes
|
||
|
|
||
|
Author: josef-pktd
|
||
|
License: BSD
|
||
|
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
|
||
|
An Algorithmic Introduction to Numerical Simulation of Stochastic Differential
|
||
|
Equations
|
||
|
Author(s): Desmond J. Higham
|
||
|
Source: SIAM Review, Vol. 43, No. 3 (Sep., 2001), pp. 525-546
|
||
|
Published by: Society for Industrial and Applied Mathematics
|
||
|
Stable URL: http://www.jstor.org/stable/3649798
|
||
|
|
||
|
http://www.sitmo.com/ especially the formula collection
|
||
|
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
OU process: use same trick for ARMA with constant (non-zero mean) and drift
|
||
|
some of the processes have easy multivariate extensions
|
||
|
|
||
|
*Open Issues*
|
||
|
|
||
|
include xzero in returned sample or not? currently not
|
||
|
|
||
|
*TODOS*
|
||
|
|
||
|
* Milstein from Higham paper, for which processes does it apply
|
||
|
* Maximum Likelihood estimation
|
||
|
* more statistical properties (useful for tests)
|
||
|
* helper functions for display and MonteCarlo summaries (also for testing/checking)
|
||
|
* more processes for the menagerie (e.g. from empirical papers)
|
||
|
* characteristic functions
|
||
|
* transformations, non-linear e.g. log
|
||
|
* special estimators, e.g. Ait Sahalia, empirical characteristic functions
|
||
|
* fft examples
|
||
|
* check naming of methods, "simulate", "sample", "simexact", ... ?
|
||
|
|
||
|
|
||
|
|
||
|
stochastic volatility models: estimation unclear
|
||
|
|
||
|
finance applications ? option pricing, interest rate models
|
||
|
|
||
|
|
||
|
'''
|
||
|
import numpy as np
|
||
|
from scipy import stats, signal
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
#np.random.seed(987656789)
|
||
|
|
||
|
class Diffusion:
|
||
|
'''Wiener Process, Brownian Motion with mu=0 and sigma=1
|
||
|
'''
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def simulateW(self, nobs=100, T=1, dt=None, nrepl=1):
|
||
|
'''generate sample of Wiener Process
|
||
|
'''
|
||
|
dt = T*1.0/nobs
|
||
|
t = np.linspace(dt, 1, nobs)
|
||
|
dW = np.sqrt(dt)*np.random.normal(size=(nrepl, nobs))
|
||
|
W = np.cumsum(dW,1)
|
||
|
self.dW = dW
|
||
|
return W, t
|
||
|
|
||
|
def expectedsim(self, func, nobs=100, T=1, dt=None, nrepl=1):
|
||
|
'''get expectation of a function of a Wiener Process by simulation
|
||
|
|
||
|
initially test example from
|
||
|
'''
|
||
|
W, t = self.simulateW(nobs=nobs, T=T, dt=dt, nrepl=nrepl)
|
||
|
U = func(t, W)
|
||
|
Umean = U.mean(0)
|
||
|
return U, Umean, t
|
||
|
|
||
|
class AffineDiffusion(Diffusion):
|
||
|
r'''
|
||
|
|
||
|
differential equation:
|
||
|
|
||
|
:math::
|
||
|
dx_t = f(t,x)dt + \sigma(t,x)dW_t
|
||
|
|
||
|
integral:
|
||
|
|
||
|
:math::
|
||
|
x_T = x_0 + \int_{0}^{T}f(t,S)dt + \int_0^T \sigma(t,S)dW_t
|
||
|
|
||
|
TODO: check definition, affine, what about jump diffusion?
|
||
|
|
||
|
'''
|
||
|
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def sim(self, nobs=100, T=1, dt=None, nrepl=1):
|
||
|
# this does not look correct if drift or sig depend on x
|
||
|
# see arithmetic BM
|
||
|
W, t = self.simulateW(nobs=nobs, T=T, dt=dt, nrepl=nrepl)
|
||
|
dx = self._drift() + self._sig() * W
|
||
|
x = np.cumsum(dx,1)
|
||
|
xmean = x.mean(0)
|
||
|
return x, xmean, t
|
||
|
|
||
|
def simEM(self, xzero=None, nobs=100, T=1, dt=None, nrepl=1, Tratio=4):
|
||
|
'''
|
||
|
|
||
|
from Higham 2001
|
||
|
|
||
|
TODO: reverse parameterization to start with final nobs and DT
|
||
|
TODO: check if I can skip the loop using my way from exactprocess
|
||
|
problem might be Winc (reshape into 3d and sum)
|
||
|
TODO: (later) check memory efficiency for large simulations
|
||
|
'''
|
||
|
#TODO: reverse parameterization to start with final nobs and DT
|
||
|
nobs = nobs * Tratio # simple way to change parameter
|
||
|
# maybe wrong parameterization,
|
||
|
# drift too large, variance too small ? which dt/Dt
|
||
|
# _drift, _sig independent of dt is wrong
|
||
|
if xzero is None:
|
||
|
xzero = self.xzero
|
||
|
if dt is None:
|
||
|
dt = T*1.0/nobs
|
||
|
W, t = self.simulateW(nobs=nobs, T=T, dt=dt, nrepl=nrepl)
|
||
|
dW = self.dW
|
||
|
t = np.linspace(dt, 1, nobs)
|
||
|
Dt = Tratio*dt
|
||
|
L = nobs/Tratio # L EM steps of size Dt = R*dt
|
||
|
Xem = np.zeros((nrepl,L)) # preallocate for efficiency
|
||
|
Xtemp = xzero
|
||
|
Xem[:,0] = xzero
|
||
|
for j in np.arange(1,L):
|
||
|
#Winc = np.sum(dW[:,Tratio*(j-1)+1:Tratio*j],1)
|
||
|
Winc = np.sum(dW[:,np.arange(Tratio*(j-1)+1,Tratio*j)],1)
|
||
|
#Xtemp = Xtemp + Dt*lamda*Xtemp + mu*Xtemp*Winc;
|
||
|
Xtemp = Xtemp + self._drift(x=Xtemp) + self._sig(x=Xtemp) * Winc
|
||
|
#Dt*lamda*Xtemp + mu*Xtemp*Winc;
|
||
|
Xem[:,j] = Xtemp
|
||
|
return Xem
|
||
|
|
||
|
'''
|
||
|
R = 4; Dt = R*dt; L = N/R; % L EM steps of size Dt = R*dt
|
||
|
Xem = zeros(1,L); % preallocate for efficiency
|
||
|
Xtemp = Xzero;
|
||
|
for j = 1:L
|
||
|
Winc = sum(dW(R*(j-1)+1:R*j));
|
||
|
Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc;
|
||
|
Xem(j) = Xtemp;
|
||
|
end
|
||
|
'''
|
||
|
|
||
|
class ExactDiffusion(AffineDiffusion):
|
||
|
'''Diffusion that has an exact integral representation
|
||
|
|
||
|
this is currently mainly for geometric, log processes
|
||
|
|
||
|
'''
|
||
|
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def exactprocess(self, xzero, nobs, ddt=1., nrepl=2):
|
||
|
'''ddt : discrete delta t
|
||
|
|
||
|
|
||
|
|
||
|
should be the same as an AR(1)
|
||
|
not tested yet
|
||
|
'''
|
||
|
t = np.linspace(ddt, nobs*ddt, nobs)
|
||
|
#expnt = np.exp(-self.lambd * t)
|
||
|
expddt = np.exp(-self.lambd * ddt)
|
||
|
normrvs = np.random.normal(size=(nrepl,nobs))
|
||
|
#do I need lfilter here AR(1) ? if mean reverting lag-coeff<1
|
||
|
#lfilter does not handle 2d arrays, it does?
|
||
|
inc = self._exactconst(expddt) + self._exactstd(expddt) * normrvs
|
||
|
return signal.lfilter([1.], [1.,-expddt], inc)
|
||
|
|
||
|
def exactdist(self, xzero, t):
|
||
|
expnt = np.exp(-self.lambd * t)
|
||
|
meant = xzero * expnt + self._exactconst(expnt)
|
||
|
stdt = self._exactstd(expnt)
|
||
|
return stats.norm(loc=meant, scale=stdt)
|
||
|
|
||
|
class ArithmeticBrownian(AffineDiffusion):
|
||
|
'''
|
||
|
:math::
|
||
|
dx_t &= \\mu dt + \\sigma dW_t
|
||
|
'''
|
||
|
|
||
|
def __init__(self, xzero, mu, sigma):
|
||
|
self.xzero = xzero
|
||
|
self.mu = mu
|
||
|
self.sigma = sigma
|
||
|
|
||
|
def _drift(self, *args, **kwds):
|
||
|
return self.mu
|
||
|
def _sig(self, *args, **kwds):
|
||
|
return self.sigma
|
||
|
def exactprocess(self, nobs, xzero=None, ddt=1., nrepl=2):
|
||
|
'''ddt : discrete delta t
|
||
|
|
||
|
not tested yet
|
||
|
'''
|
||
|
if xzero is None:
|
||
|
xzero = self.xzero
|
||
|
t = np.linspace(ddt, nobs*ddt, nobs)
|
||
|
normrvs = np.random.normal(size=(nrepl,nobs))
|
||
|
inc = self._drift + self._sigma * np.sqrt(ddt) * normrvs
|
||
|
#return signal.lfilter([1.], [1.,-1], inc)
|
||
|
return xzero + np.cumsum(inc,1)
|
||
|
|
||
|
def exactdist(self, xzero, t):
|
||
|
expnt = np.exp(-self.lambd * t)
|
||
|
meant = self._drift * t
|
||
|
stdt = self._sigma * np.sqrt(t)
|
||
|
return stats.norm(loc=meant, scale=stdt)
|
||
|
|
||
|
|
||
|
class GeometricBrownian(AffineDiffusion):
|
||
|
'''Geometric Brownian Motion
|
||
|
|
||
|
:math::
|
||
|
dx_t &= \\mu x_t dt + \\sigma x_t dW_t
|
||
|
|
||
|
$x_t $ stochastic process of Geometric Brownian motion,
|
||
|
$\\mu $ is the drift,
|
||
|
$\\sigma $ is the Volatility,
|
||
|
$W$ is the Wiener process (Brownian motion).
|
||
|
|
||
|
'''
|
||
|
def __init__(self, xzero, mu, sigma):
|
||
|
self.xzero = xzero
|
||
|
self.mu = mu
|
||
|
self.sigma = sigma
|
||
|
|
||
|
def _drift(self, *args, **kwds):
|
||
|
x = kwds['x']
|
||
|
return self.mu * x
|
||
|
def _sig(self, *args, **kwds):
|
||
|
x = kwds['x']
|
||
|
return self.sigma * x
|
||
|
|
||
|
|
||
|
class OUprocess(AffineDiffusion):
|
||
|
'''Ornstein-Uhlenbeck
|
||
|
|
||
|
:math::
|
||
|
dx_t&=\\lambda(\\mu - x_t)dt+\\sigma dW_t
|
||
|
|
||
|
mean reverting process
|
||
|
|
||
|
|
||
|
|
||
|
TODO: move exact higher up in class hierarchy
|
||
|
'''
|
||
|
def __init__(self, xzero, mu, lambd, sigma):
|
||
|
self.xzero = xzero
|
||
|
self.lambd = lambd
|
||
|
self.mu = mu
|
||
|
self.sigma = sigma
|
||
|
|
||
|
def _drift(self, *args, **kwds):
|
||
|
x = kwds['x']
|
||
|
return self.lambd * (self.mu - x)
|
||
|
def _sig(self, *args, **kwds):
|
||
|
x = kwds['x']
|
||
|
return self.sigma * x
|
||
|
def exact(self, xzero, t, normrvs):
|
||
|
#TODO: aggregate over time for process with observations for all t
|
||
|
# i.e. exact conditional distribution for discrete time increment
|
||
|
# -> exactprocess
|
||
|
#TODO: for single t, return stats.norm -> exactdist
|
||
|
expnt = np.exp(-self.lambd * t)
|
||
|
return (xzero * expnt + self.mu * (1-expnt) +
|
||
|
self.sigma * np.sqrt((1-expnt*expnt)/2./self.lambd) * normrvs)
|
||
|
|
||
|
def exactprocess(self, xzero, nobs, ddt=1., nrepl=2):
|
||
|
'''ddt : discrete delta t
|
||
|
|
||
|
should be the same as an AR(1)
|
||
|
not tested yet
|
||
|
# after writing this I saw the same use of lfilter in sitmo
|
||
|
'''
|
||
|
t = np.linspace(ddt, nobs*ddt, nobs)
|
||
|
expnt = np.exp(-self.lambd * t)
|
||
|
expddt = np.exp(-self.lambd * ddt)
|
||
|
normrvs = np.random.normal(size=(nrepl,nobs))
|
||
|
#do I need lfilter here AR(1) ? lfilter does not handle 2d arrays, it does?
|
||
|
from scipy import signal
|
||
|
#xzero * expnt
|
||
|
inc = ( self.mu * (1-expddt) +
|
||
|
self.sigma * np.sqrt((1-expddt*expddt)/2./self.lambd) * normrvs )
|
||
|
|
||
|
return signal.lfilter([1.], [1.,-expddt], inc)
|
||
|
|
||
|
|
||
|
def exactdist(self, xzero, t):
|
||
|
#TODO: aggregate over time for process with observations for all t
|
||
|
#TODO: for single t, return stats.norm
|
||
|
expnt = np.exp(-self.lambd * t)
|
||
|
meant = xzero * expnt + self.mu * (1-expnt)
|
||
|
stdt = self.sigma * np.sqrt((1-expnt*expnt)/2./self.lambd)
|
||
|
from scipy import stats
|
||
|
return stats.norm(loc=meant, scale=stdt)
|
||
|
|
||
|
def fitls(self, data, dt):
|
||
|
'''assumes data is 1d, univariate time series
|
||
|
formula from sitmo
|
||
|
'''
|
||
|
# brute force, no parameter estimation errors
|
||
|
nobs = len(data)-1
|
||
|
exog = np.column_stack((np.ones(nobs), data[:-1]))
|
||
|
parest, res, rank, sing = np.linalg.lstsq(exog, data[1:], rcond=-1)
|
||
|
const, slope = parest
|
||
|
errvar = res/(nobs-2.)
|
||
|
lambd = -np.log(slope)/dt
|
||
|
sigma = np.sqrt(-errvar * 2.*np.log(slope)/ (1-slope**2)/dt)
|
||
|
mu = const / (1-slope)
|
||
|
return mu, lambd, sigma
|
||
|
|
||
|
|
||
|
class SchwartzOne(ExactDiffusion):
|
||
|
'''the Schwartz type 1 stochastic process
|
||
|
|
||
|
:math::
|
||
|
dx_t = \\kappa (\\mu - \\ln x_t) x_t dt + \\sigma x_tdW \\
|
||
|
|
||
|
The Schwartz type 1 process is a log of the Ornstein-Uhlenbeck stochastic
|
||
|
process.
|
||
|
|
||
|
'''
|
||
|
|
||
|
def __init__(self, xzero, mu, kappa, sigma):
|
||
|
self.xzero = xzero
|
||
|
self.mu = mu
|
||
|
self.kappa = kappa
|
||
|
self.lambd = kappa #alias until I fix exact
|
||
|
self.sigma = sigma
|
||
|
|
||
|
def _exactconst(self, expnt):
|
||
|
return (1-expnt) * (self.mu - self.sigma**2 / 2. /self.kappa)
|
||
|
|
||
|
def _exactstd(self, expnt):
|
||
|
return self.sigma * np.sqrt((1-expnt*expnt)/2./self.kappa)
|
||
|
|
||
|
def exactprocess(self, xzero, nobs, ddt=1., nrepl=2):
|
||
|
'''uses exact solution for log of process
|
||
|
'''
|
||
|
lnxzero = np.log(xzero)
|
||
|
lnx = super(self.__class__, self).exactprocess(xzero, nobs, ddt=ddt, nrepl=nrepl)
|
||
|
return np.exp(lnx)
|
||
|
|
||
|
def exactdist(self, xzero, t):
|
||
|
expnt = np.exp(-self.lambd * t)
|
||
|
#TODO: check this is still wrong, just guessing
|
||
|
meant = np.log(xzero) * expnt + self._exactconst(expnt)
|
||
|
stdt = self._exactstd(expnt)
|
||
|
return stats.lognorm(loc=meant, scale=stdt)
|
||
|
|
||
|
def fitls(self, data, dt):
|
||
|
'''assumes data is 1d, univariate time series
|
||
|
formula from sitmo
|
||
|
'''
|
||
|
# brute force, no parameter estimation errors
|
||
|
nobs = len(data)-1
|
||
|
exog = np.column_stack((np.ones(nobs),np.log(data[:-1])))
|
||
|
parest, res, rank, sing = np.linalg.lstsq(exog, np.log(data[1:]), rcond=-1)
|
||
|
const, slope = parest
|
||
|
errvar = res/(nobs-2.) #check denominator estimate, of sigma too low
|
||
|
kappa = -np.log(slope)/dt
|
||
|
sigma = np.sqrt(errvar * kappa / (1-np.exp(-2*kappa*dt)))
|
||
|
mu = const / (1-np.exp(-kappa*dt)) + sigma**2/2./kappa
|
||
|
if np.shape(mu)== (1,):
|
||
|
mu = mu[0] # TODO: how to remove scalar array ?
|
||
|
if np.shape(sigma)== (1,):
|
||
|
sigma = sigma[0]
|
||
|
#mu, kappa are good, sigma too small
|
||
|
return mu, kappa, sigma
|
||
|
|
||
|
|
||
|
|
||
|
class BrownianBridge:
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def simulate(self, x0, x1, nobs, nrepl=1, ddt=1., sigma=1.):
|
||
|
nobs=nobs+1
|
||
|
dt = ddt*1./nobs
|
||
|
t = np.linspace(dt, ddt-dt, nobs)
|
||
|
t = np.linspace(dt, ddt, nobs)
|
||
|
wm = [t/ddt, 1-t/ddt]
|
||
|
#wmi = wm[1]
|
||
|
#wm1 = x1*wm[0]
|
||
|
wmi = 1-dt/(ddt-t)
|
||
|
wm1 = x1*(dt/(ddt-t))
|
||
|
su = sigma* np.sqrt(t*(1-t)/ddt)
|
||
|
s = sigma* np.sqrt(dt*(ddt-t-dt)/(ddt-t))
|
||
|
x = np.zeros((nrepl, nobs))
|
||
|
x[:,0] = x0
|
||
|
rvs = s*np.random.normal(size=(nrepl,nobs))
|
||
|
for i in range(1,nobs):
|
||
|
x[:,i] = x[:,i-1]*wmi[i] + wm1[i] + rvs[:,i]
|
||
|
return x, t, su
|
||
|
|
||
|
|
||
|
class CompoundPoisson:
|
||
|
'''nobs iid compound poisson distributions, not a process in time
|
||
|
'''
|
||
|
def __init__(self, lambd, randfn=np.random.normal):
|
||
|
if len(lambd) != len(randfn):
|
||
|
raise ValueError('lambd and randfn need to have the same number of elements')
|
||
|
|
||
|
self.nobj = len(lambd)
|
||
|
self.randfn = randfn
|
||
|
self.lambd = np.asarray(lambd)
|
||
|
|
||
|
def simulate(self, nobs, nrepl=1):
|
||
|
nobj = self.nobj
|
||
|
x = np.zeros((nrepl, nobs, nobj))
|
||
|
N = np.random.poisson(self.lambd[None,None,:], size=(nrepl,nobs,nobj))
|
||
|
for io in range(nobj):
|
||
|
randfnc = self.randfn[io]
|
||
|
|
||
|
nc = N[:,:,io]
|
||
|
#print nrepl,nobs,nc
|
||
|
#xio = randfnc(size=(nrepl,nobs,np.max(nc))).cumsum(-1)[np.arange(nrepl)[:,None],np.arange(nobs),nc-1]
|
||
|
rvs = randfnc(size=(nrepl,nobs,np.max(nc)))
|
||
|
print('rvs.sum()', rvs.sum(), rvs.shape)
|
||
|
xio = rvs.cumsum(-1)[np.arange(nrepl)[:,None],np.arange(nobs),nc-1]
|
||
|
#print xio.shape
|
||
|
x[:,:,io] = xio
|
||
|
x[N==0] = 0
|
||
|
return x, N
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
'''
|
||
|
randn('state',100) % set the state of randn
|
||
|
T = 1; N = 500; dt = T/N; t = [dt:dt:1];
|
||
|
|
||
|
M = 1000; % M paths simultaneously
|
||
|
dW = sqrt(dt)*randn(M,N); % increments
|
||
|
W = cumsum(dW,2); % cumulative sum
|
||
|
U = exp(repmat(t,[M 1]) + 0.5*W);
|
||
|
Umean = mean(U);
|
||
|
plot([0,t],[1,Umean],'b-'), hold on % plot mean over M paths
|
||
|
plot([0,t],[ones(5,1),U(1:5,:)],'r--'), hold off % plot 5 individual paths
|
||
|
xlabel('t','FontSize',16)
|
||
|
ylabel('U(t)','FontSize',16,'Rotation',0,'HorizontalAlignment','right')
|
||
|
legend('mean of 1000 paths','5 individual paths',2)
|
||
|
|
||
|
averr = norm((Umean - exp(9*t/8)),'inf') % sample error
|
||
|
'''
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
doplot = 1
|
||
|
nrepl = 1000
|
||
|
examples = []#['all']
|
||
|
|
||
|
if 'all' in examples:
|
||
|
w = Diffusion()
|
||
|
|
||
|
# Wiener Process
|
||
|
# ^^^^^^^^^^^^^^
|
||
|
|
||
|
ws = w.simulateW(1000, nrepl=nrepl)
|
||
|
if doplot:
|
||
|
plt.figure()
|
||
|
tmp = plt.plot(ws[0].T)
|
||
|
tmp = plt.plot(ws[0].mean(0), linewidth=2)
|
||
|
plt.title('Standard Brownian Motion (Wiener Process)')
|
||
|
|
||
|
func = lambda t, W: np.exp(t + 0.5*W)
|
||
|
us = w.expectedsim(func, nobs=500, nrepl=nrepl)
|
||
|
if doplot:
|
||
|
plt.figure()
|
||
|
tmp = plt.plot(us[0].T)
|
||
|
tmp = plt.plot(us[1], linewidth=2)
|
||
|
plt.title('Brownian Motion - exp')
|
||
|
#plt.show()
|
||
|
averr = np.linalg.norm(us[1] - np.exp(9*us[2]/8.), np.inf)
|
||
|
print(averr)
|
||
|
#print us[1][:10]
|
||
|
#print np.exp(9.*us[2][:10]/8.)
|
||
|
|
||
|
# Geometric Brownian
|
||
|
# ^^^^^^^^^^^^^^^^^^
|
||
|
|
||
|
gb = GeometricBrownian(xzero=1., mu=0.01, sigma=0.5)
|
||
|
gbs = gb.simEM(nobs=100, nrepl=100)
|
||
|
if doplot:
|
||
|
plt.figure()
|
||
|
tmp = plt.plot(gbs.T)
|
||
|
tmp = plt.plot(gbs.mean(0), linewidth=2)
|
||
|
plt.title('Geometric Brownian')
|
||
|
plt.figure()
|
||
|
tmp = plt.plot(np.log(gbs).T)
|
||
|
tmp = plt.plot(np.log(gbs.mean(0)), linewidth=2)
|
||
|
plt.title('Geometric Brownian - log-transformed')
|
||
|
|
||
|
ab = ArithmeticBrownian(xzero=1, mu=0.05, sigma=1)
|
||
|
abs = ab.simEM(nobs=100, nrepl=100)
|
||
|
if doplot:
|
||
|
plt.figure()
|
||
|
tmp = plt.plot(abs.T)
|
||
|
tmp = plt.plot(abs.mean(0), linewidth=2)
|
||
|
plt.title('Arithmetic Brownian')
|
||
|
|
||
|
# Ornstein-Uhlenbeck
|
||
|
# ^^^^^^^^^^^^^^^^^^
|
||
|
|
||
|
ou = OUprocess(xzero=2, mu=1, lambd=0.5, sigma=0.1)
|
||
|
ous = ou.simEM()
|
||
|
oue = ou.exact(1, 1, np.random.normal(size=(5,10)))
|
||
|
ou.exact(0, np.linspace(0,10,10/0.1), 0)
|
||
|
ou.exactprocess(0,10)
|
||
|
print(ou.exactprocess(0,10, ddt=0.1,nrepl=10).mean(0))
|
||
|
#the following looks good, approaches mu
|
||
|
oues = ou.exactprocess(0,100, ddt=0.1,nrepl=100)
|
||
|
if doplot:
|
||
|
plt.figure()
|
||
|
tmp = plt.plot(oues.T)
|
||
|
tmp = plt.plot(oues.mean(0), linewidth=2)
|
||
|
plt.title('Ornstein-Uhlenbeck')
|
||
|
|
||
|
# SchwartsOne
|
||
|
# ^^^^^^^^^^^
|
||
|
|
||
|
so = SchwartzOne(xzero=0, mu=1, kappa=0.5, sigma=0.1)
|
||
|
sos = so.exactprocess(0,50, ddt=0.1,nrepl=100)
|
||
|
print(sos.mean(0))
|
||
|
print(np.log(sos.mean(0)))
|
||
|
doplot = 1
|
||
|
if doplot:
|
||
|
plt.figure()
|
||
|
tmp = plt.plot(sos.T)
|
||
|
tmp = plt.plot(sos.mean(0), linewidth=2)
|
||
|
plt.title('Schwartz One')
|
||
|
print(so.fitls(sos[0,:],dt=0.1))
|
||
|
sos2 = so.exactprocess(0,500, ddt=0.1,nrepl=5)
|
||
|
print('true: mu=1, kappa=0.5, sigma=0.1')
|
||
|
for i in range(5):
|
||
|
print(so.fitls(sos2[i],dt=0.1))
|
||
|
|
||
|
|
||
|
|
||
|
# Brownian Bridge
|
||
|
# ^^^^^^^^^^^^^^^
|
||
|
|
||
|
bb = BrownianBridge()
|
||
|
#bbs = bb.sample(x0, x1, nobs, nrepl=1, ddt=1., sigma=1.)
|
||
|
bbs, t, wm = bb.simulate(0, 0.5, 99, nrepl=500, ddt=1., sigma=0.1)
|
||
|
if doplot:
|
||
|
plt.figure()
|
||
|
tmp = plt.plot(bbs.T)
|
||
|
tmp = plt.plot(bbs.mean(0), linewidth=2)
|
||
|
plt.title('Brownian Bridge')
|
||
|
plt.figure()
|
||
|
plt.plot(wm,'r', label='theoretical')
|
||
|
plt.plot(bbs.std(0), label='simulated')
|
||
|
plt.title('Brownian Bridge - Variance')
|
||
|
plt.legend()
|
||
|
|
||
|
# Compound Poisson
|
||
|
# ^^^^^^^^^^^^^^^^
|
||
|
cp = CompoundPoisson([1,1], [np.random.normal,np.random.normal])
|
||
|
cps = cp.simulate(nobs=20000,nrepl=3)
|
||
|
print(cps[0].sum(-1).sum(-1))
|
||
|
print(cps[0].sum())
|
||
|
print(cps[0].mean(-1).mean(-1))
|
||
|
print(cps[0].mean())
|
||
|
print(cps[1].size)
|
||
|
print(cps[1].sum())
|
||
|
#Note Y = sum^{N} X is compound poisson of iid x, then
|
||
|
#E(Y) = E(N)*E(X) eg. eq. (6.37) page 385 in http://ee.stanford.edu/~gray/sp.html
|
||
|
|
||
|
|
||
|
#plt.show()
|