AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/sandbox/tools/mctools.py

521 lines
16 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
'''Helper class for Monte Carlo Studies for (currently) statistical tests
Most of it should also be usable for Bootstrap, and for MC for estimators.
Takes the sample generator, dgb, and the statistical results, statistic,
as functions in the argument.
Author: Josef Perktold (josef-pktd)
License: BSD-3
TODOs, Design
-------------
If we only care about univariate analysis, i.e. marginal if statistics returns
more than one value, the we only need to store the sorted mcres not the
original res. Do we want to extend to multivariate analysis?
Use distribution function to keep track of MC results, ECDF, non-paramatric?
Large parts are similar to a 2d array of independent multivariate random
variables. Joint distribution is not used (yet).
I guess this is currently only for one sided test statistics, e.g. for
two-sided tests basend on t or normal distribution use the absolute value.
'''
from statsmodels.compat.python import lrange
import numpy as np
from statsmodels.iolib.table import SimpleTable
#copied from stattools
class StatTestMC:
"""class to run Monte Carlo study on a statistical test'''
TODO
print(summary, for quantiles and for histogram
draft in trying out script log
Parameters
----------
dgp : callable
Function that generates the data to be used in Monte Carlo that should
return a new sample with each call
statistic : callable
Function that calculates the test statistic, which can return either
a single statistic or a 1d array_like (tuple, list, ndarray).
see also statindices in description of run
Attributes
----------
many methods store intermediate results
self.mcres : ndarray (nrepl, nreturns) or (nrepl, len(statindices))
Monte Carlo results stored by run
Notes
-----
.. Warning::
This is (currently) designed for a single call to run. If run is
called a second time with different arguments, then some attributes might
not be updated, and, therefore, not correspond to the same run.
.. Warning::
Under Construction, do not expect stability in Api or implementation
Examples
--------
Define a function that defines our test statistic:
def lb(x):
s,p = acorr_ljungbox(x, lags=4)
return np.r_[s, p]
Note lb returns eight values.
Define a random sample generator, for example 500 independently, normal
distributed observations in a sample:
def normalnoisesim(nobs=500, loc=0.0):
return (loc+np.random.randn(nobs))
Create instance and run Monte Carlo. Using statindices=list(range(4)) means that
only the first for values of the return of the statistic (lb) are stored
in the Monte Carlo results.
mc1 = StatTestMC(normalnoisesim, lb)
mc1.run(5000, statindices=list(range(4)))
Most of the other methods take an idx which indicates for which columns
the results should be presented, e.g.
print(mc1.cdf(crit, [1,2,3])[1]
"""
def __init__(self, dgp, statistic):
self.dgp = dgp #staticmethod(dgp) #no self
self.statistic = statistic # staticmethod(statistic) #no self
def run(self, nrepl, statindices=None, dgpargs=[], statsargs=[]):
'''run the actual Monte Carlo and save results
Parameters
----------
nrepl : int
number of Monte Carlo repetitions
statindices : None or list of integers
determines which values of the return of the statistic
functions are stored in the Monte Carlo. Default None
means the entire return. If statindices is a list of
integers, then it will be used as index into the return.
dgpargs : tuple
optional parameters for the DGP
statsargs : tuple
optional parameters for the statistics function
Returns
-------
None, all results are attached
'''
self.nrepl = nrepl
self.statindices = statindices
self.dgpargs = dgpargs
self.statsargs = statsargs
dgp = self.dgp
statfun = self.statistic # name ?
#introspect len of return of statfun,
#possible problems with ndim>1, check ValueError
mcres0 = statfun(dgp(*dgpargs), *statsargs)
self.nreturn = nreturns = len(np.ravel(mcres0))
#single return statistic
if statindices is None:
#self.nreturn = nreturns = 1
mcres = np.zeros(nrepl)
mcres[0] = mcres0
for ii in range(1, nrepl-1, nreturns):
x = dgp(*dgpargs) #(1e-4+np.random.randn(nobs)).cumsum()
#should I ravel?
mcres[ii] = statfun(x, *statsargs)
#more than one return statistic
else:
self.nreturn = nreturns = len(statindices)
self.mcres = mcres = np.zeros((nrepl, nreturns))
mcres[0] = [mcres0[i] for i in statindices]
for ii in range(1, nrepl-1):
x = dgp(*dgpargs) #(1e-4+np.random.randn(nobs)).cumsum()
ret = statfun(x, *statsargs)
mcres[ii] = [ret[i] for i in statindices]
self.mcres = mcres
def histogram(self, idx=None, critval=None):
'''calculate histogram values
does not do any plotting
I do not remember what I wanted here, looks similar to the new cdf
method, but this also does a binned pdf (self.histo)
'''
if self.mcres.ndim == 2:
if idx is not None:
mcres = self.mcres[:,idx]
else:
raise ValueError('currently only 1 statistic at a time')
else:
mcres = self.mcres
if critval is None:
histo = np.histogram(mcres, bins=10)
else:
if not critval[0] == -np.inf:
bins=np.r_[-np.inf, critval, np.inf]
if not critval[0] == -np.inf:
bins=np.r_[bins, np.inf]
histo = np.histogram(mcres,
bins=np.r_[-np.inf, critval, np.inf])
self.histo = histo
self.cumhisto = np.cumsum(histo[0])*1./self.nrepl
self.cumhistoreversed = np.cumsum(histo[0][::-1])[::-1]*1./self.nrepl
return histo, self.cumhisto, self.cumhistoreversed
#use cache decorator instead
def get_mc_sorted(self):
if not hasattr(self, 'mcressort'):
self.mcressort = np.sort(self.mcres, axis=0)
return self.mcressort
def quantiles(self, idx=None, frac=[0.01, 0.025, 0.05, 0.1, 0.975]):
'''calculate quantiles of Monte Carlo results
similar to ppf
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
frac : array_like, float
Defines which quantiles should be calculated. For example a frac
of 0.1 finds the 10% quantile, x such that cdf(x)=0.1
Returns
-------
frac : ndarray
same values as input, TODO: I should drop this again ?
quantiles : ndarray, (len(frac), len(idx))
the quantiles with frac in rows and idx variables in columns
Notes
-----
rename to ppf ? make frac required
change sequence idx, frac
'''
if self.mcres.ndim == 2:
if idx is not None:
mcres = self.mcres[:,idx]
else:
raise ValueError('currently only 1 statistic at a time')
else:
mcres = self.mcres
self.frac = frac = np.asarray(frac)
mc_sorted = self.get_mc_sorted()[:,idx]
return frac, mc_sorted[(self.nrepl*frac).astype(int)]
def cdf(self, x, idx=None):
'''calculate cumulative probabilities of Monte Carlo results
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
frac : array_like, float
Defines which quantiles should be calculated. For example a frac
of 0.1 finds the 10% quantile, x such that cdf(x)=0.1
Returns
-------
x : ndarray
same as input, TODO: I should drop this again ?
probs : ndarray, (len(x), len(idx))
the quantiles with frac in rows and idx variables in columns
'''
idx = np.atleast_1d(idx).tolist() #assure iterable, use list ?
# if self.mcres.ndim == 2:
# if not idx is None:
# mcres = self.mcres[:,idx]
# else:
# raise ValueError('currently only 1 statistic at a time')
# else:
# mcres = self.mcres
mc_sorted = self.get_mc_sorted()
x = np.asarray(x)
#TODO:autodetect or explicit option ?
if x.ndim > 1 and x.shape[1]==len(idx):
use_xi = True
else:
use_xi = False
x_ = x #alias
probs = []
for i,ix in enumerate(idx):
if use_xi:
x_ = x[:,i]
probs.append(np.searchsorted(mc_sorted[:,ix], x_)/float(self.nrepl))
probs = np.asarray(probs).T
return x, probs
def plot_hist(self, idx, distpdf=None, bins=50, ax=None, kwds=None):
'''plot the histogram against a reference distribution
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
distpdf : callable
probability density function of reference distribution
bins : {int, array_like}
used unchanged for matplotlibs hist call
ax : TODO: not implemented yet
kwds : None or tuple of dicts
extra keyword options to the calls to the matplotlib functions,
first dictionary is for his, second dictionary for plot of the
reference distribution
Returns
-------
None
'''
if kwds is None:
kwds = ({},{})
if self.mcres.ndim == 2:
if idx is not None:
mcres = self.mcres[:,idx]
else:
raise ValueError('currently only 1 statistic at a time')
else:
mcres = self.mcres
lsp = np.linspace(mcres.min(), mcres.max(), 100)
import matplotlib.pyplot as plt
#I do not want to figure this out now
# if ax=None:
# fig = plt.figure()
# ax = fig.addaxis()
fig = plt.figure()
plt.hist(mcres, bins=bins, normed=True, **kwds[0])
plt.plot(lsp, distpdf(lsp), 'r', **kwds[1])
def summary_quantiles(self, idx, distppf, frac=[0.01, 0.025, 0.05, 0.1, 0.975],
varnames=None, title=None):
'''summary table for quantiles (critical values)
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
distppf : callable
probability density function of reference distribution
TODO: use `crit` values instead or additional, see summary_cdf
frac : array_like, float
probabilities for which
varnames : None, or list of strings
optional list of variable names, same length as idx
Returns
-------
table : instance of SimpleTable
use `print(table` to see results
'''
idx = np.atleast_1d(idx) #assure iterable, use list ?
quant, mcq = self.quantiles(idx, frac=frac)
#not sure whether this will work with single quantile
#crit = stats.chi2([2,4]).ppf(np.atleast_2d(quant).T)
crit = distppf(np.atleast_2d(quant).T)
mml=[]
for i, ix in enumerate(idx): #TODO: hardcoded 2 ?
mml.extend([mcq[:,i], crit[:,i]])
#mmlar = np.column_stack(mml)
mmlar = np.column_stack([quant] + mml)
#print(mmlar.shape
if title:
title = title +' Quantiles (critical values)'
else:
title='Quantiles (critical values)'
#TODO use stub instead
if varnames is None:
varnames = ['var%d' % i for i in range(mmlar.shape[1]//2)]
headers = ['\nprob'] + [f'{i}\n{t}' for i in varnames for t in ['mc', 'dist']]
return SimpleTable(mmlar,
txt_fmt={'data_fmts': ["%#6.3f"]+["%#10.4f"]*(mmlar.shape[1]-1)},
title=title,
headers=headers)
def summary_cdf(self, idx, frac, crit, varnames=None, title=None):
'''summary table for cumulative density function
Parameters
----------
idx : None or list of integers
List of indices into the Monte Carlo results (columns) that should
be used in the calculation
frac : array_like, float
probabilities for which
crit : array_like
values for which cdf is calculated
varnames : None, or list of strings
optional list of variable names, same length as idx
Returns
-------
table : instance of SimpleTable
use `print(table` to see results
'''
idx = np.atleast_1d(idx) #assure iterable, use list ?
mml=[]
#TODO:need broadcasting in cdf
for i in range(len(idx)):
#print(i, mc1.cdf(crit[:,i], [idx[i]])[1].ravel()
mml.append(self.cdf(crit[:,i], [idx[i]])[1].ravel())
#mml = self.cdf(crit, idx)[1]
#mmlar = np.column_stack(mml)
#print(mml[0].shape, np.shape(frac)
mmlar = np.column_stack([frac] + mml)
#print(mmlar.shape
if title:
title = title +' Probabilites'
else:
title='Probabilities'
#TODO use stub instead
#headers = ['\nprob'] + ['var%d\n%s' % (i, t) for i in range(mmlar.shape[1]-1) for t in ['mc']]
if varnames is None:
varnames = ['var%d' % i for i in range(mmlar.shape[1]-1)]
headers = ['prob'] + varnames
return SimpleTable(mmlar,
txt_fmt={'data_fmts': ["%#6.3f"]+["%#10.4f"]*(np.array(mml).shape[1]-1)},
title=title,
headers=headers)
if __name__ == '__main__':
from scipy import stats
from statsmodels.stats.diagnostic import acorr_ljungbox
def randwalksim(nobs=100, drift=0.0):
return (drift+np.random.randn(nobs)).cumsum()
def normalnoisesim(nobs=500, loc=0.0):
return (loc+np.random.randn(nobs))
# print('\nResults with MC class'
# mc1 = StatTestMC(randwalksim, adf20)
# mc1.run(1000)
# print(mc1.histogram(critval=[-3.5, -3.17, -2.9 , -2.58, 0.26])
# print(mc1.quantiles()
print('\nLjung Box')
def lb4(x):
s,p = acorr_ljungbox(x, lags=4, return_df=True)
return s[-1], p[-1]
def lb1(x):
s,p = acorr_ljungbox(x, lags=1, return_df=True)
return s[0], p[0]
def lb(x):
s,p = acorr_ljungbox(x, lags=4, return_df=True)
return np.r_[s, p]
print('Results with MC class')
mc1 = StatTestMC(normalnoisesim, lb)
mc1.run(10000, statindices=lrange(8))
print(mc1.histogram(1, critval=[0.01, 0.025, 0.05, 0.1, 0.975]))
print(mc1.quantiles(1))
print(mc1.quantiles(0))
print(mc1.histogram(0))
#print(mc1.summary_quantiles([1], stats.chi2([2]).ppf, title='acorr_ljungbox')
print(mc1.summary_quantiles([1,2,3], stats.chi2([2,3,4]).ppf,
varnames=['lag 1', 'lag 2', 'lag 3'],
title='acorr_ljungbox'))
print(mc1.cdf(0.1026, 1))
print(mc1.cdf(0.7278, 3))
print(mc1.cdf(0.7278, [1,2,3]))
frac = [0.01, 0.025, 0.05, 0.1, 0.975]
crit = stats.chi2([2,4]).ppf(np.atleast_2d(frac).T)
print(mc1.summary_cdf([1,3], frac, crit, title='acorr_ljungbox'))
crit = stats.chi2([2,3,4]).ppf(np.atleast_2d(frac).T)
print(mc1.summary_cdf([1,2,3], frac, crit,
varnames=['lag 1', 'lag 2', 'lag 3'],
title='acorr_ljungbox'))
print(mc1.cdf(crit, [1,2,3])[1].shape)
#fixed broadcasting in cdf Done 2d only
'''
>>> mc1.cdf(crit[:,0], [1])[1].shape
(5, 1)
>>> mc1.cdf(crit[:,0], [1,3])[1].shape
(5, 2)
>>> mc1.cdf(crit[:,:], [1,3])[1].shape
(2, 5, 2)
'''
doplot=0
if doplot:
import matplotlib.pyplot as plt
mc1.plot_hist(0,stats.chi2(2).pdf) #which pdf
plt.show()