620 lines
21 KiB
Python
620 lines
21 KiB
Python
|
'''
|
||
|
|
||
|
Formulas
|
||
|
--------
|
||
|
|
||
|
This follows mostly Greene notation (in slides)
|
||
|
partially ignoring factors tau or mu for now, ADDED
|
||
|
(if all tau==1, then runmnl==clogit)
|
||
|
|
||
|
leaf k probability :
|
||
|
|
||
|
Prob(k|j) = exp(b_k * X_k / mu_j)/ sum_{i in L(j)} (exp(b_i * X_i / mu_j)
|
||
|
|
||
|
branch j probabilities :
|
||
|
|
||
|
Prob(j) = exp(b_j * X_j + mu*IV_j )/ sum_{i in NB(j)} (exp(b_i * X_i + mu_i*IV_i)
|
||
|
|
||
|
inclusive value of branch j :
|
||
|
|
||
|
IV_j = log( sum_{i in L(j)} (exp(b_i * X_i / mu_j) )
|
||
|
|
||
|
this is the log of the denominator of the leaf probabilities
|
||
|
|
||
|
L(j) : leaves at branch j, where k is child of j
|
||
|
NB(j) : set of j and it's siblings
|
||
|
|
||
|
Design
|
||
|
------
|
||
|
|
||
|
* splitting calculation transmission between returns and changes to
|
||
|
instance.probs
|
||
|
- probability for each leaf is in instance.probs
|
||
|
- inclusive values and contribution of exog on branch level need to be
|
||
|
added separately. handed up the tree through returns
|
||
|
* question: should params array be accessed directly through
|
||
|
`self.recursionparams[self.parinddict[name]]` or should the dictionary
|
||
|
return the values of the params, e.g. `self.params_node_dict[name]`.
|
||
|
The second would be easier for fixing tau=1 for degenerate branches.
|
||
|
The easiest might be to do the latter only for the taus and default to 1 if
|
||
|
the key ('tau_'+branchname) is not found. I also need to exclude tau for
|
||
|
degenerate branches from params, but then I cannot change them from the
|
||
|
outside for testing and experimentation. (?)
|
||
|
* SAS manual describes restrictions on tau (though their model is a bit
|
||
|
different), e.g. equal tau across sibling branches, fixed tau. The also
|
||
|
allow linear and non-linear (? not sure) restriction on params, the
|
||
|
regression coefficients. Related to previous issue, callback without access
|
||
|
to the underlying array, where params_node_dict returns the actual params
|
||
|
value would provide more flexibility to impose different kinds of restrictions.
|
||
|
|
||
|
|
||
|
|
||
|
bugs/problems
|
||
|
-------------
|
||
|
|
||
|
* singleton branches return zero to `top`, not a value
|
||
|
I'm not sure what they are supposed to return, given the split between returns
|
||
|
and instance.probs DONE
|
||
|
* Why does 'Air' (singleton branch) get probability exactly 0.5 ? DONE
|
||
|
|
||
|
TODO
|
||
|
----
|
||
|
* add tau, normalization for nested logit, currently tau is 1 (clogit)
|
||
|
taus also needs to become part of params MOSTLY DONE
|
||
|
* add effect of branch level explanatory variables DONE
|
||
|
* write a generic multinomial logit that takes arbitrary probabilities, this
|
||
|
would be the same for MNL, clogit and runmnl,
|
||
|
delegate calculation of probabilities
|
||
|
* test on actual data,
|
||
|
- tau=1 replicate clogit numbers,
|
||
|
- transport example from Greene tests 1-level tree and degenerate sub-trees
|
||
|
- test example for multi-level trees ???
|
||
|
* starting values: Greene mentiones that the starting values for the nested
|
||
|
version come from the (non-nested) MNL version. SPSS uses constant equal
|
||
|
(? check transformation) to sample frequencies and zeros for slope
|
||
|
coefficient as starting values for (non-nested) MNL
|
||
|
* associated test statistics
|
||
|
- (I do not think I will fight with the gradient or hessian of the log-like.)
|
||
|
- basic MLE statistics can be generic
|
||
|
- tests specific to the model (?)
|
||
|
* nice printouts since I'm currently collecting a lot of information in the tree
|
||
|
recursion and everything has names
|
||
|
|
||
|
The only parts that are really necessary to get a functional nested logit are
|
||
|
adding the taus (DONE) and the MLE wrapper class. The rest are enhancements.
|
||
|
|
||
|
I added fake tau, one fixed tau for all branches. (OBSOLETE)
|
||
|
It's not clear where the tau for leaf should be added either at
|
||
|
original assignment of self.probs, or as part of the one-step-down
|
||
|
probability correction in the bottom branches. The second would be
|
||
|
cleaner (would make treatment of leaves and branches more symmetric,
|
||
|
but requires that initial assignment in the leaf only does
|
||
|
initialization. e.g self.probs = 1. ???
|
||
|
|
||
|
DONE added taus
|
||
|
|
||
|
still todo:
|
||
|
- tau for degenerate branches are not identified, set to 1 for MLE
|
||
|
- rename parinddict to paramsinddict
|
||
|
|
||
|
|
||
|
Author: Josef Perktold
|
||
|
License : BSD (3-clause)
|
||
|
'''
|
||
|
from statsmodels.compat.python import lrange
|
||
|
|
||
|
from pprint import pprint
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def randintw(w, size=1):
|
||
|
'''generate integer random variables given probabilties
|
||
|
|
||
|
useful because it can be used as index into any array or sequence type
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
w : 1d array_like
|
||
|
sequence of weights, probabilities. The weights are normalized to add
|
||
|
to one.
|
||
|
size : int or tuple of ints
|
||
|
shape of output array
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rvs : array of shape given by size
|
||
|
random variables each distributed according to the same discrete
|
||
|
distribution defined by (normalized) w.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> np.random.seed(0)
|
||
|
>>> randintw([0.4, 0.4, 0.2], size=(2,6))
|
||
|
array([[1, 1, 1, 1, 1, 1],
|
||
|
[1, 2, 2, 0, 1, 1]])
|
||
|
|
||
|
>>> np.bincount(randintw([0.6, 0.4, 0.0], size=3000))/3000.
|
||
|
array([ 0.59566667, 0.40433333])
|
||
|
|
||
|
'''
|
||
|
#from Charles Harris, numpy mailing list
|
||
|
from numpy.random import random
|
||
|
p = np.cumsum(w)/np.sum(w)
|
||
|
rvs = p.searchsorted(random(np.prod(size))).reshape(size)
|
||
|
return rvs
|
||
|
|
||
|
def getbranches(tree):
|
||
|
'''
|
||
|
walk tree to get list of branches
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
tree : list of tuples
|
||
|
tree as defined for RU2NMNL
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
branch : list
|
||
|
list of all branch names
|
||
|
|
||
|
'''
|
||
|
if isinstance(tree, tuple):
|
||
|
name, subtree = tree
|
||
|
a = [name]
|
||
|
for st in subtree:
|
||
|
a.extend(getbranches(st))
|
||
|
return a
|
||
|
return []
|
||
|
|
||
|
def getnodes(tree):
|
||
|
'''
|
||
|
walk tree to get list of branches and list of leaves
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
tree : list of tuples
|
||
|
tree as defined for RU2NMNL
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
branch : list
|
||
|
list of all branch names
|
||
|
leaves : list
|
||
|
list of all leaves names
|
||
|
|
||
|
'''
|
||
|
if isinstance(tree, tuple):
|
||
|
name, subtree = tree
|
||
|
ab = [name]
|
||
|
al = []
|
||
|
#degenerate branches
|
||
|
if len(subtree) == 1:
|
||
|
adeg = [name]
|
||
|
else:
|
||
|
adeg = []
|
||
|
|
||
|
for st in subtree:
|
||
|
b, l, d = getnodes(st)
|
||
|
ab.extend(b)
|
||
|
al.extend(l)
|
||
|
adeg.extend(d)
|
||
|
return ab, al, adeg
|
||
|
return [], [tree], []
|
||
|
|
||
|
|
||
|
testxb = 2 #global to class to return strings instead of numbers
|
||
|
|
||
|
class RU2NMNL:
|
||
|
'''Nested Multinomial Logit with Random Utility 2 parameterization
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : ndarray
|
||
|
not used in this part
|
||
|
exog : dict_like
|
||
|
dictionary access to data where keys correspond to branch and leaf
|
||
|
names. The values are the data arrays for the exog in that node.
|
||
|
tree : nested tuples and lists
|
||
|
each branch, tree or subtree, is defined by a tuple
|
||
|
(branch_name, [subtree1, subtree2, ..., subtreek])
|
||
|
Bottom branches have as subtrees the list of leaf names.
|
||
|
paramsind : dictionary
|
||
|
dictionary that maps branch and leaf names to the names of parameters,
|
||
|
the coefficients for exogs)
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
get_probs
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
branches
|
||
|
leaves
|
||
|
paramsnames
|
||
|
parinddict
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
endog needs to be encoded so it is consistent with self.leaves, which
|
||
|
defines the columns for the probability array. The ordering in leaves is
|
||
|
determined by the ordering of the tree.
|
||
|
In the dummy encoding of endog, the columns of endog need to have the
|
||
|
same order as self.leaves. In the integer encoding, the integer for a
|
||
|
choice has to correspond to the index in self.leaves.
|
||
|
(This could be made more robust, by handling the endog encoding internally
|
||
|
by leaf names, if endog is defined as categorical variable with
|
||
|
associated category level names.)
|
||
|
|
||
|
'''
|
||
|
|
||
|
def __init__(self, endog, exog, tree, paramsind):
|
||
|
self.endog = endog
|
||
|
self.datadict = exog
|
||
|
self.tree = tree
|
||
|
self.paramsind = paramsind
|
||
|
|
||
|
self.branchsum = ''
|
||
|
self.probs = {}
|
||
|
self.probstxt = {}
|
||
|
self.branchleaves = {}
|
||
|
self.branchvalues = {} #just to keep track of returns by branches
|
||
|
self.branchsums = {}
|
||
|
self.bprobs = {}
|
||
|
self.branches, self.leaves, self.branches_degenerate = getnodes(tree)
|
||
|
self.nbranches = len(self.branches)
|
||
|
|
||
|
#copied over but not quite sure yet
|
||
|
#unique, parameter array names,
|
||
|
#sorted alphabetically, order is/should be only internal
|
||
|
|
||
|
self.paramsnames = (sorted({i for j in paramsind.values()
|
||
|
for i in j}) +
|
||
|
['tau_%s' % bname for bname in self.branches])
|
||
|
|
||
|
self.nparams = len(self.paramsnames)
|
||
|
|
||
|
#mapping coefficient names to indices to unique/parameter array
|
||
|
self.paramsidx = {name: idx for (idx,name) in
|
||
|
enumerate(self.paramsnames)}
|
||
|
|
||
|
#mapping branch and leaf names to index in parameter array
|
||
|
self.parinddict = {k: [self.paramsidx[j] for j in v]
|
||
|
for k,v in self.paramsind.items()}
|
||
|
|
||
|
self.recursionparams = 1. + np.arange(len(self.paramsnames))
|
||
|
#for testing that individual parameters are used in the right place
|
||
|
self.recursionparams = np.zeros(len(self.paramsnames))
|
||
|
#self.recursionparams[2] = 1
|
||
|
self.recursionparams[-self.nbranches:] = 1 #values for tau's
|
||
|
#self.recursionparams[-2] = 2
|
||
|
|
||
|
|
||
|
def get_probs(self, params):
|
||
|
'''
|
||
|
obtain the probability array given an array of parameters
|
||
|
|
||
|
This is the function that can be called by loglike or other methods
|
||
|
that need the probabilities as function of the params.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : 1d array, (nparams,)
|
||
|
coefficients and tau that parameterize the model. The required
|
||
|
length can be obtained by nparams. (and will depend on the number
|
||
|
of degenerate leaves - not yet)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
probs : ndarray, (nobs, nchoices)
|
||
|
probabilities for all choices for each observation. The order
|
||
|
is available by attribute leaves. See note in docstring of class
|
||
|
|
||
|
|
||
|
|
||
|
'''
|
||
|
self.recursionparams = params
|
||
|
self.calc_prob(self.tree)
|
||
|
probs_array = np.array([self.probs[leaf] for leaf in self.leaves])
|
||
|
return probs_array
|
||
|
#what's the ordering? Should be the same as sequence in tree.
|
||
|
#TODO: need a check/assert that this sequence is the same as the
|
||
|
# encoding in endog
|
||
|
|
||
|
|
||
|
def calc_prob(self, tree, parent=None):
|
||
|
'''walking a tree bottom-up based on dictionary
|
||
|
'''
|
||
|
|
||
|
#0.5#2 #placeholder for now
|
||
|
#should be tau=self.taus[name] but as part of params for optimization
|
||
|
endog = self.endog
|
||
|
datadict = self.datadict
|
||
|
paramsind = self.paramsind
|
||
|
branchsum = self.branchsum
|
||
|
|
||
|
|
||
|
if isinstance(tree, tuple): #assumes leaves are int for choice index
|
||
|
|
||
|
name, subtree = tree
|
||
|
self.branchleaves[name] = [] #register branch in dictionary
|
||
|
|
||
|
tau = self.recursionparams[self.paramsidx['tau_'+name]]
|
||
|
if DEBUG:
|
||
|
print('----------- starting next branch-----------')
|
||
|
print(name, datadict[name], 'tau=', tau)
|
||
|
print('subtree', subtree)
|
||
|
branchvalue = []
|
||
|
if testxb == 2:
|
||
|
branchsum = 0
|
||
|
elif testxb == 1:
|
||
|
branchsum = datadict[name]
|
||
|
else:
|
||
|
branchsum = name
|
||
|
for b in subtree:
|
||
|
if DEBUG:
|
||
|
print(b)
|
||
|
bv = self.calc_prob(b, name)
|
||
|
bv = np.exp(bv/tau) #this should not be here, when adding branch data
|
||
|
branchvalue.append(bv)
|
||
|
branchsum = branchsum + bv
|
||
|
self.branchvalues[name] = branchvalue #keep track what was returned
|
||
|
|
||
|
if DEBUG:
|
||
|
print('----------- returning to branch-----------')
|
||
|
print(name)
|
||
|
print('branchsum in branch', name, branchsum)
|
||
|
|
||
|
if parent:
|
||
|
if DEBUG:
|
||
|
print('parent', parent)
|
||
|
self.branchleaves[parent].extend(self.branchleaves[name])
|
||
|
if 0: #not name == 'top': # not used anymore !!! ???
|
||
|
#if not name == 'top':
|
||
|
#TODO: do I need this only on the lowest branches ?
|
||
|
tmpsum = 0
|
||
|
for k in self.branchleaves[name]:
|
||
|
#similar to this is now also in return branch values
|
||
|
#depends on what will be returned
|
||
|
tmpsum += self.probs[k]
|
||
|
iv = np.log(tmpsum)
|
||
|
|
||
|
for k in self.branchleaves[name]:
|
||
|
self.probstxt[k] = self.probstxt[k] + ['*' + name + '-prob' +
|
||
|
'(%s)' % ', '.join(self.paramsind[name])]
|
||
|
|
||
|
#TODO: does this use the denominator twice now
|
||
|
self.probs[k] = self.probs[k] / tmpsum
|
||
|
if np.size(self.datadict[name])>0:
|
||
|
#not used yet, might have to move one indentation level
|
||
|
#self.probs[k] = self.probs[k] / tmpsum
|
||
|
## np.exp(-self.datadict[name] *
|
||
|
## np.sum(self.recursionparams[self.parinddict[name]]))
|
||
|
if DEBUG:
|
||
|
print('self.datadict[name], self.probs[k]')
|
||
|
print(self.datadict[name], self.probs[k])
|
||
|
#if not name == 'top':
|
||
|
# self.probs[k] = self.probs[k] * np.exp( iv)
|
||
|
|
||
|
#walk one level down again to add branch probs to instance.probs
|
||
|
self.bprobs[name] = []
|
||
|
for bidx, b in enumerate(subtree):
|
||
|
if DEBUG:
|
||
|
print('repr(b)', repr(b), bidx)
|
||
|
#if len(b) == 1: #TODO: skip leaves, check this
|
||
|
if not isinstance(b, tuple): # isinstance(b, str):
|
||
|
#TODO: replace this with a check for branch (tuple) instead
|
||
|
#this implies name is a bottom branch,
|
||
|
#possible to add special things here
|
||
|
self.bprobs[name].append(self.probs[b])
|
||
|
#TODO: need tau possibly here
|
||
|
self.probs[b] = self.probs[b] / branchsum
|
||
|
if DEBUG:
|
||
|
print('*********** branchsum at bottom branch', branchsum)
|
||
|
#self.bprobs[name].append(self.probs[b])
|
||
|
else:
|
||
|
bname = b[0]
|
||
|
branchsum2 = sum(self.branchvalues[name])
|
||
|
assert np.abs(branchsum - branchsum2).sum() < 1e-8
|
||
|
bprob = branchvalue[bidx]/branchsum
|
||
|
self.bprobs[name].append(bprob)
|
||
|
|
||
|
for k in self.branchleaves[bname]:
|
||
|
|
||
|
if DEBUG:
|
||
|
print('branchprob', bname, k, bprob, branchsum)
|
||
|
#temporary hack with maximum to avoid zeros
|
||
|
self.probs[k] = self.probs[k] * np.maximum(bprob, 1e-4)
|
||
|
|
||
|
|
||
|
if DEBUG:
|
||
|
print('working on branch', tree, branchsum)
|
||
|
if testxb<2:
|
||
|
return branchsum
|
||
|
else: #this is the relevant part
|
||
|
self.branchsums[name] = branchsum
|
||
|
if np.size(self.datadict[name])>0:
|
||
|
branchxb = np.sum(self.datadict[name] *
|
||
|
self.recursionparams[self.parinddict[name]])
|
||
|
else:
|
||
|
branchxb = 0
|
||
|
if not name=='top':
|
||
|
tau = self.recursionparams[self.paramsidx['tau_'+name]]
|
||
|
else:
|
||
|
tau = 1
|
||
|
iv = branchxb + tau * branchsum #which tau: name or parent???
|
||
|
return branchxb + tau * np.log(branchsum) #iv
|
||
|
#branchsum is now IV, TODO: add effect of branch variables
|
||
|
|
||
|
else:
|
||
|
tau = self.recursionparams[self.paramsidx['tau_'+parent]]
|
||
|
if DEBUG:
|
||
|
print('parent', parent)
|
||
|
self.branchleaves[parent].append(tree) # register leave with parent
|
||
|
self.probstxt[tree] = [tree + '-prob' +
|
||
|
'(%s)' % ', '.join(self.paramsind[tree])]
|
||
|
#this is not yet a prob, not normalized to 1, it is exp(x*b)
|
||
|
leafprob = np.exp(np.sum(self.datadict[tree] *
|
||
|
self.recursionparams[self.parinddict[tree]])
|
||
|
/ tau) # fake tau for now, wrong spot ???
|
||
|
#it seems I get the same answer with and without tau here
|
||
|
self.probs[tree] = leafprob #= 1 #try initialization only
|
||
|
#TODO: where should I add tau in the leaves
|
||
|
|
||
|
if testxb == 2:
|
||
|
return np.log(leafprob)
|
||
|
elif testxb == 1:
|
||
|
leavessum = np.array(datadict[tree]) # sum((datadict[bi] for bi in datadict[tree]))
|
||
|
if DEBUG:
|
||
|
print('final branch with', tree, ''.join(tree), leavessum) #sum(tree)
|
||
|
return leavessum #sum(xb[tree])
|
||
|
elif testxb == 0:
|
||
|
return ''.join(tree) #sum(tree)
|
||
|
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
DEBUG = 0
|
||
|
|
||
|
endog = 5 # dummy place holder
|
||
|
|
||
|
|
||
|
############## Example similar to Greene
|
||
|
|
||
|
#get pickled data
|
||
|
#endog3, xifloat3 = pickle.load(open('xifloat2.pickle','rb'))
|
||
|
|
||
|
|
||
|
tree0 = ('top',
|
||
|
[('Fly',['Air']),
|
||
|
('Ground', ['Train', 'Car', 'Bus'])
|
||
|
])
|
||
|
|
||
|
''' this is with real data from Greene's clogit example
|
||
|
datadict = dict(zip(['Air', 'Train', 'Bus', 'Car'],
|
||
|
[xifloat[i]for i in range(4)]))
|
||
|
'''
|
||
|
|
||
|
#for testing only (mock that returns it's own name
|
||
|
datadict = dict(zip(['Air', 'Train', 'Bus', 'Car'],
|
||
|
['Airdata', 'Traindata', 'Busdata', 'Cardata']))
|
||
|
|
||
|
if testxb:
|
||
|
datadict = dict(zip(['Air', 'Train', 'Bus', 'Car'],
|
||
|
np.arange(4)))
|
||
|
|
||
|
datadict.update({'top' : [],
|
||
|
'Fly' : [],
|
||
|
'Ground': []})
|
||
|
|
||
|
paramsind = {'top' : [],
|
||
|
'Fly' : [],
|
||
|
'Ground': [],
|
||
|
'Air' : ['GC', 'Ttme', 'ConstA', 'Hinc'],
|
||
|
'Train' : ['GC', 'Ttme', 'ConstT'],
|
||
|
'Bus' : ['GC', 'Ttme', 'ConstB'],
|
||
|
'Car' : ['GC', 'Ttme']
|
||
|
}
|
||
|
|
||
|
modru = RU2NMNL(endog, datadict, tree0, paramsind)
|
||
|
modru.recursionparams[-1] = 2
|
||
|
modru.recursionparams[1] = 1
|
||
|
|
||
|
print('Example 1')
|
||
|
print('---------\n')
|
||
|
print(modru.calc_prob(modru.tree))
|
||
|
|
||
|
print('Tree')
|
||
|
pprint(modru.tree)
|
||
|
print('\nmodru.probs')
|
||
|
pprint(modru.probs)
|
||
|
|
||
|
|
||
|
|
||
|
############## example with many layers
|
||
|
|
||
|
tree2 = ('top',
|
||
|
[('B1',['a','b']),
|
||
|
('B2',
|
||
|
[('B21',['c', 'd']),
|
||
|
('B22',['e', 'f', 'g'])
|
||
|
]
|
||
|
),
|
||
|
('B3',['h'])])
|
||
|
|
||
|
#Note: dict looses ordering
|
||
|
paramsind2 = {
|
||
|
'B1': [],
|
||
|
'a': ['consta', 'p'],
|
||
|
'b': ['constb', 'p'],
|
||
|
'B2': ['const2', 'x2'],
|
||
|
'B21': [],
|
||
|
'c': ['constc', 'p', 'time'],
|
||
|
'd': ['constd', 'p', 'time'],
|
||
|
'B22': ['x22'],
|
||
|
'e': ['conste', 'p', 'hince'],
|
||
|
'f': ['constf', 'p', 'hincf'],
|
||
|
'g': [ 'p', 'hincg'],
|
||
|
'B3': [],
|
||
|
'h': ['consth', 'p', 'h'],
|
||
|
'top': []}
|
||
|
|
||
|
|
||
|
datadict2 = dict([i for i in zip('abcdefgh',lrange(8))])
|
||
|
datadict2.update({'top':1000, 'B1':100, 'B2':200, 'B21':21,'B22':22, 'B3':300})
|
||
|
'''
|
||
|
>>> pprint(datadict2)
|
||
|
{'B1': 100,
|
||
|
'B2': 200,
|
||
|
'B21': 21,
|
||
|
'B22': 22,
|
||
|
'B3': 300,
|
||
|
'a': 0.5,
|
||
|
'b': 1,
|
||
|
'c': 2,
|
||
|
'd': 3,
|
||
|
'e': 4,
|
||
|
'f': 5,
|
||
|
'g': 6,
|
||
|
'h': 7,
|
||
|
'top': 1000}
|
||
|
'''
|
||
|
|
||
|
|
||
|
modru2 = RU2NMNL(endog, datadict2, tree2, paramsind2)
|
||
|
modru2.recursionparams[-3] = 2
|
||
|
modru2.recursionparams[3] = 1
|
||
|
print('\n\nExample 2')
|
||
|
print('---------\n')
|
||
|
print(modru2.calc_prob(modru2.tree))
|
||
|
print('Tree')
|
||
|
pprint(modru2.tree)
|
||
|
print('\nmodru.probs')
|
||
|
pprint(modru2.probs)
|
||
|
|
||
|
|
||
|
print('sum of probs', sum(list(modru2.probs.values())))
|
||
|
print('branchvalues')
|
||
|
print(modru2.branchvalues)
|
||
|
print(modru.branchvalues)
|
||
|
|
||
|
print('branch probabilities')
|
||
|
print(modru.bprobs)
|
||
|
|
||
|
print('degenerate branches')
|
||
|
print(modru.branches_degenerate)
|
||
|
|
||
|
'''
|
||
|
>>> modru.bprobs
|
||
|
{'Fly': [], 'top': [0.0016714179077931082, 0.99832858209220687], 'Ground': []}
|
||
|
>>> modru2.bprobs
|
||
|
{'top': [0.25000000000000006, 0.62499999999999989, 0.12500000000000003], 'B22': [], 'B21': [], 'B1': [], 'B2': [0.40000000000000008, 0.59999999999999998], 'B3': []}
|
||
|
'''
|
||
|
|
||
|
params1 = np.array([ 0., 1., 0., 0., 0., 0., 1., 1., 2.])
|
||
|
print(modru.get_probs(params1))
|
||
|
params2 = np.array([ 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
|
||
|
0., 0., 0., 0., 0., 1., 1., 1., 2., 1., 1.])
|
||
|
print(modru2.get_probs(params2)) #raises IndexError
|