50 lines
1.5 KiB
Python
50 lines
1.5 KiB
Python
|
'''Collection of alternative implementations for time series analysis
|
||
|
|
||
|
|
||
|
>>> signal.fftconvolve(x,x[::-1])[len(x)-1:len(x)+10]/x.shape[0]
|
||
|
array([ 2.12286549e+00, 1.27450889e+00, 7.86898619e-02,
|
||
|
-5.80017553e-01, -5.74814915e-01, -2.28006995e-01,
|
||
|
9.39554926e-02, 2.00610244e-01, 1.32239575e-01,
|
||
|
1.24504352e-03, -8.81846018e-02])
|
||
|
>>> sm.tsa.stattools.acovf(X, fft=True)[:order+1]
|
||
|
array([ 2.12286549e+00, 1.27450889e+00, 7.86898619e-02,
|
||
|
-5.80017553e-01, -5.74814915e-01, -2.28006995e-01,
|
||
|
9.39554926e-02, 2.00610244e-01, 1.32239575e-01,
|
||
|
1.24504352e-03, -8.81846018e-02])
|
||
|
|
||
|
>>> import nitime.utils as ut
|
||
|
>>> ut.autocov(s)[:order+1]
|
||
|
array([ 2.12286549e+00, 1.27450889e+00, 7.86898619e-02,
|
||
|
-5.80017553e-01, -5.74814915e-01, -2.28006995e-01,
|
||
|
9.39554926e-02, 2.00610244e-01, 1.32239575e-01,
|
||
|
1.24504352e-03, -8.81846018e-02])
|
||
|
'''
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def acovf_fft(x, demean=True):
|
||
|
'''autocovariance function with call to fftconvolve, biased
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
timeseries, signal
|
||
|
demean : bool
|
||
|
If true, then demean time series
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
acovf : ndarray
|
||
|
autocovariance for data, same length as x
|
||
|
|
||
|
might work for nd in parallel with time along axis 0
|
||
|
|
||
|
'''
|
||
|
from scipy import signal
|
||
|
x = np.asarray(x)
|
||
|
|
||
|
if demean:
|
||
|
x = x - x.mean()
|
||
|
|
||
|
signal.fftconvolve(x,x[::-1])[len(x)-1:len(x)+10]/x.shape[0]
|