AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/multivariate/multivariate_ols.py

591 lines
20 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
"""General linear model
author: Yichuan Liu
"""
import numpy as np
from numpy.linalg import eigvals, inv, solve, matrix_rank, pinv, svd
from scipy import stats
import pandas as pd
from patsy import DesignInfo
from statsmodels.compat.pandas import Substitution
from statsmodels.base.model import Model
from statsmodels.iolib import summary2
__docformat__ = 'restructuredtext en'
_hypotheses_doc = \
"""hypotheses : list[tuple]
Hypothesis `L*B*M = C` to be tested where B is the parameters in
regression Y = X*B. Each element is a tuple of length 2, 3, or 4:
* (name, contrast_L)
* (name, contrast_L, transform_M)
* (name, contrast_L, transform_M, constant_C)
containing a string `name`, the contrast matrix L, the transform
matrix M (for transforming dependent variables), and right-hand side
constant matrix constant_C, respectively.
contrast_L : 2D array or an array of strings
Left-hand side contrast matrix for hypotheses testing.
If 2D array, each row is an hypotheses and each column is an
independent variable. At least 1 row
(1 by k_exog, the number of independent variables) is required.
If an array of strings, it will be passed to
patsy.DesignInfo().linear_constraint.
transform_M : 2D array or an array of strings or None, optional
Left hand side transform matrix.
If `None` or left out, it is set to a k_endog by k_endog
identity matrix (i.e. do not transform y matrix).
If an array of strings, it will be passed to
patsy.DesignInfo().linear_constraint.
constant_C : 2D array or None, optional
Right-hand side constant matrix.
if `None` or left out it is set to a matrix of zeros
Must has the same number of rows as contrast_L and the same
number of columns as transform_M
If `hypotheses` is None: 1) the effect of each independent variable
on the dependent variables will be tested. Or 2) if model is created
using a formula, `hypotheses` will be created according to
`design_info`. 1) and 2) is equivalent if no additional variables
are created by the formula (e.g. dummy variables for categorical
variables and interaction terms)
"""
def _multivariate_ols_fit(endog, exog, method='svd', tolerance=1e-8):
"""
Solve multivariate linear model y = x * params
where y is dependent variables, x is independent variables
Parameters
----------
endog : array_like
each column is a dependent variable
exog : array_like
each column is a independent variable
method : str
'svd' - Singular value decomposition
'pinv' - Moore-Penrose pseudoinverse
tolerance : float, a small positive number
Tolerance for eigenvalue. Values smaller than tolerance is considered
zero.
Returns
-------
a tuple of matrices or values necessary for hypotheses testing
.. [*] https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introreg_sect012.htm
Notes
-----
Status: experimental and incomplete
"""
y = endog
x = exog
nobs, k_endog = y.shape
nobs1, k_exog= x.shape
if nobs != nobs1:
raise ValueError('x(n=%d) and y(n=%d) should have the same number of '
'rows!' % (nobs1, nobs))
# Calculate the matrices necessary for hypotheses testing
df_resid = nobs - k_exog
if method == 'pinv':
# Regression coefficients matrix
pinv_x = pinv(x)
params = pinv_x.dot(y)
# inverse of x'x
inv_cov = pinv_x.dot(pinv_x.T)
if matrix_rank(inv_cov,tol=tolerance) < k_exog:
raise ValueError('Covariance of x singular!')
# Sums of squares and cross-products of residuals
# Y'Y - (X * params)'B * params
t = x.dot(params)
sscpr = np.subtract(y.T.dot(y), t.T.dot(t))
return (params, df_resid, inv_cov, sscpr)
elif method == 'svd':
u, s, v = svd(x, 0)
if (s > tolerance).sum() < len(s):
raise ValueError('Covariance of x singular!')
invs = 1. / s
params = v.T.dot(np.diag(invs)).dot(u.T).dot(y)
inv_cov = v.T.dot(np.diag(np.power(invs, 2))).dot(v)
t = np.diag(s).dot(v).dot(params)
sscpr = np.subtract(y.T.dot(y), t.T.dot(t))
return (params, df_resid, inv_cov, sscpr)
else:
raise ValueError('%s is not a supported method!' % method)
def multivariate_stats(eigenvals,
r_err_sscp,
r_contrast, df_resid, tolerance=1e-8):
"""
For multivariate linear model Y = X * B
Testing hypotheses
L*B*M = 0
where L is contrast matrix, B is the parameters of the
multivariate linear model and M is dependent variable transform matrix.
T = L*inv(X'X)*L'
H = M'B'L'*inv(T)*LBM
E = M'(Y'Y - B'X'XB)M
Parameters
----------
eigenvals : ndarray
The eigenvalues of inv(E + H)*H
r_err_sscp : int
Rank of E + H
r_contrast : int
Rank of T matrix
df_resid : int
Residual degree of freedom (n_samples minus n_variables of X)
tolerance : float
smaller than which eigenvalue is considered 0
Returns
-------
A DataFrame
References
----------
.. [*] https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introreg_sect012.htm
"""
v = df_resid
p = r_err_sscp
q = r_contrast
s = np.min([p, q])
ind = eigenvals > tolerance
n_e = ind.sum()
eigv2 = eigenvals[ind]
eigv1 = np.array([i / (1 - i) for i in eigv2])
m = (np.abs(p - q) - 1) / 2
n = (v - p - 1) / 2
cols = ['Value', 'Num DF', 'Den DF', 'F Value', 'Pr > F']
index = ["Wilks' lambda", "Pillai's trace",
"Hotelling-Lawley trace", "Roy's greatest root"]
results = pd.DataFrame(columns=cols,
index=index)
def fn(x):
return np.real([x])[0]
results.loc["Wilks' lambda", 'Value'] = fn(np.prod(1 - eigv2))
results.loc["Pillai's trace", 'Value'] = fn(eigv2.sum())
results.loc["Hotelling-Lawley trace", 'Value'] = fn(eigv1.sum())
results.loc["Roy's greatest root", 'Value'] = fn(eigv1.max())
r = v - (p - q + 1)/2
u = (p*q - 2) / 4
df1 = p * q
if p*p + q*q - 5 > 0:
t = np.sqrt((p*p*q*q - 4) / (p*p + q*q - 5))
else:
t = 1
df2 = r*t - 2*u
lmd = results.loc["Wilks' lambda", 'Value']
lmd = np.power(lmd, 1 / t)
F = (1 - lmd) / lmd * df2 / df1
results.loc["Wilks' lambda", 'Num DF'] = df1
results.loc["Wilks' lambda", 'Den DF'] = df2
results.loc["Wilks' lambda", 'F Value'] = F
pval = stats.f.sf(F, df1, df2)
results.loc["Wilks' lambda", 'Pr > F'] = pval
V = results.loc["Pillai's trace", 'Value']
df1 = s * (2*m + s + 1)
df2 = s * (2*n + s + 1)
F = df2 / df1 * V / (s - V)
results.loc["Pillai's trace", 'Num DF'] = df1
results.loc["Pillai's trace", 'Den DF'] = df2
results.loc["Pillai's trace", 'F Value'] = F
pval = stats.f.sf(F, df1, df2)
results.loc["Pillai's trace", 'Pr > F'] = pval
U = results.loc["Hotelling-Lawley trace", 'Value']
if n > 0:
b = (p + 2*n) * (q + 2*n) / 2 / (2*n + 1) / (n - 1)
df1 = p * q
df2 = 4 + (p*q + 2) / (b - 1)
c = (df2 - 2) / 2 / n
F = df2 / df1 * U / c
else:
df1 = s * (2*m + s + 1)
df2 = s * (s*n + 1)
F = df2 / df1 / s * U
results.loc["Hotelling-Lawley trace", 'Num DF'] = df1
results.loc["Hotelling-Lawley trace", 'Den DF'] = df2
results.loc["Hotelling-Lawley trace", 'F Value'] = F
pval = stats.f.sf(F, df1, df2)
results.loc["Hotelling-Lawley trace", 'Pr > F'] = pval
sigma = results.loc["Roy's greatest root", 'Value']
r = np.max([p, q])
df1 = r
df2 = v - r + q
F = df2 / df1 * sigma
results.loc["Roy's greatest root", 'Num DF'] = df1
results.loc["Roy's greatest root", 'Den DF'] = df2
results.loc["Roy's greatest root", 'F Value'] = F
pval = stats.f.sf(F, df1, df2)
results.loc["Roy's greatest root", 'Pr > F'] = pval
return results
def _multivariate_ols_test(hypotheses, fit_results, exog_names,
endog_names):
def fn(L, M, C):
# .. [1] https://support.sas.com/documentation/cdl/en/statug/63033
# /HTML/default/viewer.htm#statug_introreg_sect012.htm
params, df_resid, inv_cov, sscpr = fit_results
# t1 = (L * params)M
t1 = L.dot(params).dot(M) - C
# H = t1'L(X'X)^L't1
t2 = L.dot(inv_cov).dot(L.T)
q = matrix_rank(t2)
H = t1.T.dot(inv(t2)).dot(t1)
# E = M'(Y'Y - B'(X'X)B)M
E = M.T.dot(sscpr).dot(M)
return E, H, q, df_resid
return _multivariate_test(hypotheses, exog_names, endog_names, fn)
@Substitution(hypotheses_doc=_hypotheses_doc)
def _multivariate_test(hypotheses, exog_names, endog_names, fn):
"""
Multivariate linear model hypotheses testing
For y = x * params, where y are the dependent variables and x are the
independent variables, testing L * params * M = 0 where L is the contrast
matrix for hypotheses testing and M is the transformation matrix for
transforming the dependent variables in y.
Algorithm:
T = L*inv(X'X)*L'
H = M'B'L'*inv(T)*LBM
E = M'(Y'Y - B'X'XB)M
where H and E correspond to the numerator and denominator of a univariate
F-test. Then find the eigenvalues of inv(H + E)*H from which the
multivariate test statistics are calculated.
.. [*] https://support.sas.com/documentation/cdl/en/statug/63033/HTML
/default/viewer.htm#statug_introreg_sect012.htm
Parameters
----------
%(hypotheses_doc)s
k_xvar : int
The number of independent variables
k_yvar : int
The number of dependent variables
fn : function
a function fn(contrast_L, transform_M) that returns E, H, q, df_resid
where q is the rank of T matrix
Returns
-------
results : MANOVAResults
"""
k_xvar = len(exog_names)
k_yvar = len(endog_names)
results = {}
for hypo in hypotheses:
if len(hypo) ==2:
name, L = hypo
M = None
C = None
elif len(hypo) == 3:
name, L, M = hypo
C = None
elif len(hypo) == 4:
name, L, M, C = hypo
else:
raise ValueError('hypotheses must be a tuple of length 2, 3 or 4.'
' len(hypotheses)=%d' % len(hypo))
if any(isinstance(j, str) for j in L):
L = DesignInfo(exog_names).linear_constraint(L).coefs
else:
if not isinstance(L, np.ndarray) or len(L.shape) != 2:
raise ValueError('Contrast matrix L must be a 2-d array!')
if L.shape[1] != k_xvar:
raise ValueError('Contrast matrix L should have the same '
'number of columns as exog! %d != %d' %
(L.shape[1], k_xvar))
if M is None:
M = np.eye(k_yvar)
elif any(isinstance(j, str) for j in M):
M = DesignInfo(endog_names).linear_constraint(M).coefs.T
else:
if M is not None:
if not isinstance(M, np.ndarray) or len(M.shape) != 2:
raise ValueError('Transform matrix M must be a 2-d array!')
if M.shape[0] != k_yvar:
raise ValueError('Transform matrix M should have the same '
'number of rows as the number of columns '
'of endog! %d != %d' %
(M.shape[0], k_yvar))
if C is None:
C = np.zeros([L.shape[0], M.shape[1]])
elif not isinstance(C, np.ndarray):
raise ValueError('Constant matrix C must be a 2-d array!')
if C.shape[0] != L.shape[0]:
raise ValueError('contrast L and constant C must have the same '
'number of rows! %d!=%d'
% (L.shape[0], C.shape[0]))
if C.shape[1] != M.shape[1]:
raise ValueError('transform M and constant C must have the same '
'number of columns! %d!=%d'
% (M.shape[1], C.shape[1]))
E, H, q, df_resid = fn(L, M, C)
EH = np.add(E, H)
p = matrix_rank(EH)
# eigenvalues of inv(E + H)H
eigv2 = np.sort(eigvals(solve(EH, H)))
stat_table = multivariate_stats(eigv2, p, q, df_resid)
results[name] = {'stat': stat_table, 'contrast_L': L,
'transform_M': M, 'constant_C': C,
'E': E, 'H': H}
return results
class _MultivariateOLS(Model):
"""
Multivariate linear model via least squares
Parameters
----------
endog : array_like
Dependent variables. A nobs x k_endog array where nobs is
the number of observations and k_endog is the number of dependent
variables
exog : array_like
Independent variables. A nobs x k_exog array where nobs is the
number of observations and k_exog is the number of independent
variables. An intercept is not included by default and should be added
by the user (models specified using a formula include an intercept by
default)
Attributes
----------
endog : ndarray
See Parameters.
exog : ndarray
See Parameters.
"""
_formula_max_endog = None
def __init__(self, endog, exog, missing='none', hasconst=None, **kwargs):
if len(endog.shape) == 1 or endog.shape[1] == 1:
raise ValueError('There must be more than one dependent variable'
' to fit multivariate OLS!')
super().__init__(endog, exog, missing=missing,
hasconst=hasconst, **kwargs)
def fit(self, method='svd'):
self._fittedmod = _multivariate_ols_fit(
self.endog, self.exog, method=method)
return _MultivariateOLSResults(self)
class _MultivariateOLSResults:
"""
_MultivariateOLS results class
"""
def __init__(self, fitted_mv_ols):
if (hasattr(fitted_mv_ols, 'data') and
hasattr(fitted_mv_ols.data, 'design_info')):
self.design_info = fitted_mv_ols.data.design_info
else:
self.design_info = None
self.exog_names = fitted_mv_ols.exog_names
self.endog_names = fitted_mv_ols.endog_names
self._fittedmod = fitted_mv_ols._fittedmod
def __str__(self):
return self.summary().__str__()
@Substitution(hypotheses_doc=_hypotheses_doc)
def mv_test(self, hypotheses=None, skip_intercept_test=False):
"""
Linear hypotheses testing
Parameters
----------
%(hypotheses_doc)s
skip_intercept_test : bool
If true, then testing the intercept is skipped, the model is not
changed.
Note: If a term has a numerically insignificant effect, then
an exception because of emtpy arrays may be raised. This can
happen for the intercept if the data has been demeaned.
Returns
-------
results: _MultivariateOLSResults
Notes
-----
Tests hypotheses of the form
L * params * M = C
where `params` is the regression coefficient matrix for the
linear model y = x * params, `L` is the contrast matrix, `M` is the
dependent variable transform matrix and C is the constant matrix.
"""
k_xvar = len(self.exog_names)
if hypotheses is None:
if self.design_info is not None:
terms = self.design_info.term_name_slices
hypotheses = []
for key in terms:
if skip_intercept_test and key == 'Intercept':
continue
L_contrast = np.eye(k_xvar)[terms[key], :]
hypotheses.append([key, L_contrast, None])
else:
hypotheses = []
for i in range(k_xvar):
name = 'x%d' % (i)
L = np.zeros([1, k_xvar])
L[i] = 1
hypotheses.append([name, L, None])
results = _multivariate_ols_test(hypotheses, self._fittedmod,
self.exog_names, self.endog_names)
return MultivariateTestResults(results,
self.endog_names,
self.exog_names)
def summary(self):
raise NotImplementedError
class MultivariateTestResults:
"""
Multivariate test results class
Returned by `mv_test` method of `_MultivariateOLSResults` class
Parameters
----------
results : dict[str, dict]
Dictionary containing test results. See the description
below for the expected format.
endog_names : sequence[str]
A list or other sequence of endogenous variables names
exog_names : sequence[str]
A list of other sequence of exogenous variables names
Attributes
----------
results : dict
Each hypothesis is contained in a single`key`. Each test must
have the following keys:
* 'stat' - contains the multivariate test results
* 'contrast_L' - contains the contrast_L matrix
* 'transform_M' - contains the transform_M matrix
* 'constant_C' - contains the constant_C matrix
* 'H' - contains an intermediate Hypothesis matrix,
or the between groups sums of squares and cross-products matrix,
corresponding to the numerator of the univariate F test.
* 'E' - contains an intermediate Error matrix,
corresponding to the denominator of the univariate F test.
The Hypotheses and Error matrices can be used to calculate
the same test statistics in 'stat', as well as to calculate
the discriminant function (canonical correlates) from the
eigenvectors of inv(E)H.
endog_names : list[str]
The endogenous names
exog_names : list[str]
The exogenous names
summary_frame : DataFrame
Returns results as a MultiIndex DataFrame
"""
def __init__(self, results, endog_names, exog_names):
self.results = results
self.endog_names = list(endog_names)
self.exog_names = list(exog_names)
def __str__(self):
return self.summary().__str__()
def __getitem__(self, item):
return self.results[item]
@property
def summary_frame(self):
"""
Return results as a multiindex dataframe
"""
df = []
for key in self.results:
tmp = self.results[key]['stat'].copy()
tmp.loc[:, 'Effect'] = key
df.append(tmp.reset_index())
df = pd.concat(df, axis=0)
df = df.set_index(['Effect', 'index'])
df.index.set_names(['Effect', 'Statistic'], inplace=True)
return df
def summary(self, show_contrast_L=False, show_transform_M=False,
show_constant_C=False):
"""
Summary of test results
Parameters
----------
show_contrast_L : bool
Whether to show contrast_L matrix
show_transform_M : bool
Whether to show transform_M matrix
show_constant_C : bool
Whether to show the constant_C
"""
summ = summary2.Summary()
summ.add_title('Multivariate linear model')
for key in self.results:
summ.add_dict({'': ''})
df = self.results[key]['stat'].copy()
df = df.reset_index()
c = list(df.columns)
c[0] = key
df.columns = c
df.index = ['', '', '', '']
summ.add_df(df)
if show_contrast_L:
summ.add_dict({key: ' contrast L='})
df = pd.DataFrame(self.results[key]['contrast_L'],
columns=self.exog_names)
summ.add_df(df)
if show_transform_M:
summ.add_dict({key: ' transform M='})
df = pd.DataFrame(self.results[key]['transform_M'],
index=self.endog_names)
summ.add_df(df)
if show_constant_C:
summ.add_dict({key: ' constant C='})
df = pd.DataFrame(self.results[key]['constant_C'])
summ.add_df(df)
return summ