AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/graphics/tests/test_regressionplots.py

390 lines
12 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
import numpy as np
from numpy.testing import assert_array_less, assert_equal, assert_raises
from pandas import DataFrame, Series
import pytest
import statsmodels.api as sm
from statsmodels.graphics.regressionplots import (
abline_plot,
add_lowess,
influence_plot,
plot_added_variable,
plot_ccpr,
plot_ccpr_grid,
plot_ceres_residuals,
plot_fit,
plot_leverage_resid2,
plot_partial_residuals,
plot_partregress_grid,
plot_regress_exog,
)
try:
import matplotlib.pyplot as plt
except ImportError:
pass
pdf_output = False
if pdf_output:
from matplotlib.backends.backend_pdf import PdfPages
pdf = PdfPages("test_regressionplots.pdf")
else:
pdf = None
def close_or_save(pdf, fig):
if pdf_output:
pdf.savefig(fig)
class TestPlot:
@classmethod
def setup_class(cls):
nsample = 100
sig = 0.5
x1 = np.linspace(0, 20, nsample)
x2 = 5 + 3 * np.random.randn(nsample)
x = np.c_[x1, x2, np.sin(0.5 * x1), (x2 - 5) ** 2, np.ones(nsample)]
beta = [0.5, 0.5, 1, -0.04, 5.]
y_true = np.dot(x, beta)
y = y_true + sig * np.random.normal(size=nsample)
exog0 = sm.add_constant(np.c_[x1, x2], prepend=False)
cls.res = sm.OLS(y, exog0).fit()
cls.res_true = sm.OLS(y, x).fit()
@pytest.mark.matplotlib
def test_plot_fit(self, close_figures):
res = self.res
fig = plot_fit(res, 0, y_true=None)
x0 = res.model.exog[:, 0]
yf = res.fittedvalues
y = res.model.endog
px1, px2 = fig.axes[0].get_lines()[0].get_data()
np.testing.assert_equal(x0, px1)
np.testing.assert_equal(y, px2)
px1, px2 = fig.axes[0].get_lines()[1].get_data()
np.testing.assert_equal(x0, px1)
np.testing.assert_equal(yf, px2)
close_or_save(pdf, fig)
@pytest.mark.matplotlib
def test_plot_oth(self, close_figures):
# just test that they run
res = self.res
plot_fit(res, 0, y_true=None)
plot_partregress_grid(res, exog_idx=[0, 1])
# GH 5873
plot_partregress_grid(self.res_true, grid=(2, 3))
plot_regress_exog(res, exog_idx=0)
plot_ccpr(res, exog_idx=0)
plot_ccpr_grid(res, exog_idx=[0])
fig = plot_ccpr_grid(res, exog_idx=[0,1])
for ax in fig.axes:
add_lowess(ax)
close_or_save(pdf, fig)
@pytest.mark.matplotlib
def test_plot_influence(self, close_figures):
infl = self.res.get_influence()
fig = influence_plot(self.res)
assert_equal(isinstance(fig, plt.Figure), True)
# test that we have the correct criterion for sizes #3103
try:
sizes = fig.axes[0].get_children()[0]._sizes
ex = sm.add_constant(infl.cooks_distance[0])
ssr = sm.OLS(sizes, ex).fit().ssr
assert_array_less(ssr, 1e-12)
except AttributeError:
import warnings
warnings.warn('test not compatible with matplotlib version')
fig = influence_plot(self.res, criterion='DFFITS')
assert_equal(isinstance(fig, plt.Figure), True)
try:
sizes = fig.axes[0].get_children()[0]._sizes
ex = sm.add_constant(np.abs(infl.dffits[0]))
ssr = sm.OLS(sizes, ex).fit().ssr
assert_array_less(ssr, 1e-12)
except AttributeError:
pass
assert_raises(ValueError, influence_plot, self.res, criterion='unknown')
@pytest.mark.matplotlib
def test_plot_leverage_resid2(self, close_figures):
fig = plot_leverage_resid2(self.res)
assert_equal(isinstance(fig, plt.Figure), True)
class TestPlotPandas(TestPlot):
def setup_method(self):
nsample = 100
sig = 0.5
x1 = np.linspace(0, 20, nsample)
x2 = 5 + 3* np.random.randn(nsample)
X = np.c_[x1, x2, np.sin(0.5*x1), (x2-5)**2, np.ones(nsample)]
beta = [0.5, 0.5, 1, -0.04, 5.]
y_true = np.dot(X, beta)
y = y_true + sig * np.random.normal(size=nsample)
exog0 = sm.add_constant(np.c_[x1, x2], prepend=False)
exog0 = DataFrame(exog0, columns=["const", "var1", "var2"])
y = Series(y, name="outcome")
res = sm.OLS(y, exog0).fit()
self.res = res
data = DataFrame(exog0, columns=["const", "var1", "var2"])
data['y'] = y
self.data = data
class TestPlotFormula(TestPlotPandas):
@pytest.mark.matplotlib
def test_one_column_exog(self, close_figures):
from statsmodels.formula.api import ols
res = ols("y~var1-1", data=self.data).fit()
plot_regress_exog(res, "var1")
res = ols("y~var1", data=self.data).fit()
plot_regress_exog(res, "var1")
class TestABLine:
@classmethod
def setup_class(cls):
np.random.seed(12345)
X = sm.add_constant(np.random.normal(0, 20, size=30))
y = np.dot(X, [25, 3.5]) + np.random.normal(0, 30, size=30)
mod = sm.OLS(y,X).fit()
cls.X = X
cls.y = y
cls.mod = mod
@pytest.mark.matplotlib
def test_abline_model(self, close_figures):
fig = abline_plot(model_results=self.mod)
ax = fig.axes[0]
ax.scatter(self.X[:,1], self.y)
close_or_save(pdf, fig)
@pytest.mark.matplotlib
def test_abline_model_ax(self, close_figures):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(self.X[:,1], self.y)
fig = abline_plot(model_results=self.mod, ax=ax)
close_or_save(pdf, fig)
@pytest.mark.matplotlib
def test_abline_ab(self, close_figures):
mod = self.mod
intercept, slope = mod.params
fig = abline_plot(intercept=intercept, slope=slope)
close_or_save(pdf, fig)
@pytest.mark.matplotlib
def test_abline_ab_ax(self, close_figures):
mod = self.mod
intercept, slope = mod.params
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(self.X[:,1], self.y)
fig = abline_plot(intercept=intercept, slope=slope, ax=ax)
close_or_save(pdf, fig)
@pytest.mark.matplotlib
def test_abline_remove(self, close_figures):
mod = self.mod
intercept, slope = mod.params
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(self.X[:,1], self.y)
abline_plot(intercept=intercept, slope=slope, ax=ax)
abline_plot(intercept=intercept, slope=2*slope, ax=ax)
lines = ax.get_lines()
lines.pop(0).remove()
close_or_save(pdf, fig)
class TestABLinePandas(TestABLine):
@classmethod
def setup_class(cls):
np.random.seed(12345)
X = sm.add_constant(np.random.normal(0, 20, size=30))
y = np.dot(X, [25, 3.5]) + np.random.normal(0, 30, size=30)
cls.X = X
cls.y = y
X = DataFrame(X, columns=["const", "someX"])
y = Series(y, name="outcome")
mod = sm.OLS(y,X).fit()
cls.mod = mod
class TestAddedVariablePlot:
@pytest.mark.matplotlib
def test_added_variable_ols(self, close_figures):
np.random.seed(3446)
n = 100
p = 3
exog = np.random.normal(size=(n, p))
lin_pred = 4 + exog[:, 0] + 0.2 * exog[:, 1]**2
endog = lin_pred + np.random.normal(size=n)
model = sm.OLS(endog, exog)
results = model.fit()
fig = plot_added_variable(results, 0)
ax = fig.get_axes()[0]
ax.set_title("Added variable plot (OLS)")
close_or_save(pdf, fig)
close_figures()
@pytest.mark.matplotlib
def test_added_variable_poisson(self, close_figures):
np.random.seed(3446)
n = 100
p = 3
exog = np.random.normal(size=(n, p))
lin_pred = 4 + exog[:, 0] + 0.2 * exog[:, 1]**2
expval = np.exp(lin_pred)
endog = np.random.poisson(expval)
model = sm.GLM(endog, exog, family=sm.families.Poisson())
results = model.fit()
for focus_col in 0, 1, 2:
for use_glm_weights in False, True:
for resid_type in "resid_deviance", "resid_response":
weight_str = ["Unweighted", "Weighted"][use_glm_weights]
# Run directly and called as a results method.
for j in 0, 1:
if j == 0:
fig = plot_added_variable(results, focus_col,
use_glm_weights=use_glm_weights,
resid_type=resid_type)
ti = "Added variable plot"
else:
fig = results.plot_added_variable(focus_col,
use_glm_weights=use_glm_weights,
resid_type=resid_type)
ti = "Added variable plot (called as method)"
ax = fig.get_axes()[0]
add_lowess(ax)
ax.set_position([0.1, 0.1, 0.8, 0.7])
effect_str = ["Linear effect, slope=1",
"Quadratic effect", "No effect"][focus_col]
ti += "\nPoisson regression\n"
ti += effect_str + "\n"
ti += weight_str + "\n"
ti += "Using '%s' residuals" % resid_type
ax.set_title(ti)
close_or_save(pdf, fig)
close_figures()
class TestPartialResidualPlot:
@pytest.mark.matplotlib
def test_partial_residual_poisson(self, close_figures):
np.random.seed(3446)
n = 100
p = 3
exog = np.random.normal(size=(n, p))
exog[:, 0] = 1
lin_pred = 4 + exog[:, 1] + 0.2*exog[:, 2]**2
expval = np.exp(lin_pred)
endog = np.random.poisson(expval)
model = sm.GLM(endog, exog, family=sm.families.Poisson())
results = model.fit()
for focus_col in 1, 2:
for j in 0,1:
if j == 0:
fig = plot_partial_residuals(results, focus_col)
else:
fig = results.plot_partial_residuals(focus_col)
ax = fig.get_axes()[0]
add_lowess(ax)
ax.set_position([0.1, 0.1, 0.8, 0.77])
effect_str = ["Intercept", "Linear effect, slope=1",
"Quadratic effect"][focus_col]
ti = "Partial residual plot"
if j == 1:
ti += " (called as method)"
ax.set_title(ti + "\nPoisson regression\n" +
effect_str)
close_or_save(pdf, fig)
class TestCERESPlot:
@pytest.mark.matplotlib
def test_ceres_poisson(self, close_figures):
np.random.seed(3446)
n = 100
p = 3
exog = np.random.normal(size=(n, p))
exog[:, 0] = 1
lin_pred = 4 + exog[:, 1] + 0.2*exog[:, 2]**2
expval = np.exp(lin_pred)
endog = np.random.poisson(expval)
model = sm.GLM(endog, exog, family=sm.families.Poisson())
results = model.fit()
for focus_col in 1, 2:
for j in 0, 1:
if j == 0:
fig = plot_ceres_residuals(results, focus_col)
else:
fig = results.plot_ceres_residuals(focus_col)
ax = fig.get_axes()[0]
add_lowess(ax)
ax.set_position([0.1, 0.1, 0.8, 0.77])
effect_str = ["Intercept", "Linear effect, slope=1",
"Quadratic effect"][focus_col]
ti = "CERES plot"
if j == 1:
ti += " (called as method)"
ax.set_title(ti + "\nPoisson regression\n" +
effect_str)
close_or_save(pdf, fig)
@pytest.mark.matplotlib
def test_partregress_formula_env():
# test that user function in formulas work, see #7672
@np.vectorize
def lg(x):
return np.log10(x) if x > 0 else 0
df = DataFrame(
dict(
a=np.random.random(size=10),
b=np.random.random(size=10),
c=np.random.random(size=10),
)
)
sm.graphics.plot_partregress(
"a", "lg(b)", ["c"], obs_labels=False, data=df, eval_env=1)
sm.graphics.plot_partregress(
"a", "lg(b)", ["c"], obs_labels=False, data=df)