390 lines
12 KiB
Python
390 lines
12 KiB
Python
|
import numpy as np
|
||
|
from numpy.testing import assert_array_less, assert_equal, assert_raises
|
||
|
from pandas import DataFrame, Series
|
||
|
import pytest
|
||
|
|
||
|
import statsmodels.api as sm
|
||
|
from statsmodels.graphics.regressionplots import (
|
||
|
abline_plot,
|
||
|
add_lowess,
|
||
|
influence_plot,
|
||
|
plot_added_variable,
|
||
|
plot_ccpr,
|
||
|
plot_ccpr_grid,
|
||
|
plot_ceres_residuals,
|
||
|
plot_fit,
|
||
|
plot_leverage_resid2,
|
||
|
plot_partial_residuals,
|
||
|
plot_partregress_grid,
|
||
|
plot_regress_exog,
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
import matplotlib.pyplot as plt
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
pdf_output = False
|
||
|
|
||
|
if pdf_output:
|
||
|
from matplotlib.backends.backend_pdf import PdfPages
|
||
|
pdf = PdfPages("test_regressionplots.pdf")
|
||
|
else:
|
||
|
pdf = None
|
||
|
|
||
|
|
||
|
def close_or_save(pdf, fig):
|
||
|
if pdf_output:
|
||
|
pdf.savefig(fig)
|
||
|
|
||
|
|
||
|
class TestPlot:
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
nsample = 100
|
||
|
sig = 0.5
|
||
|
x1 = np.linspace(0, 20, nsample)
|
||
|
x2 = 5 + 3 * np.random.randn(nsample)
|
||
|
x = np.c_[x1, x2, np.sin(0.5 * x1), (x2 - 5) ** 2, np.ones(nsample)]
|
||
|
beta = [0.5, 0.5, 1, -0.04, 5.]
|
||
|
y_true = np.dot(x, beta)
|
||
|
y = y_true + sig * np.random.normal(size=nsample)
|
||
|
exog0 = sm.add_constant(np.c_[x1, x2], prepend=False)
|
||
|
|
||
|
cls.res = sm.OLS(y, exog0).fit()
|
||
|
cls.res_true = sm.OLS(y, x).fit()
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_fit(self, close_figures):
|
||
|
res = self.res
|
||
|
|
||
|
fig = plot_fit(res, 0, y_true=None)
|
||
|
|
||
|
x0 = res.model.exog[:, 0]
|
||
|
yf = res.fittedvalues
|
||
|
y = res.model.endog
|
||
|
|
||
|
px1, px2 = fig.axes[0].get_lines()[0].get_data()
|
||
|
np.testing.assert_equal(x0, px1)
|
||
|
np.testing.assert_equal(y, px2)
|
||
|
|
||
|
px1, px2 = fig.axes[0].get_lines()[1].get_data()
|
||
|
np.testing.assert_equal(x0, px1)
|
||
|
np.testing.assert_equal(yf, px2)
|
||
|
|
||
|
close_or_save(pdf, fig)
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_oth(self, close_figures):
|
||
|
# just test that they run
|
||
|
res = self.res
|
||
|
plot_fit(res, 0, y_true=None)
|
||
|
plot_partregress_grid(res, exog_idx=[0, 1])
|
||
|
# GH 5873
|
||
|
plot_partregress_grid(self.res_true, grid=(2, 3))
|
||
|
plot_regress_exog(res, exog_idx=0)
|
||
|
plot_ccpr(res, exog_idx=0)
|
||
|
plot_ccpr_grid(res, exog_idx=[0])
|
||
|
fig = plot_ccpr_grid(res, exog_idx=[0,1])
|
||
|
for ax in fig.axes:
|
||
|
add_lowess(ax)
|
||
|
|
||
|
close_or_save(pdf, fig)
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_influence(self, close_figures):
|
||
|
infl = self.res.get_influence()
|
||
|
fig = influence_plot(self.res)
|
||
|
assert_equal(isinstance(fig, plt.Figure), True)
|
||
|
# test that we have the correct criterion for sizes #3103
|
||
|
try:
|
||
|
sizes = fig.axes[0].get_children()[0]._sizes
|
||
|
ex = sm.add_constant(infl.cooks_distance[0])
|
||
|
ssr = sm.OLS(sizes, ex).fit().ssr
|
||
|
assert_array_less(ssr, 1e-12)
|
||
|
except AttributeError:
|
||
|
import warnings
|
||
|
warnings.warn('test not compatible with matplotlib version')
|
||
|
|
||
|
fig = influence_plot(self.res, criterion='DFFITS')
|
||
|
assert_equal(isinstance(fig, plt.Figure), True)
|
||
|
try:
|
||
|
sizes = fig.axes[0].get_children()[0]._sizes
|
||
|
ex = sm.add_constant(np.abs(infl.dffits[0]))
|
||
|
ssr = sm.OLS(sizes, ex).fit().ssr
|
||
|
assert_array_less(ssr, 1e-12)
|
||
|
except AttributeError:
|
||
|
pass
|
||
|
|
||
|
assert_raises(ValueError, influence_plot, self.res, criterion='unknown')
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_leverage_resid2(self, close_figures):
|
||
|
fig = plot_leverage_resid2(self.res)
|
||
|
assert_equal(isinstance(fig, plt.Figure), True)
|
||
|
|
||
|
|
||
|
class TestPlotPandas(TestPlot):
|
||
|
def setup_method(self):
|
||
|
nsample = 100
|
||
|
sig = 0.5
|
||
|
x1 = np.linspace(0, 20, nsample)
|
||
|
x2 = 5 + 3* np.random.randn(nsample)
|
||
|
X = np.c_[x1, x2, np.sin(0.5*x1), (x2-5)**2, np.ones(nsample)]
|
||
|
beta = [0.5, 0.5, 1, -0.04, 5.]
|
||
|
y_true = np.dot(X, beta)
|
||
|
y = y_true + sig * np.random.normal(size=nsample)
|
||
|
exog0 = sm.add_constant(np.c_[x1, x2], prepend=False)
|
||
|
exog0 = DataFrame(exog0, columns=["const", "var1", "var2"])
|
||
|
y = Series(y, name="outcome")
|
||
|
res = sm.OLS(y, exog0).fit()
|
||
|
self.res = res
|
||
|
data = DataFrame(exog0, columns=["const", "var1", "var2"])
|
||
|
data['y'] = y
|
||
|
self.data = data
|
||
|
|
||
|
class TestPlotFormula(TestPlotPandas):
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_one_column_exog(self, close_figures):
|
||
|
from statsmodels.formula.api import ols
|
||
|
res = ols("y~var1-1", data=self.data).fit()
|
||
|
plot_regress_exog(res, "var1")
|
||
|
res = ols("y~var1", data=self.data).fit()
|
||
|
plot_regress_exog(res, "var1")
|
||
|
|
||
|
|
||
|
class TestABLine:
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
np.random.seed(12345)
|
||
|
X = sm.add_constant(np.random.normal(0, 20, size=30))
|
||
|
y = np.dot(X, [25, 3.5]) + np.random.normal(0, 30, size=30)
|
||
|
mod = sm.OLS(y,X).fit()
|
||
|
cls.X = X
|
||
|
cls.y = y
|
||
|
cls.mod = mod
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_abline_model(self, close_figures):
|
||
|
fig = abline_plot(model_results=self.mod)
|
||
|
ax = fig.axes[0]
|
||
|
ax.scatter(self.X[:,1], self.y)
|
||
|
close_or_save(pdf, fig)
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_abline_model_ax(self, close_figures):
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
ax.scatter(self.X[:,1], self.y)
|
||
|
fig = abline_plot(model_results=self.mod, ax=ax)
|
||
|
close_or_save(pdf, fig)
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_abline_ab(self, close_figures):
|
||
|
mod = self.mod
|
||
|
intercept, slope = mod.params
|
||
|
fig = abline_plot(intercept=intercept, slope=slope)
|
||
|
close_or_save(pdf, fig)
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_abline_ab_ax(self, close_figures):
|
||
|
mod = self.mod
|
||
|
intercept, slope = mod.params
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
ax.scatter(self.X[:,1], self.y)
|
||
|
fig = abline_plot(intercept=intercept, slope=slope, ax=ax)
|
||
|
close_or_save(pdf, fig)
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_abline_remove(self, close_figures):
|
||
|
mod = self.mod
|
||
|
intercept, slope = mod.params
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
ax.scatter(self.X[:,1], self.y)
|
||
|
abline_plot(intercept=intercept, slope=slope, ax=ax)
|
||
|
abline_plot(intercept=intercept, slope=2*slope, ax=ax)
|
||
|
lines = ax.get_lines()
|
||
|
lines.pop(0).remove()
|
||
|
close_or_save(pdf, fig)
|
||
|
|
||
|
|
||
|
class TestABLinePandas(TestABLine):
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
np.random.seed(12345)
|
||
|
X = sm.add_constant(np.random.normal(0, 20, size=30))
|
||
|
y = np.dot(X, [25, 3.5]) + np.random.normal(0, 30, size=30)
|
||
|
cls.X = X
|
||
|
cls.y = y
|
||
|
X = DataFrame(X, columns=["const", "someX"])
|
||
|
y = Series(y, name="outcome")
|
||
|
mod = sm.OLS(y,X).fit()
|
||
|
cls.mod = mod
|
||
|
|
||
|
|
||
|
class TestAddedVariablePlot:
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_added_variable_ols(self, close_figures):
|
||
|
np.random.seed(3446)
|
||
|
n = 100
|
||
|
p = 3
|
||
|
exog = np.random.normal(size=(n, p))
|
||
|
lin_pred = 4 + exog[:, 0] + 0.2 * exog[:, 1]**2
|
||
|
endog = lin_pred + np.random.normal(size=n)
|
||
|
|
||
|
model = sm.OLS(endog, exog)
|
||
|
results = model.fit()
|
||
|
fig = plot_added_variable(results, 0)
|
||
|
ax = fig.get_axes()[0]
|
||
|
ax.set_title("Added variable plot (OLS)")
|
||
|
close_or_save(pdf, fig)
|
||
|
close_figures()
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_added_variable_poisson(self, close_figures):
|
||
|
|
||
|
np.random.seed(3446)
|
||
|
|
||
|
n = 100
|
||
|
p = 3
|
||
|
exog = np.random.normal(size=(n, p))
|
||
|
lin_pred = 4 + exog[:, 0] + 0.2 * exog[:, 1]**2
|
||
|
expval = np.exp(lin_pred)
|
||
|
endog = np.random.poisson(expval)
|
||
|
|
||
|
model = sm.GLM(endog, exog, family=sm.families.Poisson())
|
||
|
results = model.fit()
|
||
|
|
||
|
for focus_col in 0, 1, 2:
|
||
|
for use_glm_weights in False, True:
|
||
|
for resid_type in "resid_deviance", "resid_response":
|
||
|
weight_str = ["Unweighted", "Weighted"][use_glm_weights]
|
||
|
|
||
|
# Run directly and called as a results method.
|
||
|
for j in 0, 1:
|
||
|
|
||
|
if j == 0:
|
||
|
fig = plot_added_variable(results, focus_col,
|
||
|
use_glm_weights=use_glm_weights,
|
||
|
resid_type=resid_type)
|
||
|
ti = "Added variable plot"
|
||
|
else:
|
||
|
fig = results.plot_added_variable(focus_col,
|
||
|
use_glm_weights=use_glm_weights,
|
||
|
resid_type=resid_type)
|
||
|
ti = "Added variable plot (called as method)"
|
||
|
ax = fig.get_axes()[0]
|
||
|
|
||
|
add_lowess(ax)
|
||
|
ax.set_position([0.1, 0.1, 0.8, 0.7])
|
||
|
effect_str = ["Linear effect, slope=1",
|
||
|
"Quadratic effect", "No effect"][focus_col]
|
||
|
ti += "\nPoisson regression\n"
|
||
|
ti += effect_str + "\n"
|
||
|
ti += weight_str + "\n"
|
||
|
ti += "Using '%s' residuals" % resid_type
|
||
|
ax.set_title(ti)
|
||
|
close_or_save(pdf, fig)
|
||
|
close_figures()
|
||
|
|
||
|
|
||
|
class TestPartialResidualPlot:
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_partial_residual_poisson(self, close_figures):
|
||
|
|
||
|
np.random.seed(3446)
|
||
|
|
||
|
n = 100
|
||
|
p = 3
|
||
|
exog = np.random.normal(size=(n, p))
|
||
|
exog[:, 0] = 1
|
||
|
lin_pred = 4 + exog[:, 1] + 0.2*exog[:, 2]**2
|
||
|
expval = np.exp(lin_pred)
|
||
|
endog = np.random.poisson(expval)
|
||
|
|
||
|
model = sm.GLM(endog, exog, family=sm.families.Poisson())
|
||
|
results = model.fit()
|
||
|
|
||
|
for focus_col in 1, 2:
|
||
|
for j in 0,1:
|
||
|
if j == 0:
|
||
|
fig = plot_partial_residuals(results, focus_col)
|
||
|
else:
|
||
|
fig = results.plot_partial_residuals(focus_col)
|
||
|
ax = fig.get_axes()[0]
|
||
|
add_lowess(ax)
|
||
|
ax.set_position([0.1, 0.1, 0.8, 0.77])
|
||
|
effect_str = ["Intercept", "Linear effect, slope=1",
|
||
|
"Quadratic effect"][focus_col]
|
||
|
ti = "Partial residual plot"
|
||
|
if j == 1:
|
||
|
ti += " (called as method)"
|
||
|
ax.set_title(ti + "\nPoisson regression\n" +
|
||
|
effect_str)
|
||
|
close_or_save(pdf, fig)
|
||
|
|
||
|
class TestCERESPlot:
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_ceres_poisson(self, close_figures):
|
||
|
|
||
|
np.random.seed(3446)
|
||
|
|
||
|
n = 100
|
||
|
p = 3
|
||
|
exog = np.random.normal(size=(n, p))
|
||
|
exog[:, 0] = 1
|
||
|
lin_pred = 4 + exog[:, 1] + 0.2*exog[:, 2]**2
|
||
|
expval = np.exp(lin_pred)
|
||
|
endog = np.random.poisson(expval)
|
||
|
|
||
|
model = sm.GLM(endog, exog, family=sm.families.Poisson())
|
||
|
results = model.fit()
|
||
|
|
||
|
for focus_col in 1, 2:
|
||
|
for j in 0, 1:
|
||
|
if j == 0:
|
||
|
fig = plot_ceres_residuals(results, focus_col)
|
||
|
else:
|
||
|
fig = results.plot_ceres_residuals(focus_col)
|
||
|
ax = fig.get_axes()[0]
|
||
|
add_lowess(ax)
|
||
|
ax.set_position([0.1, 0.1, 0.8, 0.77])
|
||
|
effect_str = ["Intercept", "Linear effect, slope=1",
|
||
|
"Quadratic effect"][focus_col]
|
||
|
ti = "CERES plot"
|
||
|
if j == 1:
|
||
|
ti += " (called as method)"
|
||
|
ax.set_title(ti + "\nPoisson regression\n" +
|
||
|
effect_str)
|
||
|
close_or_save(pdf, fig)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_partregress_formula_env():
|
||
|
# test that user function in formulas work, see #7672
|
||
|
|
||
|
@np.vectorize
|
||
|
def lg(x):
|
||
|
return np.log10(x) if x > 0 else 0
|
||
|
|
||
|
df = DataFrame(
|
||
|
dict(
|
||
|
a=np.random.random(size=10),
|
||
|
b=np.random.random(size=10),
|
||
|
c=np.random.random(size=10),
|
||
|
)
|
||
|
)
|
||
|
sm.graphics.plot_partregress(
|
||
|
"a", "lg(b)", ["c"], obs_labels=False, data=df, eval_env=1)
|
||
|
|
||
|
sm.graphics.plot_partregress(
|
||
|
"a", "lg(b)", ["c"], obs_labels=False, data=df)
|