450 lines
18 KiB
Python
450 lines
18 KiB
Python
|
from statsmodels.compat.python import lrange
|
||
|
|
||
|
from io import BytesIO
|
||
|
from itertools import product
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.testing import assert_, assert_raises
|
||
|
import pandas as pd
|
||
|
import pytest
|
||
|
|
||
|
from statsmodels.api import datasets
|
||
|
|
||
|
# utilities for the tests
|
||
|
|
||
|
try:
|
||
|
import matplotlib.pyplot as plt # noqa:F401
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
# other functions to be tested for accuracy
|
||
|
# the main drawing function
|
||
|
from statsmodels.graphics.mosaicplot import (
|
||
|
_hierarchical_split,
|
||
|
_key_splitting,
|
||
|
_normalize_split,
|
||
|
_reduce_dict,
|
||
|
_split_rect,
|
||
|
mosaic,
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_data_conversion(close_figures):
|
||
|
# It will not reorder the elements
|
||
|
# so the dictionary will look odd
|
||
|
# as it key order has the c and b
|
||
|
# keys swapped
|
||
|
import pandas
|
||
|
_, ax = plt.subplots(4, 4)
|
||
|
data = {'ax': 1, 'bx': 2, 'cx': 3}
|
||
|
mosaic(data, ax=ax[0, 0], title='basic dict', axes_label=False)
|
||
|
data = pandas.Series(data)
|
||
|
mosaic(data, ax=ax[0, 1], title='basic series', axes_label=False)
|
||
|
data = [1, 2, 3]
|
||
|
mosaic(data, ax=ax[0, 2], title='basic list', axes_label=False)
|
||
|
data = np.asarray(data)
|
||
|
mosaic(data, ax=ax[0, 3], title='basic array', axes_label=False)
|
||
|
plt.close("all")
|
||
|
|
||
|
data = {('ax', 'cx'): 1, ('bx', 'cx'): 2, ('ax', 'dx'): 3, ('bx', 'dx'): 4}
|
||
|
mosaic(data, ax=ax[1, 0], title='compound dict', axes_label=False)
|
||
|
mosaic(data, ax=ax[2, 0], title='inverted keys dict', index=[1, 0], axes_label=False)
|
||
|
data = pandas.Series(data)
|
||
|
mosaic(data, ax=ax[1, 1], title='compound series', axes_label=False)
|
||
|
mosaic(data, ax=ax[2, 1], title='inverted keys series', index=[1, 0])
|
||
|
data = [[1, 2], [3, 4]]
|
||
|
mosaic(data, ax=ax[1, 2], title='compound list', axes_label=False)
|
||
|
mosaic(data, ax=ax[2, 2], title='inverted keys list', index=[1, 0])
|
||
|
data = np.array([[1, 2], [3, 4]])
|
||
|
mosaic(data, ax=ax[1, 3], title='compound array', axes_label=False)
|
||
|
mosaic(data, ax=ax[2, 3], title='inverted keys array', index=[1, 0], axes_label=False)
|
||
|
plt.close("all")
|
||
|
|
||
|
gender = ['male', 'male', 'male', 'female', 'female', 'female']
|
||
|
pet = ['cat', 'dog', 'dog', 'cat', 'dog', 'cat']
|
||
|
data = pandas.DataFrame({'gender': gender, 'pet': pet})
|
||
|
mosaic(data, ['gender'], ax=ax[3, 0], title='dataframe by key 1', axes_label=False)
|
||
|
mosaic(data, ['pet'], ax=ax[3, 1], title='dataframe by key 2', axes_label=False)
|
||
|
mosaic(data, ['gender', 'pet'], ax=ax[3, 2], title='both keys', axes_label=False)
|
||
|
mosaic(data, ['pet', 'gender'], ax=ax[3, 3], title='keys inverted', axes_label=False)
|
||
|
plt.close("all")
|
||
|
plt.suptitle('testing data conversion (plot 1 of 4)')
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_mosaic_simple(close_figures):
|
||
|
# display a simple plot of 4 categories of data, splitted in four
|
||
|
# levels with increasing size for each group
|
||
|
# creation of the levels
|
||
|
key_set = (['male', 'female'], ['old', 'adult', 'young'],
|
||
|
['worker', 'unemployed'], ['healty', 'ill'])
|
||
|
# the cartesian product of all the categories is
|
||
|
# the complete set of categories
|
||
|
keys = list(product(*key_set))
|
||
|
data = dict(zip(keys, range(1, 1 + len(keys))))
|
||
|
# which colours should I use for the various categories?
|
||
|
# put it into a dict
|
||
|
props = {}
|
||
|
#males and females in blue and red
|
||
|
props[('male',)] = {'color': 'b'}
|
||
|
props[('female',)] = {'color': 'r'}
|
||
|
# all the groups corresponding to ill groups have a different color
|
||
|
for key in keys:
|
||
|
if 'ill' in key:
|
||
|
if 'male' in key:
|
||
|
props[key] = {'color': 'BlueViolet' , 'hatch': '+'}
|
||
|
else:
|
||
|
props[key] = {'color': 'Crimson' , 'hatch': '+'}
|
||
|
# mosaic of the data, with given gaps and colors
|
||
|
mosaic(data, gap=0.05, properties=props, axes_label=False)
|
||
|
plt.suptitle('syntetic data, 4 categories (plot 2 of 4)')
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_mosaic(close_figures):
|
||
|
# make the same analysis on a known dataset
|
||
|
|
||
|
# load the data and clean it a bit
|
||
|
affairs = datasets.fair.load_pandas()
|
||
|
datas = affairs.exog
|
||
|
# any time greater than 0 is cheating
|
||
|
datas['cheated'] = affairs.endog > 0
|
||
|
# sort by the marriage quality and give meaningful name
|
||
|
# [rate_marriage, age, yrs_married, children,
|
||
|
# religious, educ, occupation, occupation_husb]
|
||
|
datas = datas.sort_values(['rate_marriage', 'religious'])
|
||
|
|
||
|
num_to_desc = {1: 'awful', 2: 'bad', 3: 'intermediate',
|
||
|
4: 'good', 5: 'wonderful'}
|
||
|
datas['rate_marriage'] = datas['rate_marriage'].map(num_to_desc)
|
||
|
num_to_faith = {1: 'non religious', 2: 'poorly religious', 3: 'religious',
|
||
|
4: 'very religious'}
|
||
|
datas['religious'] = datas['religious'].map(num_to_faith)
|
||
|
num_to_cheat = {False: 'faithful', True: 'cheated'}
|
||
|
datas['cheated'] = datas['cheated'].map(num_to_cheat)
|
||
|
# finished cleaning
|
||
|
_, ax = plt.subplots(2, 2)
|
||
|
mosaic(datas, ['rate_marriage', 'cheated'], ax=ax[0, 0],
|
||
|
title='by marriage happiness')
|
||
|
mosaic(datas, ['religious', 'cheated'], ax=ax[0, 1],
|
||
|
title='by religiosity')
|
||
|
mosaic(datas, ['rate_marriage', 'religious', 'cheated'], ax=ax[1, 0],
|
||
|
title='by both', labelizer=lambda k:'')
|
||
|
ax[1, 0].set_xlabel('marriage rating')
|
||
|
ax[1, 0].set_ylabel('religion status')
|
||
|
mosaic(datas, ['religious', 'rate_marriage'], ax=ax[1, 1],
|
||
|
title='inter-dependence', axes_label=False)
|
||
|
plt.suptitle("extramarital affairs (plot 3 of 4)")
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_mosaic_very_complex(close_figures):
|
||
|
# make a scattermatrix of mosaic plots to show the correlations between
|
||
|
# each pair of variable in a dataset. Could be easily converted into a
|
||
|
# new function that does this automatically based on the type of data
|
||
|
key_name = ['gender', 'age', 'health', 'work']
|
||
|
key_base = (['male', 'female'], ['old', 'young'],
|
||
|
['healty', 'ill'], ['work', 'unemployed'])
|
||
|
keys = list(product(*key_base))
|
||
|
data = dict(zip(keys, range(1, 1 + len(keys))))
|
||
|
props = {}
|
||
|
props[('male', 'old')] = {'color': 'r'}
|
||
|
props[('female',)] = {'color': 'pink'}
|
||
|
L = len(key_base)
|
||
|
_, axes = plt.subplots(L, L)
|
||
|
for i in range(L):
|
||
|
for j in range(L):
|
||
|
m = set(range(L)).difference({i, j})
|
||
|
if i == j:
|
||
|
axes[i, i].text(0.5, 0.5, key_name[i],
|
||
|
ha='center', va='center')
|
||
|
axes[i, i].set_xticks([])
|
||
|
axes[i, i].set_xticklabels([])
|
||
|
axes[i, i].set_yticks([])
|
||
|
axes[i, i].set_yticklabels([])
|
||
|
else:
|
||
|
ji = max(i, j)
|
||
|
ij = min(i, j)
|
||
|
temp_data = {(k[ij], k[ji]) + tuple(k[r] for r in m): v
|
||
|
for k, v in data.items()}
|
||
|
|
||
|
keys = list(temp_data.keys())
|
||
|
for k in keys:
|
||
|
value = _reduce_dict(temp_data, k[:2])
|
||
|
temp_data[k[:2]] = value
|
||
|
del temp_data[k]
|
||
|
mosaic(temp_data, ax=axes[i, j], axes_label=False,
|
||
|
properties=props, gap=0.05, horizontal=i > j)
|
||
|
plt.suptitle('old males should look bright red, (plot 4 of 4)')
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_axes_labeling(close_figures):
|
||
|
from numpy.random import rand
|
||
|
key_set = (['male', 'female'], ['old', 'adult', 'young'],
|
||
|
['worker', 'unemployed'], ['yes', 'no'])
|
||
|
# the cartesian product of all the categories is
|
||
|
# the complete set of categories
|
||
|
keys = list(product(*key_set))
|
||
|
data = dict(zip(keys, rand(len(keys))))
|
||
|
lab = lambda k: ''.join(s[0] for s in k)
|
||
|
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8))
|
||
|
mosaic(data, ax=ax1, labelizer=lab, horizontal=True, label_rotation=45)
|
||
|
mosaic(data, ax=ax2, labelizer=lab, horizontal=False,
|
||
|
label_rotation=[0, 45, 90, 0])
|
||
|
#fig.tight_layout()
|
||
|
fig.suptitle("correct alignment of the axes labels")
|
||
|
|
||
|
|
||
|
@pytest.mark.smoke
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_mosaic_empty_cells(close_figures):
|
||
|
# GH#2286
|
||
|
import pandas as pd
|
||
|
mydata = pd.DataFrame({'id2': {64: 'Angelica',
|
||
|
65: 'DXW_UID', 66: 'casuid01',
|
||
|
67: 'casuid01', 68: 'EC93_uid',
|
||
|
69: 'EC93_uid', 70: 'EC93_uid',
|
||
|
60: 'DXW_UID', 61: 'AtmosFox',
|
||
|
62: 'DXW_UID', 63: 'DXW_UID'},
|
||
|
'id1': {64: 'TGP',
|
||
|
65: 'Retention01', 66: 'default',
|
||
|
67: 'default', 68: 'Musa_EC_9_3',
|
||
|
69: 'Musa_EC_9_3', 70: 'Musa_EC_9_3',
|
||
|
60: 'default', 61: 'default',
|
||
|
62: 'default', 63: 'default'}})
|
||
|
|
||
|
ct = pd.crosstab(mydata.id1, mydata.id2)
|
||
|
_, vals = mosaic(ct.T.unstack())
|
||
|
_, vals = mosaic(mydata, ['id1','id2'])
|
||
|
|
||
|
|
||
|
eq = lambda x, y: assert_(np.allclose(x, y))
|
||
|
|
||
|
|
||
|
def test_recursive_split():
|
||
|
keys = list(product('mf'))
|
||
|
data = dict(zip(keys, [1] * len(keys)))
|
||
|
res = _hierarchical_split(data, gap=0)
|
||
|
assert_(list(res.keys()) == keys)
|
||
|
res[('m',)] = (0.0, 0.0, 0.5, 1.0)
|
||
|
res[('f',)] = (0.5, 0.0, 0.5, 1.0)
|
||
|
keys = list(product('mf', 'yao'))
|
||
|
data = dict(zip(keys, [1] * len(keys)))
|
||
|
res = _hierarchical_split(data, gap=0)
|
||
|
assert_(list(res.keys()) == keys)
|
||
|
res[('m', 'y')] = (0.0, 0.0, 0.5, 1 / 3)
|
||
|
res[('m', 'a')] = (0.0, 1 / 3, 0.5, 1 / 3)
|
||
|
res[('m', 'o')] = (0.0, 2 / 3, 0.5, 1 / 3)
|
||
|
res[('f', 'y')] = (0.5, 0.0, 0.5, 1 / 3)
|
||
|
res[('f', 'a')] = (0.5, 1 / 3, 0.5, 1 / 3)
|
||
|
res[('f', 'o')] = (0.5, 2 / 3, 0.5, 1 / 3)
|
||
|
|
||
|
|
||
|
def test__reduce_dict():
|
||
|
data = dict(zip(list(product('mf', 'oy', 'wn')), [1] * 8))
|
||
|
eq(_reduce_dict(data, ('m',)), 4)
|
||
|
eq(_reduce_dict(data, ('m', 'o')), 2)
|
||
|
eq(_reduce_dict(data, ('m', 'o', 'w')), 1)
|
||
|
data = dict(zip(list(product('mf', 'oy', 'wn')), lrange(8)))
|
||
|
eq(_reduce_dict(data, ('m',)), 6)
|
||
|
eq(_reduce_dict(data, ('m', 'o')), 1)
|
||
|
eq(_reduce_dict(data, ('m', 'o', 'w')), 0)
|
||
|
|
||
|
|
||
|
def test__key_splitting():
|
||
|
# subdivide starting with an empty tuple
|
||
|
base_rect = {tuple(): (0, 0, 1, 1)}
|
||
|
res = _key_splitting(base_rect, ['a', 'b'], [1, 1], tuple(), True, 0)
|
||
|
assert_(list(res.keys()) == [('a',), ('b',)])
|
||
|
eq(res[('a',)], (0, 0, 0.5, 1))
|
||
|
eq(res[('b',)], (0.5, 0, 0.5, 1))
|
||
|
# subdivide a in two sublevel
|
||
|
res_bis = _key_splitting(res, ['c', 'd'], [1, 1], ('a',), False, 0)
|
||
|
assert_(list(res_bis.keys()) == [('a', 'c'), ('a', 'd'), ('b',)])
|
||
|
eq(res_bis[('a', 'c')], (0.0, 0.0, 0.5, 0.5))
|
||
|
eq(res_bis[('a', 'd')], (0.0, 0.5, 0.5, 0.5))
|
||
|
eq(res_bis[('b',)], (0.5, 0, 0.5, 1))
|
||
|
# starting with a non empty tuple and uneven distribution
|
||
|
base_rect = {('total',): (0, 0, 1, 1)}
|
||
|
res = _key_splitting(base_rect, ['a', 'b'], [1, 2], ('total',), True, 0)
|
||
|
assert_(list(res.keys()) == [('total',) + (e,) for e in ['a', 'b']])
|
||
|
eq(res[('total', 'a')], (0, 0, 1 / 3, 1))
|
||
|
eq(res[('total', 'b')], (1 / 3, 0, 2 / 3, 1))
|
||
|
|
||
|
|
||
|
def test_proportion_normalization():
|
||
|
# extremes should give the whole set, as well
|
||
|
# as if 0 is inserted
|
||
|
eq(_normalize_split(0.), [0.0, 0.0, 1.0])
|
||
|
eq(_normalize_split(1.), [0.0, 1.0, 1.0])
|
||
|
eq(_normalize_split(2.), [0.0, 1.0, 1.0])
|
||
|
# negative values should raise ValueError
|
||
|
assert_raises(ValueError, _normalize_split, -1)
|
||
|
assert_raises(ValueError, _normalize_split, [1., -1])
|
||
|
assert_raises(ValueError, _normalize_split, [1., -1, 0.])
|
||
|
# if everything is zero it will complain
|
||
|
assert_raises(ValueError, _normalize_split, [0.])
|
||
|
assert_raises(ValueError, _normalize_split, [0., 0.])
|
||
|
# one-element array should return the whole interval
|
||
|
eq(_normalize_split([0.5]), [0.0, 1.0])
|
||
|
eq(_normalize_split([1.]), [0.0, 1.0])
|
||
|
eq(_normalize_split([2.]), [0.0, 1.0])
|
||
|
# simple division should give two pieces
|
||
|
for x in [0.3, 0.5, 0.9]:
|
||
|
eq(_normalize_split(x), [0., x, 1.0])
|
||
|
# multiple division should split as the sum of the components
|
||
|
for x, y in [(0.25, 0.5), (0.1, 0.8), (10., 30.)]:
|
||
|
eq(_normalize_split([x, y]), [0., x / (x + y), 1.0])
|
||
|
for x, y, z in [(1., 1., 1.), (0.1, 0.5, 0.7), (10., 30., 40)]:
|
||
|
eq(_normalize_split(
|
||
|
[x, y, z]), [0., x / (x + y + z), (x + y) / (x + y + z), 1.0])
|
||
|
|
||
|
|
||
|
def test_false_split():
|
||
|
# if you ask it to be divided in only one piece, just return the original
|
||
|
# one
|
||
|
pure_square = [0., 0., 1., 1.]
|
||
|
conf_h = dict(proportion=[1], gap=0.0, horizontal=True)
|
||
|
conf_v = dict(proportion=[1], gap=0.0, horizontal=False)
|
||
|
eq(_split_rect(*pure_square, **conf_h), pure_square)
|
||
|
eq(_split_rect(*pure_square, **conf_v), pure_square)
|
||
|
conf_h = dict(proportion=[1], gap=0.5, horizontal=True)
|
||
|
conf_v = dict(proportion=[1], gap=0.5, horizontal=False)
|
||
|
eq(_split_rect(*pure_square, **conf_h), pure_square)
|
||
|
eq(_split_rect(*pure_square, **conf_v), pure_square)
|
||
|
|
||
|
# identity on a void rectangle should not give anything strange
|
||
|
null_square = [0., 0., 0., 0.]
|
||
|
conf = dict(proportion=[1], gap=0.0, horizontal=True)
|
||
|
eq(_split_rect(*null_square, **conf), null_square)
|
||
|
conf = dict(proportion=[1], gap=1.0, horizontal=True)
|
||
|
eq(_split_rect(*null_square, **conf), null_square)
|
||
|
|
||
|
# splitting a negative rectangle should raise error
|
||
|
neg_square = [0., 0., -1., 0.]
|
||
|
conf = dict(proportion=[1], gap=0.0, horizontal=True)
|
||
|
assert_raises(ValueError, _split_rect, *neg_square, **conf)
|
||
|
conf = dict(proportion=[1, 1], gap=0.0, horizontal=True)
|
||
|
assert_raises(ValueError, _split_rect, *neg_square, **conf)
|
||
|
conf = dict(proportion=[1], gap=0.5, horizontal=True)
|
||
|
assert_raises(ValueError, _split_rect, *neg_square, **conf)
|
||
|
conf = dict(proportion=[1, 1], gap=0.5, horizontal=True)
|
||
|
assert_raises(ValueError, _split_rect, *neg_square, **conf)
|
||
|
|
||
|
|
||
|
def test_rect_pure_split():
|
||
|
pure_square = [0., 0., 1., 1.]
|
||
|
# division in two equal pieces from the perfect square
|
||
|
h_2split = [(0.0, 0.0, 0.5, 1.0), (0.5, 0.0, 0.5, 1.0)]
|
||
|
conf_h = dict(proportion=[1, 1], gap=0.0, horizontal=True)
|
||
|
eq(_split_rect(*pure_square, **conf_h), h_2split)
|
||
|
|
||
|
v_2split = [(0.0, 0.0, 1.0, 0.5), (0.0, 0.5, 1.0, 0.5)]
|
||
|
conf_v = dict(proportion=[1, 1], gap=0.0, horizontal=False)
|
||
|
eq(_split_rect(*pure_square, **conf_v), v_2split)
|
||
|
|
||
|
# division in two non-equal pieces from the perfect square
|
||
|
h_2split = [(0.0, 0.0, 1 / 3, 1.0), (1 / 3, 0.0, 2 / 3, 1.0)]
|
||
|
conf_h = dict(proportion=[1, 2], gap=0.0, horizontal=True)
|
||
|
eq(_split_rect(*pure_square, **conf_h), h_2split)
|
||
|
|
||
|
v_2split = [(0.0, 0.0, 1.0, 1 / 3), (0.0, 1 / 3, 1.0, 2 / 3)]
|
||
|
conf_v = dict(proportion=[1, 2], gap=0.0, horizontal=False)
|
||
|
eq(_split_rect(*pure_square, **conf_v), v_2split)
|
||
|
|
||
|
# division in three equal pieces from the perfect square
|
||
|
h_2split = [(0.0, 0.0, 1 / 3, 1.0), (1 / 3, 0.0, 1 / 3, 1.0), (2 / 3, 0.0,
|
||
|
1 / 3, 1.0)]
|
||
|
conf_h = dict(proportion=[1, 1, 1], gap=0.0, horizontal=True)
|
||
|
eq(_split_rect(*pure_square, **conf_h), h_2split)
|
||
|
|
||
|
v_2split = [(0.0, 0.0, 1.0, 1 / 3), (0.0, 1 / 3, 1.0, 1 / 3), (0.0, 2 / 3,
|
||
|
1.0, 1 / 3)]
|
||
|
conf_v = dict(proportion=[1, 1, 1], gap=0.0, horizontal=False)
|
||
|
eq(_split_rect(*pure_square, **conf_v), v_2split)
|
||
|
|
||
|
# division in three non-equal pieces from the perfect square
|
||
|
h_2split = [(0.0, 0.0, 1 / 4, 1.0), (1 / 4, 0.0, 1 / 2, 1.0), (3 / 4, 0.0,
|
||
|
1 / 4, 1.0)]
|
||
|
conf_h = dict(proportion=[1, 2, 1], gap=0.0, horizontal=True)
|
||
|
eq(_split_rect(*pure_square, **conf_h), h_2split)
|
||
|
|
||
|
v_2split = [(0.0, 0.0, 1.0, 1 / 4), (0.0, 1 / 4, 1.0, 1 / 2), (0.0, 3 / 4,
|
||
|
1.0, 1 / 4)]
|
||
|
conf_v = dict(proportion=[1, 2, 1], gap=0.0, horizontal=False)
|
||
|
eq(_split_rect(*pure_square, **conf_v), v_2split)
|
||
|
|
||
|
# splitting on a void rectangle should give multiple void
|
||
|
null_square = [0., 0., 0., 0.]
|
||
|
conf = dict(proportion=[1, 1], gap=0.0, horizontal=True)
|
||
|
eq(_split_rect(*null_square, **conf), [null_square, null_square])
|
||
|
conf = dict(proportion=[1, 2], gap=1.0, horizontal=True)
|
||
|
eq(_split_rect(*null_square, **conf), [null_square, null_square])
|
||
|
|
||
|
|
||
|
def test_rect_deformed_split():
|
||
|
non_pure_square = [1., -1., 1., 0.5]
|
||
|
# division in two equal pieces from the perfect square
|
||
|
h_2split = [(1.0, -1.0, 0.5, 0.5), (1.5, -1.0, 0.5, 0.5)]
|
||
|
conf_h = dict(proportion=[1, 1], gap=0.0, horizontal=True)
|
||
|
eq(_split_rect(*non_pure_square, **conf_h), h_2split)
|
||
|
|
||
|
v_2split = [(1.0, -1.0, 1.0, 0.25), (1.0, -0.75, 1.0, 0.25)]
|
||
|
conf_v = dict(proportion=[1, 1], gap=0.0, horizontal=False)
|
||
|
eq(_split_rect(*non_pure_square, **conf_v), v_2split)
|
||
|
|
||
|
# division in two non-equal pieces from the perfect square
|
||
|
h_2split = [(1.0, -1.0, 1 / 3, 0.5), (1 + 1 / 3, -1.0, 2 / 3, 0.5)]
|
||
|
conf_h = dict(proportion=[1, 2], gap=0.0, horizontal=True)
|
||
|
eq(_split_rect(*non_pure_square, **conf_h), h_2split)
|
||
|
|
||
|
v_2split = [(1.0, -1.0, 1.0, 1 / 6), (1.0, 1 / 6 - 1, 1.0, 2 / 6)]
|
||
|
conf_v = dict(proportion=[1, 2], gap=0.0, horizontal=False)
|
||
|
eq(_split_rect(*non_pure_square, **conf_v), v_2split)
|
||
|
|
||
|
|
||
|
def test_gap_split():
|
||
|
pure_square = [0., 0., 1., 1.]
|
||
|
|
||
|
# null split
|
||
|
conf_h = dict(proportion=[1], gap=1.0, horizontal=True)
|
||
|
eq(_split_rect(*pure_square, **conf_h), pure_square)
|
||
|
|
||
|
# equal split
|
||
|
h_2split = [(0.0, 0.0, 0.25, 1.0), (0.75, 0.0, 0.25, 1.0)]
|
||
|
conf_h = dict(proportion=[1, 1], gap=1.0, horizontal=True)
|
||
|
eq(_split_rect(*pure_square, **conf_h), h_2split)
|
||
|
|
||
|
# disequal split
|
||
|
h_2split = [(0.0, 0.0, 1 / 6, 1.0), (0.5 + 1 / 6, 0.0, 1 / 3, 1.0)]
|
||
|
conf_h = dict(proportion=[1, 2], gap=1.0, horizontal=True)
|
||
|
eq(_split_rect(*pure_square, **conf_h), h_2split)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_default_arg_index(close_figures):
|
||
|
# 2116
|
||
|
df = pd.DataFrame({'size' : ['small', 'large', 'large', 'small', 'large',
|
||
|
'small'],
|
||
|
'length' : ['long', 'short', 'short', 'long', 'long',
|
||
|
'short']})
|
||
|
assert_raises(ValueError, mosaic, data=df, title='foobar')
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_missing_category(close_figures):
|
||
|
# GH5639
|
||
|
animal = ['dog', 'dog', 'dog', 'cat', 'dog', 'cat', 'cat',
|
||
|
'dog', 'dog', 'cat']
|
||
|
size = ['medium', 'large', 'medium', 'medium', 'medium', 'medium',
|
||
|
'large', 'large', 'large', 'small']
|
||
|
testdata = pd.DataFrame({'animal': animal, 'size': size})
|
||
|
testdata['size'] = pd.Categorical(testdata['size'],
|
||
|
categories=['small', 'medium', 'large'])
|
||
|
testdata = testdata.sort_values('size')
|
||
|
fig, _ = mosaic(testdata, ['animal', 'size'])
|
||
|
bio = BytesIO()
|
||
|
fig.savefig(bio, format='png')
|