AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/distributions/copula/archimedean.py

479 lines
14 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
"""
Created on Fri Jan 29 19:19:45 2021
Author: Josef Perktold
License: BSD-3
"""
import sys
import numpy as np
from scipy import stats, integrate, optimize
from . import transforms
from .copulas import Copula
from statsmodels.tools.rng_qrng import check_random_state
def _debye(alpha):
# EPSILON = np.finfo(np.float32).eps
EPSILON = np.finfo(np.float64).eps * 100
def integrand(t):
return np.squeeze(t / (np.exp(t) - 1))
_alpha = np.squeeze(alpha)
debye_value = integrate.quad(integrand, EPSILON, _alpha)[0] / _alpha
return debye_value
def _debyem1_expansion(x):
"""Debye function minus 1, Taylor series approximation around zero
function is not used
"""
x = np.asarray(x)
# Expansion derived using Wolfram alpha
dm1 = (-x/4 + x**2/36 - x**4/3600 + x**6/211680 - x**8/10886400 +
x**10/526901760 - x**12 * 691/16999766784000)
return dm1
def tau_frank(theta):
"""Kendall's tau for Frank Copula
This uses Taylor series expansion for theta <= 1.
Parameters
----------
theta : float
Parameter of the Frank copula. (not vectorized)
Returns
-------
tau : float, tau for given theta
"""
if theta <= 1:
tau = _tau_frank_expansion(theta)
else:
debye_value = _debye(theta)
tau = 1 + 4 * (debye_value - 1) / theta
return tau
def _tau_frank_expansion(x):
x = np.asarray(x)
# expansion derived using wolfram alpha
# agrees better with R copula for x<=1, maybe even for larger theta
tau = (x/9 - x**3/900 + x**5/52920 - x**7/2721600 + x**9/131725440 -
x**11 * 691/4249941696000)
return tau
class ArchimedeanCopula(Copula):
"""Base class for Archimedean copulas
Parameters
----------
transform : instance of transformation class
Archimedean generator with required methods including first and second
derivatives
args : tuple
Optional copula parameters. Copula parameters can be either provided
when creating the instance or as arguments when calling methods.
k_dim : int
Dimension, number of components in the multivariate random variable.
Currently only bivariate copulas are verified. Support for more than
2 dimension is incomplete.
"""
def __init__(self, transform, args=(), k_dim=2):
super().__init__(k_dim=k_dim)
self.args = args
self.transform = transform
self.k_args = 1
def _handle_args(self, args):
# TODO: how to we handle non-tuple args? two we allow single values?
# Model fit might give an args that can be empty
if isinstance(args, np.ndarray):
args = tuple(args) # handles empty arrays, unpacks otherwise
if not isinstance(args, tuple):
# could still be a scalar or numpy scalar
args = (args,)
if len(args) == 0 or args == (None,):
# second condition because we converted None to tuple
args = self.args
return args
def _handle_u(self, u):
u = np.asarray(u)
if u.shape[-1] != self.k_dim:
import warnings
warnings.warn("u has different dimension than k_dim. "
"This will raise exception in future versions",
FutureWarning)
return u
def cdf(self, u, args=()):
"""Evaluate cdf of Archimedean copula."""
args = self._handle_args(args)
u = self._handle_u(u)
axis = -1
phi = self.transform.evaluate
phi_inv = self.transform.inverse
cdfv = phi_inv(phi(u, *args).sum(axis), *args)
# clip numerical noise
out = cdfv if isinstance(cdfv, np.ndarray) else None
cdfv = np.clip(cdfv, 0., 1., out=out) # inplace if possible
return cdfv
def pdf(self, u, args=()):
"""Evaluate pdf of Archimedean copula."""
u = self._handle_u(u)
args = self._handle_args(args)
axis = -1
phi_d1 = self.transform.deriv
if u.shape[-1] == 2:
psi_d = self.transform.deriv2_inverse
elif u.shape[-1] == 3:
psi_d = self.transform.deriv3_inverse
elif u.shape[-1] == 4:
psi_d = self.transform.deriv4_inverse
else:
# will raise NotImplementedError if not available
k = u.shape[-1]
def psi_d(*args):
return self.transform.derivk_inverse(k, *args)
psi = self.transform.evaluate(u, *args).sum(axis)
pdfv = np.prod(phi_d1(u, *args), axis)
pdfv *= (psi_d(psi, *args))
# use abs, I'm not sure yet about where to add signs
return np.abs(pdfv)
def logpdf(self, u, args=()):
"""Evaluate log pdf of multivariate Archimedean copula."""
u = self._handle_u(u)
args = self._handle_args(args)
axis = -1
phi_d1 = self.transform.deriv
if u.shape[-1] == 2:
psi_d = self.transform.deriv2_inverse
elif u.shape[-1] == 3:
psi_d = self.transform.deriv3_inverse
elif u.shape[-1] == 4:
psi_d = self.transform.deriv4_inverse
else:
# will raise NotImplementedError if not available
k = u.shape[-1]
def psi_d(*args):
return self.transform.derivk_inverse(k, *args)
psi = self.transform.evaluate(u, *args).sum(axis)
# I need np.abs because derivatives are negative,
# is this correct for mv?
logpdfv = np.sum(np.log(np.abs(phi_d1(u, *args))), axis)
logpdfv += np.log(np.abs(psi_d(psi, *args)))
return logpdfv
def _arg_from_tau(self, tau):
# for generic compat
return self.theta_from_tau(tau)
class ClaytonCopula(ArchimedeanCopula):
r"""Clayton copula.
Dependence is greater in the negative tail than in the positive.
.. math::
C_\theta(u,v) = \left[ \max\left\{ u^{-\theta} + v^{-\theta} -1 ;
0 \right\} \right]^{-1/\theta}
with :math:`\theta\in[-1,\infty)\backslash\{0\}`.
"""
def __init__(self, theta=None, k_dim=2):
if theta is not None:
args = (theta,)
else:
args = ()
super().__init__(transforms.TransfClayton(), args=args, k_dim=k_dim)
if theta is not None:
if theta <= -1 or theta == 0:
raise ValueError('Theta must be > -1 and !=0')
self.theta = theta
def rvs(self, nobs=1, args=(), random_state=None):
rng = check_random_state(random_state)
th, = self._handle_args(args)
x = rng.random((nobs, self.k_dim))
v = stats.gamma(1. / th).rvs(size=(nobs, 1), random_state=rng)
if self.k_dim != 2:
rv = (1 - np.log(x) / v) ** (-1. / th)
else:
rv = self.transform.inverse(- np.log(x) / v, th)
return rv
def pdf(self, u, args=()):
u = self._handle_u(u)
th, = self._handle_args(args)
if u.shape[-1] == 2:
a = (th + 1) * np.prod(u, axis=-1) ** -(th + 1)
b = np.sum(u ** -th, axis=-1) - 1
c = -(2 * th + 1) / th
return a * b ** c
else:
return super().pdf(u, args)
def logpdf(self, u, args=()):
# we skip Archimedean logpdf, that uses numdiff
return super().logpdf(u, args=args)
def cdf(self, u, args=()):
u = self._handle_u(u)
th, = self._handle_args(args)
d = u.shape[-1] # self.k_dim
return (np.sum(u ** (-th), axis=-1) - d + 1) ** (-1.0 / th)
def tau(self, theta=None):
# Joe 2014 p. 168
if theta is None:
theta = self.theta
return theta / (theta + 2)
def theta_from_tau(self, tau):
return 2 * tau / (1 - tau)
class FrankCopula(ArchimedeanCopula):
r"""Frank copula.
Dependence is symmetric.
.. math::
C_\theta(\mathbf{u}) = -\frac{1}{\theta} \log \left[ 1-
\frac{ \prod_j (1-\exp(- \theta u_j)) }{ (1 - \exp(-\theta)-1)^{d -
1} } \right]
with :math:`\theta\in \mathbb{R}\backslash\{0\}, \mathbf{u} \in [0, 1]^d`.
"""
def __init__(self, theta=None, k_dim=2):
if theta is not None:
args = (theta,)
else:
args = ()
super().__init__(transforms.TransfFrank(), args=args, k_dim=k_dim)
if theta is not None:
if theta == 0:
raise ValueError('Theta must be !=0')
self.theta = theta
def rvs(self, nobs=1, args=(), random_state=None):
rng = check_random_state(random_state)
th, = self._handle_args(args)
x = rng.random((nobs, self.k_dim))
v = stats.logser.rvs(1. - np.exp(-th),
size=(nobs, 1), random_state=rng)
return -1. / th * np.log(1. + np.exp(-(-np.log(x) / v))
* (np.exp(-th) - 1.))
# explicit BV formulas copied from Joe 1997 p. 141
# todo: check expm1 and log1p for improved numerical precision
def pdf(self, u, args=()):
u = self._handle_u(u)
th, = self._handle_args(args)
if u.shape[-1] != 2:
return super().pdf(u, th)
g_ = np.exp(-th * np.sum(u, axis=-1)) - 1
g1 = np.exp(-th) - 1
num = -th * g1 * (1 + g_)
aux = np.prod(np.exp(-th * u) - 1, axis=-1) + g1
den = aux ** 2
return num / den
def cdf(self, u, args=()):
u = self._handle_u(u)
th, = self._handle_args(args)
dim = u.shape[-1]
num = np.prod(1 - np.exp(- th * u), axis=-1)
den = (1 - np.exp(-th)) ** (dim - 1)
return -1.0 / th * np.log(1 - num / den)
def logpdf(self, u, args=()):
u = self._handle_u(u)
th, = self._handle_args(args)
if u.shape[-1] == 2:
# bivariate case
u1, u2 = u[..., 0], u[..., 1]
b = 1 - np.exp(-th)
pdf = np.log(th * b) - th * (u1 + u2)
pdf -= 2 * np.log(b - (1 - np.exp(- th * u1)) *
(1 - np.exp(- th * u2)))
return pdf
else:
# for now use generic from base Copula class, log(self.pdf(...))
# we skip Archimedean logpdf, that uses numdiff
return super().logpdf(u, args)
def cdfcond_2g1(self, u, args=()):
"""Conditional cdf of second component given the value of first.
"""
u = self._handle_u(u)
th, = self._handle_args(args)
if u.shape[-1] == 2:
# bivariate case
u1, u2 = u[..., 0], u[..., 1]
cdfc = np.exp(- th * u1)
cdfc /= np.expm1(-th) / np.expm1(- th * u2) + np.expm1(- th * u1)
return cdfc
else:
raise NotImplementedError("u needs to be bivariate (2 columns)")
def ppfcond_2g1(self, q, u1, args=()):
"""Conditional pdf of second component given the value of first.
"""
u1 = np.asarray(u1)
th, = self._handle_args(args)
if u1.shape[-1] == 1:
# bivariate case, conditional on value of first variable
ppfc = - np.log(1 + np.expm1(- th) /
((1 / q - 1) * np.exp(-th * u1) + 1)) / th
return ppfc
else:
raise NotImplementedError("u needs to be bivariate (2 columns)")
def tau(self, theta=None):
# Joe 2014 p. 166
if theta is None:
theta = self.theta
return tau_frank(theta)
def theta_from_tau(self, tau):
MIN_FLOAT_LOG = np.log(sys.float_info.min)
MAX_FLOAT_LOG = np.log(sys.float_info.max)
def _theta_from_tau(alpha):
return self.tau(theta=alpha) - tau
# avoid start=1, because break in tau approximation method
start = 0.5 if tau < 0.11 else 2
result = optimize.least_squares(_theta_from_tau, start, bounds=(
MIN_FLOAT_LOG, MAX_FLOAT_LOG))
theta = result.x[0]
return theta
class GumbelCopula(ArchimedeanCopula):
r"""Gumbel copula.
Dependence is greater in the positive tail than in the negative.
.. math::
C_\theta(u,v) = \exp\!\left[ -\left( (-\log(u))^\theta +
(-\log(v))^\theta \right)^{1/\theta} \right]
with :math:`\theta\in[1,\infty)`.
"""
def __init__(self, theta=None, k_dim=2):
if theta is not None:
args = (theta,)
else:
args = ()
super().__init__(transforms.TransfGumbel(), args=args, k_dim=k_dim)
if theta is not None:
if theta <= 1:
raise ValueError('Theta must be > 1')
self.theta = theta
def rvs(self, nobs=1, args=(), random_state=None):
rng = check_random_state(random_state)
th, = self._handle_args(args)
x = rng.random((nobs, self.k_dim))
v = stats.levy_stable.rvs(
1. / th, 1., 0,
np.cos(np.pi / (2 * th)) ** th,
size=(nobs, 1), random_state=rng
)
if self.k_dim != 2:
rv = np.exp(-(-np.log(x) / v) ** (1. / th))
else:
rv = self.transform.inverse(- np.log(x) / v, th)
return rv
def pdf(self, u, args=()):
u = self._handle_u(u)
th, = self._handle_args(args)
if u.shape[-1] == 2:
xy = -np.log(u)
xy_theta = xy ** th
sum_xy_theta = np.sum(xy_theta, axis=-1)
sum_xy_theta_theta = sum_xy_theta ** (1.0 / th)
a = np.exp(-sum_xy_theta_theta)
b = sum_xy_theta_theta + th - 1.0
c = sum_xy_theta ** (1.0 / th - 2)
d = np.prod(xy, axis=-1) ** (th - 1.0)
e = np.prod(u, axis=-1) ** (- 1.0)
return a * b * c * d * e
else:
return super().pdf(u, args)
def cdf(self, u, args=()):
u = self._handle_u(u)
th, = self._handle_args(args)
h = np.sum((-np.log(u)) ** th, axis=-1)
cdf = np.exp(-h ** (1.0 / th))
return cdf
def logpdf(self, u, args=()):
# we skip Archimedean logpdf, that uses numdiff
return super().logpdf(u, args=args)
def tau(self, theta=None):
# Joe 2014 p. 172
if theta is None:
theta = self.theta
return (theta - 1) / theta
def theta_from_tau(self, tau):
return 1 / (1 - tau)