3457 lines
119 KiB
Python
3457 lines
119 KiB
Python
|
from collections import namedtuple
|
||
|
from textwrap import dedent
|
||
|
import warnings
|
||
|
from colorsys import rgb_to_hls
|
||
|
from functools import partial
|
||
|
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
|
||
|
import matplotlib as mpl
|
||
|
from matplotlib.cbook import normalize_kwargs
|
||
|
from matplotlib.collections import PatchCollection
|
||
|
from matplotlib.markers import MarkerStyle
|
||
|
from matplotlib.patches import Rectangle
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
from seaborn._core.typing import default, deprecated
|
||
|
from seaborn._base import VectorPlotter, infer_orient, categorical_order
|
||
|
from seaborn._stats.density import KDE
|
||
|
from seaborn import utils
|
||
|
from seaborn.utils import (
|
||
|
desaturate,
|
||
|
_check_argument,
|
||
|
_draw_figure,
|
||
|
_default_color,
|
||
|
_get_patch_legend_artist,
|
||
|
_get_transform_functions,
|
||
|
_scatter_legend_artist,
|
||
|
_version_predates,
|
||
|
)
|
||
|
from seaborn._compat import groupby_apply_include_groups
|
||
|
from seaborn._statistics import (
|
||
|
EstimateAggregator,
|
||
|
LetterValues,
|
||
|
WeightedAggregator,
|
||
|
)
|
||
|
from seaborn.palettes import light_palette
|
||
|
from seaborn.axisgrid import FacetGrid, _facet_docs
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
"catplot",
|
||
|
"stripplot", "swarmplot",
|
||
|
"boxplot", "violinplot", "boxenplot",
|
||
|
"pointplot", "barplot", "countplot",
|
||
|
]
|
||
|
|
||
|
|
||
|
class _CategoricalPlotter(VectorPlotter):
|
||
|
|
||
|
wide_structure = {"x": "@columns", "y": "@values", "hue": "@columns"}
|
||
|
flat_structure = {"y": "@values"}
|
||
|
|
||
|
_legend_attributes = ["color"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
data=None,
|
||
|
variables={},
|
||
|
order=None,
|
||
|
orient=None,
|
||
|
require_numeric=False,
|
||
|
color=None,
|
||
|
legend="auto",
|
||
|
):
|
||
|
|
||
|
super().__init__(data=data, variables=variables)
|
||
|
|
||
|
# This method takes care of some bookkeeping that is necessary because the
|
||
|
# original categorical plots (prior to the 2021 refactor) had some rules that
|
||
|
# don't fit exactly into VectorPlotter logic. It may be wise to have a second
|
||
|
# round of refactoring that moves the logic deeper, but this will keep things
|
||
|
# relatively sensible for now.
|
||
|
|
||
|
# For wide data, orient determines assignment to x/y differently from the
|
||
|
# default VectorPlotter rules. If we do decide to make orient part of the
|
||
|
# _base variable assignment, we'll want to figure out how to express that.
|
||
|
if self.input_format == "wide" and orient in ["h", "y"]:
|
||
|
self.plot_data = self.plot_data.rename(columns={"x": "y", "y": "x"})
|
||
|
orig_variables = set(self.variables)
|
||
|
orig_x = self.variables.pop("x", None)
|
||
|
orig_y = self.variables.pop("y", None)
|
||
|
orig_x_type = self.var_types.pop("x", None)
|
||
|
orig_y_type = self.var_types.pop("y", None)
|
||
|
if "x" in orig_variables:
|
||
|
self.variables["y"] = orig_x
|
||
|
self.var_types["y"] = orig_x_type
|
||
|
if "y" in orig_variables:
|
||
|
self.variables["x"] = orig_y
|
||
|
self.var_types["x"] = orig_y_type
|
||
|
|
||
|
# Initially there was more special code for wide-form data where plots were
|
||
|
# multi-colored by default and then either palette or color could be used.
|
||
|
# We want to provide backwards compatibility for this behavior in a relatively
|
||
|
# simply way, so we delete the hue information when color is specified.
|
||
|
if (
|
||
|
self.input_format == "wide"
|
||
|
and "hue" in self.variables
|
||
|
and color is not None
|
||
|
):
|
||
|
self.plot_data.drop("hue", axis=1)
|
||
|
self.variables.pop("hue")
|
||
|
|
||
|
# The concept of an "orientation" is important to the original categorical
|
||
|
# plots, but there's no provision for it in VectorPlotter, so we need it here.
|
||
|
# Note that it could be useful for the other functions in at least two ways
|
||
|
# (orienting a univariate distribution plot from long-form data and selecting
|
||
|
# the aggregation axis in lineplot), so we may want to eventually refactor it.
|
||
|
self.orient = infer_orient(
|
||
|
x=self.plot_data.get("x", None),
|
||
|
y=self.plot_data.get("y", None),
|
||
|
orient=orient,
|
||
|
require_numeric=False,
|
||
|
)
|
||
|
|
||
|
self.legend = legend
|
||
|
|
||
|
# Short-circuit in the case of an empty plot
|
||
|
if not self.has_xy_data:
|
||
|
return
|
||
|
|
||
|
# Categorical plots can be "univariate" in which case they get an anonymous
|
||
|
# category label on the opposite axis. Note: this duplicates code in the core
|
||
|
# scale_categorical function. We need to do it here because of the next line.
|
||
|
if self.orient not in self.variables:
|
||
|
self.variables[self.orient] = None
|
||
|
self.var_types[self.orient] = "categorical"
|
||
|
self.plot_data[self.orient] = ""
|
||
|
|
||
|
# Categorical variables have discrete levels that we need to track
|
||
|
cat_levels = categorical_order(self.plot_data[self.orient], order)
|
||
|
self.var_levels[self.orient] = cat_levels
|
||
|
|
||
|
def _hue_backcompat(self, color, palette, hue_order, force_hue=False):
|
||
|
"""Implement backwards compatibility for hue parametrization.
|
||
|
|
||
|
Note: the force_hue parameter is used so that functions can be shown to
|
||
|
pass existing tests during refactoring and then tested for new behavior.
|
||
|
It can be removed after completion of the work.
|
||
|
|
||
|
"""
|
||
|
# The original categorical functions applied a palette to the categorical axis
|
||
|
# by default. We want to require an explicit hue mapping, to be more consistent
|
||
|
# with how things work elsewhere now. I don't think there's any good way to
|
||
|
# do this gently -- because it's triggered by the default value of hue=None,
|
||
|
# users would always get a warning, unless we introduce some sentinel "default"
|
||
|
# argument for this change. That's possible, but asking users to set `hue=None`
|
||
|
# on every call is annoying.
|
||
|
# We are keeping the logic for implementing the old behavior in with the current
|
||
|
# system so that (a) we can punt on that decision and (b) we can ensure that
|
||
|
# refactored code passes old tests.
|
||
|
default_behavior = color is None or palette is not None
|
||
|
if force_hue and "hue" not in self.variables and default_behavior:
|
||
|
self._redundant_hue = True
|
||
|
self.plot_data["hue"] = self.plot_data[self.orient]
|
||
|
self.variables["hue"] = self.variables[self.orient]
|
||
|
self.var_types["hue"] = "categorical"
|
||
|
hue_order = self.var_levels[self.orient]
|
||
|
|
||
|
# Because we convert the categorical axis variable to string,
|
||
|
# we need to update a dictionary palette too
|
||
|
if isinstance(palette, dict):
|
||
|
palette = {str(k): v for k, v in palette.items()}
|
||
|
|
||
|
else:
|
||
|
if "hue" in self.variables:
|
||
|
redundant = (self.plot_data["hue"] == self.plot_data[self.orient]).all()
|
||
|
else:
|
||
|
redundant = False
|
||
|
self._redundant_hue = redundant
|
||
|
|
||
|
# Previously, categorical plots had a trick where color= could seed the palette.
|
||
|
# Because that's an explicit parameterization, we are going to give it one
|
||
|
# release cycle with a warning before removing.
|
||
|
if "hue" in self.variables and palette is None and color is not None:
|
||
|
if not isinstance(color, str):
|
||
|
color = mpl.colors.to_hex(color)
|
||
|
palette = f"dark:{color}"
|
||
|
msg = (
|
||
|
"\n\nSetting a gradient palette using color= is deprecated and will be "
|
||
|
f"removed in v0.14.0. Set `palette='{palette}'` for the same effect.\n"
|
||
|
)
|
||
|
warnings.warn(msg, FutureWarning, stacklevel=3)
|
||
|
|
||
|
return palette, hue_order
|
||
|
|
||
|
def _palette_without_hue_backcompat(self, palette, hue_order):
|
||
|
"""Provide one cycle where palette= implies hue= when not provided"""
|
||
|
if "hue" not in self.variables and palette is not None:
|
||
|
msg = (
|
||
|
"\n\nPassing `palette` without assigning `hue` is deprecated "
|
||
|
f"and will be removed in v0.14.0. Assign the `{self.orient}` variable "
|
||
|
"to `hue` and set `legend=False` for the same effect.\n"
|
||
|
)
|
||
|
warnings.warn(msg, FutureWarning, stacklevel=3)
|
||
|
|
||
|
self.legend = False
|
||
|
self.plot_data["hue"] = self.plot_data[self.orient]
|
||
|
self.variables["hue"] = self.variables.get(self.orient)
|
||
|
self.var_types["hue"] = self.var_types.get(self.orient)
|
||
|
|
||
|
hue_order = self.var_levels.get(self.orient)
|
||
|
self._var_levels.pop("hue", None)
|
||
|
|
||
|
return hue_order
|
||
|
|
||
|
def _point_kwargs_backcompat(self, scale, join, kwargs):
|
||
|
"""Provide two cycles where scale= and join= work, but redirect to kwargs."""
|
||
|
if scale is not deprecated:
|
||
|
lw = mpl.rcParams["lines.linewidth"] * 1.8 * scale
|
||
|
mew = lw * .75
|
||
|
ms = lw * 2
|
||
|
|
||
|
msg = (
|
||
|
"\n\n"
|
||
|
"The `scale` parameter is deprecated and will be removed in v0.15.0. "
|
||
|
"You can now control the size of each plot element using matplotlib "
|
||
|
"`Line2D` parameters (e.g., `linewidth`, `markersize`, etc.)."
|
||
|
"\n"
|
||
|
)
|
||
|
warnings.warn(msg, stacklevel=3)
|
||
|
kwargs.update(linewidth=lw, markeredgewidth=mew, markersize=ms)
|
||
|
|
||
|
if join is not deprecated:
|
||
|
msg = (
|
||
|
"\n\n"
|
||
|
"The `join` parameter is deprecated and will be removed in v0.15.0."
|
||
|
)
|
||
|
if not join:
|
||
|
msg += (
|
||
|
" You can remove the line between points with `linestyle='none'`."
|
||
|
)
|
||
|
kwargs.update(linestyle="")
|
||
|
msg += "\n"
|
||
|
warnings.warn(msg, stacklevel=3)
|
||
|
|
||
|
def _err_kws_backcompat(self, err_kws, errcolor, errwidth, capsize):
|
||
|
"""Provide two cycles where existing signature-level err_kws are handled."""
|
||
|
def deprecate_err_param(name, key, val):
|
||
|
if val is deprecated:
|
||
|
return
|
||
|
suggest = f"err_kws={{'{key}': {val!r}}}"
|
||
|
msg = (
|
||
|
f"\n\nThe `{name}` parameter is deprecated. And will be removed "
|
||
|
f"in v0.15.0. Pass `{suggest}` instead.\n"
|
||
|
)
|
||
|
warnings.warn(msg, FutureWarning, stacklevel=4)
|
||
|
err_kws[key] = val
|
||
|
|
||
|
if errcolor is not None:
|
||
|
deprecate_err_param("errcolor", "color", errcolor)
|
||
|
deprecate_err_param("errwidth", "linewidth", errwidth)
|
||
|
|
||
|
if capsize is None:
|
||
|
capsize = 0
|
||
|
msg = (
|
||
|
"\n\nPassing `capsize=None` is deprecated and will be removed "
|
||
|
"in v0.15.0. Pass `capsize=0` to disable caps.\n"
|
||
|
)
|
||
|
warnings.warn(msg, FutureWarning, stacklevel=3)
|
||
|
|
||
|
return err_kws, capsize
|
||
|
|
||
|
def _violin_scale_backcompat(self, scale, scale_hue, density_norm, common_norm):
|
||
|
"""Provide two cycles of backcompat for scale kwargs"""
|
||
|
if scale is not deprecated:
|
||
|
density_norm = scale
|
||
|
msg = (
|
||
|
"\n\nThe `scale` parameter has been renamed and will be removed "
|
||
|
f"in v0.15.0. Pass `density_norm={scale!r}` for the same effect."
|
||
|
)
|
||
|
warnings.warn(msg, FutureWarning, stacklevel=3)
|
||
|
|
||
|
if scale_hue is not deprecated:
|
||
|
common_norm = scale_hue
|
||
|
msg = (
|
||
|
"\n\nThe `scale_hue` parameter has been replaced and will be removed "
|
||
|
f"in v0.15.0. Pass `common_norm={not scale_hue}` for the same effect."
|
||
|
)
|
||
|
warnings.warn(msg, FutureWarning, stacklevel=3)
|
||
|
|
||
|
return density_norm, common_norm
|
||
|
|
||
|
def _violin_bw_backcompat(self, bw, bw_method):
|
||
|
"""Provide two cycles of backcompat for violin bandwidth parameterization."""
|
||
|
if bw is not deprecated:
|
||
|
bw_method = bw
|
||
|
msg = dedent(f"""\n
|
||
|
The `bw` parameter is deprecated in favor of `bw_method`/`bw_adjust`.
|
||
|
Setting `bw_method={bw!r}`, but please see docs for the new parameters
|
||
|
and update your code. This will become an error in seaborn v0.15.0.
|
||
|
""")
|
||
|
warnings.warn(msg, FutureWarning, stacklevel=3)
|
||
|
return bw_method
|
||
|
|
||
|
def _boxen_scale_backcompat(self, scale, width_method):
|
||
|
"""Provide two cycles of backcompat for scale kwargs"""
|
||
|
if scale is not deprecated:
|
||
|
width_method = scale
|
||
|
msg = (
|
||
|
"\n\nThe `scale` parameter has been renamed to `width_method` and "
|
||
|
f"will be removed in v0.15. Pass `width_method={scale!r}"
|
||
|
)
|
||
|
if scale == "area":
|
||
|
msg += ", but note that the result for 'area' will appear different."
|
||
|
else:
|
||
|
msg += " for the same effect."
|
||
|
warnings.warn(msg, FutureWarning, stacklevel=3)
|
||
|
|
||
|
return width_method
|
||
|
|
||
|
def _complement_color(self, color, base_color, hue_map):
|
||
|
"""Allow a color to be set automatically using a basis of comparison."""
|
||
|
if color == "gray":
|
||
|
msg = (
|
||
|
'Use "auto" to set automatic grayscale colors. From v0.14.0, '
|
||
|
'"gray" will default to matplotlib\'s definition.'
|
||
|
)
|
||
|
warnings.warn(msg, FutureWarning, stacklevel=3)
|
||
|
color = "auto"
|
||
|
elif color is None or color is default:
|
||
|
color = "auto"
|
||
|
|
||
|
if color != "auto":
|
||
|
return color
|
||
|
|
||
|
if hue_map.lookup_table is None:
|
||
|
if base_color is None:
|
||
|
return None
|
||
|
basis = [mpl.colors.to_rgb(base_color)]
|
||
|
else:
|
||
|
basis = [mpl.colors.to_rgb(c) for c in hue_map.lookup_table.values()]
|
||
|
unique_colors = np.unique(basis, axis=0)
|
||
|
light_vals = [rgb_to_hls(*rgb[:3])[1] for rgb in unique_colors]
|
||
|
lum = min(light_vals) * .6
|
||
|
return (lum, lum, lum)
|
||
|
|
||
|
def _map_prop_with_hue(self, name, value, fallback, plot_kws):
|
||
|
"""Support pointplot behavior of modifying the marker/linestyle with hue."""
|
||
|
if value is default:
|
||
|
value = plot_kws.pop(name, fallback)
|
||
|
|
||
|
if "hue" in self.variables:
|
||
|
levels = self._hue_map.levels
|
||
|
if isinstance(value, list):
|
||
|
mapping = {k: v for k, v in zip(levels, value)}
|
||
|
else:
|
||
|
mapping = {k: value for k in levels}
|
||
|
else:
|
||
|
mapping = {None: value}
|
||
|
|
||
|
return mapping
|
||
|
|
||
|
def _adjust_cat_axis(self, ax, axis):
|
||
|
"""Set ticks and limits for a categorical variable."""
|
||
|
# Note: in theory, this could happen in _attach for all categorical axes
|
||
|
# But two reasons not to do that:
|
||
|
# - If it happens before plotting, autoscaling messes up the plot limits
|
||
|
# - It would change existing plots from other seaborn functions
|
||
|
if self.var_types[axis] != "categorical":
|
||
|
return
|
||
|
|
||
|
# If both x/y data are empty, the correct way to set up the plot is
|
||
|
# somewhat undefined; because we don't add null category data to the plot in
|
||
|
# this case we don't *have* a categorical axis (yet), so best to just bail.
|
||
|
if self.plot_data[axis].empty:
|
||
|
return
|
||
|
|
||
|
# We can infer the total number of categories (including those from previous
|
||
|
# plots that are not part of the plot we are currently making) from the number
|
||
|
# of ticks, which matplotlib sets up while doing unit conversion. This feels
|
||
|
# slightly risky, as if we are relying on something that may be a matplotlib
|
||
|
# implementation detail. But I cannot think of a better way to keep track of
|
||
|
# the state from previous categorical calls (see GH2516 for context)
|
||
|
n = len(getattr(ax, f"get_{axis}ticks")())
|
||
|
|
||
|
if axis == "x":
|
||
|
ax.xaxis.grid(False)
|
||
|
ax.set_xlim(-.5, n - .5, auto=None)
|
||
|
else:
|
||
|
ax.yaxis.grid(False)
|
||
|
# Note limits that correspond to previously-inverted y axis
|
||
|
ax.set_ylim(n - .5, -.5, auto=None)
|
||
|
|
||
|
def _dodge_needed(self):
|
||
|
"""Return True when use of `hue` would cause overlaps."""
|
||
|
groupers = list({self.orient, "col", "row"} & set(self.variables))
|
||
|
if "hue" in self.variables:
|
||
|
orient = self.plot_data[groupers].value_counts()
|
||
|
paired = self.plot_data[[*groupers, "hue"]].value_counts()
|
||
|
return orient.size != paired.size
|
||
|
return False
|
||
|
|
||
|
def _dodge(self, keys, data):
|
||
|
"""Apply a dodge transform to coordinates in place."""
|
||
|
if "hue" not in self.variables:
|
||
|
# Short-circuit if hue variable was not assigned
|
||
|
# We could potentially warn when hue=None, dodge=True, user may be confused
|
||
|
# But I think it's fine to just treat it as a no-op.
|
||
|
return
|
||
|
hue_idx = self._hue_map.levels.index(keys["hue"])
|
||
|
n = len(self._hue_map.levels)
|
||
|
data["width"] /= n
|
||
|
|
||
|
full_width = data["width"] * n
|
||
|
offset = data["width"] * hue_idx + data["width"] / 2 - full_width / 2
|
||
|
data[self.orient] += offset
|
||
|
|
||
|
def _invert_scale(self, ax, data, vars=("x", "y")):
|
||
|
"""Undo scaling after computation so data are plotted correctly."""
|
||
|
for var in vars:
|
||
|
_, inv = _get_transform_functions(ax, var[0])
|
||
|
if var == self.orient and "width" in data:
|
||
|
hw = data["width"] / 2
|
||
|
data["edge"] = inv(data[var] - hw)
|
||
|
data["width"] = inv(data[var] + hw) - data["edge"].to_numpy()
|
||
|
for suf in ["", "min", "max"]:
|
||
|
if (col := f"{var}{suf}") in data:
|
||
|
data[col] = inv(data[col])
|
||
|
|
||
|
def _configure_legend(self, ax, func, common_kws=None, semantic_kws=None):
|
||
|
if self.legend == "auto":
|
||
|
show_legend = not self._redundant_hue and self.input_format != "wide"
|
||
|
else:
|
||
|
show_legend = bool(self.legend)
|
||
|
if show_legend:
|
||
|
self.add_legend_data(ax, func, common_kws, semantic_kws=semantic_kws)
|
||
|
handles, _ = ax.get_legend_handles_labels()
|
||
|
if handles:
|
||
|
ax.legend(title=self.legend_title)
|
||
|
|
||
|
@property
|
||
|
def _native_width(self):
|
||
|
"""Return unit of width separating categories on native numeric scale."""
|
||
|
# Categorical data always have a unit width
|
||
|
if self.var_types[self.orient] == "categorical":
|
||
|
return 1
|
||
|
|
||
|
# Otherwise, define the width as the smallest space between observations
|
||
|
unique_values = np.unique(self.comp_data[self.orient])
|
||
|
if len(unique_values) > 1:
|
||
|
native_width = np.nanmin(np.diff(unique_values))
|
||
|
else:
|
||
|
native_width = 1
|
||
|
return native_width
|
||
|
|
||
|
def _nested_offsets(self, width, dodge):
|
||
|
"""Return offsets for each hue level for dodged plots."""
|
||
|
offsets = None
|
||
|
if "hue" in self.variables and self._hue_map.levels is not None:
|
||
|
n_levels = len(self._hue_map.levels)
|
||
|
if dodge:
|
||
|
each_width = width / n_levels
|
||
|
offsets = np.linspace(0, width - each_width, n_levels)
|
||
|
offsets -= offsets.mean()
|
||
|
else:
|
||
|
offsets = np.zeros(n_levels)
|
||
|
return offsets
|
||
|
|
||
|
# Note that the plotting methods here aim (in most cases) to produce the
|
||
|
# exact same artists as the original (pre 0.12) version of the code, so
|
||
|
# there is some weirdness that might not otherwise be clean or make sense in
|
||
|
# this context, such as adding empty artists for combinations of variables
|
||
|
# with no observations
|
||
|
|
||
|
def plot_strips(
|
||
|
self,
|
||
|
jitter,
|
||
|
dodge,
|
||
|
color,
|
||
|
plot_kws,
|
||
|
):
|
||
|
|
||
|
width = .8 * self._native_width
|
||
|
offsets = self._nested_offsets(width, dodge)
|
||
|
|
||
|
if jitter is True:
|
||
|
jlim = 0.1
|
||
|
else:
|
||
|
jlim = float(jitter)
|
||
|
if "hue" in self.variables and dodge and self._hue_map.levels is not None:
|
||
|
jlim /= len(self._hue_map.levels)
|
||
|
jlim *= self._native_width
|
||
|
jitterer = partial(np.random.uniform, low=-jlim, high=+jlim)
|
||
|
|
||
|
iter_vars = [self.orient]
|
||
|
if dodge:
|
||
|
iter_vars.append("hue")
|
||
|
|
||
|
ax = self.ax
|
||
|
dodge_move = jitter_move = 0
|
||
|
|
||
|
if "marker" in plot_kws and not MarkerStyle(plot_kws["marker"]).is_filled():
|
||
|
plot_kws.pop("edgecolor", None)
|
||
|
|
||
|
for sub_vars, sub_data in self.iter_data(iter_vars,
|
||
|
from_comp_data=True,
|
||
|
allow_empty=True):
|
||
|
|
||
|
ax = self._get_axes(sub_vars)
|
||
|
|
||
|
if offsets is not None and (offsets != 0).any():
|
||
|
dodge_move = offsets[sub_data["hue"].map(self._hue_map.levels.index)]
|
||
|
|
||
|
jitter_move = jitterer(size=len(sub_data)) if len(sub_data) > 1 else 0
|
||
|
|
||
|
adjusted_data = sub_data[self.orient] + dodge_move + jitter_move
|
||
|
sub_data[self.orient] = adjusted_data
|
||
|
self._invert_scale(ax, sub_data)
|
||
|
|
||
|
points = ax.scatter(sub_data["x"], sub_data["y"], color=color, **plot_kws)
|
||
|
if "hue" in self.variables:
|
||
|
points.set_facecolors(self._hue_map(sub_data["hue"]))
|
||
|
|
||
|
self._configure_legend(ax, _scatter_legend_artist, common_kws=plot_kws)
|
||
|
|
||
|
def plot_swarms(
|
||
|
self,
|
||
|
dodge,
|
||
|
color,
|
||
|
warn_thresh,
|
||
|
plot_kws,
|
||
|
):
|
||
|
|
||
|
width = .8 * self._native_width
|
||
|
offsets = self._nested_offsets(width, dodge)
|
||
|
|
||
|
iter_vars = [self.orient]
|
||
|
if dodge:
|
||
|
iter_vars.append("hue")
|
||
|
|
||
|
ax = self.ax
|
||
|
point_collections = {}
|
||
|
dodge_move = 0
|
||
|
|
||
|
if "marker" in plot_kws and not MarkerStyle(plot_kws["marker"]).is_filled():
|
||
|
plot_kws.pop("edgecolor", None)
|
||
|
|
||
|
for sub_vars, sub_data in self.iter_data(iter_vars,
|
||
|
from_comp_data=True,
|
||
|
allow_empty=True):
|
||
|
|
||
|
ax = self._get_axes(sub_vars)
|
||
|
|
||
|
if offsets is not None:
|
||
|
dodge_move = offsets[sub_data["hue"].map(self._hue_map.levels.index)]
|
||
|
|
||
|
if not sub_data.empty:
|
||
|
sub_data[self.orient] = sub_data[self.orient] + dodge_move
|
||
|
|
||
|
self._invert_scale(ax, sub_data)
|
||
|
|
||
|
points = ax.scatter(sub_data["x"], sub_data["y"], color=color, **plot_kws)
|
||
|
if "hue" in self.variables:
|
||
|
points.set_facecolors(self._hue_map(sub_data["hue"]))
|
||
|
|
||
|
if not sub_data.empty:
|
||
|
point_collections[(ax, sub_data[self.orient].iloc[0])] = points
|
||
|
|
||
|
beeswarm = Beeswarm(width=width, orient=self.orient, warn_thresh=warn_thresh)
|
||
|
for (ax, center), points in point_collections.items():
|
||
|
if points.get_offsets().shape[0] > 1:
|
||
|
|
||
|
def draw(points, renderer, *, center=center):
|
||
|
|
||
|
beeswarm(points, center)
|
||
|
|
||
|
if self.orient == "y":
|
||
|
scalex = False
|
||
|
scaley = ax.get_autoscaley_on()
|
||
|
else:
|
||
|
scalex = ax.get_autoscalex_on()
|
||
|
scaley = False
|
||
|
|
||
|
# This prevents us from undoing the nice categorical axis limits
|
||
|
# set in _adjust_cat_axis, because that method currently leave
|
||
|
# the autoscale flag in its original setting. It may be better
|
||
|
# to disable autoscaling there to avoid needing to do this.
|
||
|
fixed_scale = self.var_types[self.orient] == "categorical"
|
||
|
ax.update_datalim(points.get_datalim(ax.transData))
|
||
|
if not fixed_scale and (scalex or scaley):
|
||
|
ax.autoscale_view(scalex=scalex, scaley=scaley)
|
||
|
|
||
|
super(points.__class__, points).draw(renderer)
|
||
|
|
||
|
points.draw = draw.__get__(points)
|
||
|
|
||
|
_draw_figure(ax.figure)
|
||
|
self._configure_legend(ax, _scatter_legend_artist, plot_kws)
|
||
|
|
||
|
def plot_boxes(
|
||
|
self,
|
||
|
width,
|
||
|
dodge,
|
||
|
gap,
|
||
|
fill,
|
||
|
whis,
|
||
|
color,
|
||
|
linecolor,
|
||
|
linewidth,
|
||
|
fliersize,
|
||
|
plot_kws, # TODO rename user_kws?
|
||
|
):
|
||
|
|
||
|
iter_vars = ["hue"]
|
||
|
value_var = {"x": "y", "y": "x"}[self.orient]
|
||
|
|
||
|
def get_props(element, artist=mpl.lines.Line2D):
|
||
|
return normalize_kwargs(plot_kws.pop(f"{element}props", {}), artist)
|
||
|
|
||
|
if not fill and linewidth is None:
|
||
|
linewidth = mpl.rcParams["lines.linewidth"]
|
||
|
bootstrap = plot_kws.pop("bootstrap", mpl.rcParams["boxplot.bootstrap"])
|
||
|
plot_kws.setdefault("shownotches", plot_kws.pop("notch", False))
|
||
|
|
||
|
box_artist = mpl.patches.Rectangle if fill else mpl.lines.Line2D
|
||
|
props = {
|
||
|
"box": get_props("box", box_artist),
|
||
|
"median": get_props("median"),
|
||
|
"whisker": get_props("whisker"),
|
||
|
"flier": get_props("flier"),
|
||
|
"cap": get_props("cap"),
|
||
|
}
|
||
|
|
||
|
props["median"].setdefault("solid_capstyle", "butt")
|
||
|
props["whisker"].setdefault("solid_capstyle", "butt")
|
||
|
props["flier"].setdefault("markersize", fliersize)
|
||
|
|
||
|
ax = self.ax
|
||
|
|
||
|
for sub_vars, sub_data in self.iter_data(iter_vars,
|
||
|
from_comp_data=True,
|
||
|
allow_empty=False):
|
||
|
|
||
|
ax = self._get_axes(sub_vars)
|
||
|
|
||
|
grouped = sub_data.groupby(self.orient)[value_var]
|
||
|
positions = sorted(sub_data[self.orient].unique().astype(float))
|
||
|
value_data = [x.to_numpy() for _, x in grouped]
|
||
|
stats = pd.DataFrame(mpl.cbook.boxplot_stats(value_data, whis=whis,
|
||
|
bootstrap=bootstrap))
|
||
|
|
||
|
orig_width = width * self._native_width
|
||
|
data = pd.DataFrame({self.orient: positions, "width": orig_width})
|
||
|
if dodge:
|
||
|
self._dodge(sub_vars, data)
|
||
|
if gap:
|
||
|
data["width"] *= 1 - gap
|
||
|
capwidth = plot_kws.get("capwidths", 0.5 * data["width"])
|
||
|
|
||
|
self._invert_scale(ax, data)
|
||
|
_, inv = _get_transform_functions(ax, value_var)
|
||
|
for stat in ["mean", "med", "q1", "q3", "cilo", "cihi", "whislo", "whishi"]:
|
||
|
stats[stat] = inv(stats[stat])
|
||
|
stats["fliers"] = stats["fliers"].map(inv)
|
||
|
|
||
|
linear_orient_scale = getattr(ax, f"get_{self.orient}scale")() == "linear"
|
||
|
|
||
|
maincolor = self._hue_map(sub_vars["hue"]) if "hue" in sub_vars else color
|
||
|
if fill:
|
||
|
boxprops = {
|
||
|
"facecolor": maincolor, "edgecolor": linecolor, **props["box"]
|
||
|
}
|
||
|
medianprops = {"color": linecolor, **props["median"]}
|
||
|
whiskerprops = {"color": linecolor, **props["whisker"]}
|
||
|
flierprops = {"markeredgecolor": linecolor, **props["flier"]}
|
||
|
capprops = {"color": linecolor, **props["cap"]}
|
||
|
else:
|
||
|
boxprops = {"color": maincolor, **props["box"]}
|
||
|
medianprops = {"color": maincolor, **props["median"]}
|
||
|
whiskerprops = {"color": maincolor, **props["whisker"]}
|
||
|
flierprops = {"markeredgecolor": maincolor, **props["flier"]}
|
||
|
capprops = {"color": maincolor, **props["cap"]}
|
||
|
|
||
|
if linewidth is not None:
|
||
|
for prop_dict in [boxprops, medianprops, whiskerprops, capprops]:
|
||
|
prop_dict.setdefault("linewidth", linewidth)
|
||
|
|
||
|
default_kws = dict(
|
||
|
bxpstats=stats.to_dict("records"),
|
||
|
positions=data[self.orient],
|
||
|
# Set width to 0 to avoid going out of domain
|
||
|
widths=data["width"] if linear_orient_scale else 0,
|
||
|
patch_artist=fill,
|
||
|
vert=self.orient == "x",
|
||
|
manage_ticks=False,
|
||
|
boxprops=boxprops,
|
||
|
medianprops=medianprops,
|
||
|
whiskerprops=whiskerprops,
|
||
|
flierprops=flierprops,
|
||
|
capprops=capprops,
|
||
|
# Added in matplotlib 3.6.0; see below
|
||
|
# capwidths=capwidth,
|
||
|
**(
|
||
|
{} if _version_predates(mpl, "3.6.0")
|
||
|
else {"capwidths": capwidth}
|
||
|
)
|
||
|
)
|
||
|
boxplot_kws = {**default_kws, **plot_kws}
|
||
|
artists = ax.bxp(**boxplot_kws)
|
||
|
|
||
|
# Reset artist widths after adding so everything stays positive
|
||
|
ori_idx = ["x", "y"].index(self.orient)
|
||
|
|
||
|
if not linear_orient_scale:
|
||
|
for i, box in enumerate(data.to_dict("records")):
|
||
|
p0 = box["edge"]
|
||
|
p1 = box["edge"] + box["width"]
|
||
|
|
||
|
if artists["boxes"]:
|
||
|
box_artist = artists["boxes"][i]
|
||
|
if fill:
|
||
|
box_verts = box_artist.get_path().vertices.T
|
||
|
else:
|
||
|
box_verts = box_artist.get_data()
|
||
|
box_verts[ori_idx][0] = p0
|
||
|
box_verts[ori_idx][3:] = p0
|
||
|
box_verts[ori_idx][1:3] = p1
|
||
|
if not fill:
|
||
|
# When fill is True, the data get changed in place
|
||
|
box_artist.set_data(box_verts)
|
||
|
ax.update_datalim(
|
||
|
np.transpose(box_verts),
|
||
|
updatex=self.orient == "x",
|
||
|
updatey=self.orient == "y",
|
||
|
)
|
||
|
|
||
|
if artists["medians"]:
|
||
|
verts = artists["medians"][i].get_xydata().T
|
||
|
verts[ori_idx][:] = p0, p1
|
||
|
artists["medians"][i].set_data(verts)
|
||
|
|
||
|
if artists["caps"]:
|
||
|
f_fwd, f_inv = _get_transform_functions(ax, self.orient)
|
||
|
for line in artists["caps"][2 * i:2 * i + 2]:
|
||
|
p0 = f_inv(f_fwd(box[self.orient]) - capwidth[i] / 2)
|
||
|
p1 = f_inv(f_fwd(box[self.orient]) + capwidth[i] / 2)
|
||
|
verts = line.get_xydata().T
|
||
|
verts[ori_idx][:] = p0, p1
|
||
|
line.set_data(verts)
|
||
|
|
||
|
ax.add_container(BoxPlotContainer(artists))
|
||
|
|
||
|
legend_artist = _get_patch_legend_artist(fill)
|
||
|
self._configure_legend(ax, legend_artist, boxprops)
|
||
|
|
||
|
def plot_boxens(
|
||
|
self,
|
||
|
width,
|
||
|
dodge,
|
||
|
gap,
|
||
|
fill,
|
||
|
color,
|
||
|
linecolor,
|
||
|
linewidth,
|
||
|
width_method,
|
||
|
k_depth,
|
||
|
outlier_prop,
|
||
|
trust_alpha,
|
||
|
showfliers,
|
||
|
box_kws,
|
||
|
flier_kws,
|
||
|
line_kws,
|
||
|
plot_kws,
|
||
|
):
|
||
|
|
||
|
iter_vars = [self.orient, "hue"]
|
||
|
value_var = {"x": "y", "y": "x"}[self.orient]
|
||
|
|
||
|
estimator = LetterValues(k_depth, outlier_prop, trust_alpha)
|
||
|
|
||
|
width_method_options = ["exponential", "linear", "area"]
|
||
|
_check_argument("width_method", width_method_options, width_method)
|
||
|
|
||
|
box_kws = plot_kws if box_kws is None else {**plot_kws, **box_kws}
|
||
|
flier_kws = {} if flier_kws is None else flier_kws.copy()
|
||
|
line_kws = {} if line_kws is None else line_kws.copy()
|
||
|
|
||
|
if linewidth is None:
|
||
|
if fill:
|
||
|
linewidth = 0.5 * mpl.rcParams["lines.linewidth"]
|
||
|
else:
|
||
|
linewidth = mpl.rcParams["lines.linewidth"]
|
||
|
|
||
|
ax = self.ax
|
||
|
|
||
|
for sub_vars, sub_data in self.iter_data(iter_vars,
|
||
|
from_comp_data=True,
|
||
|
allow_empty=False):
|
||
|
|
||
|
ax = self._get_axes(sub_vars)
|
||
|
_, inv_ori = _get_transform_functions(ax, self.orient)
|
||
|
_, inv_val = _get_transform_functions(ax, value_var)
|
||
|
|
||
|
# Statistics
|
||
|
lv_data = estimator(sub_data[value_var])
|
||
|
n = lv_data["k"] * 2 - 1
|
||
|
vals = lv_data["values"]
|
||
|
|
||
|
pos_data = pd.DataFrame({
|
||
|
self.orient: [sub_vars[self.orient]],
|
||
|
"width": [width * self._native_width],
|
||
|
})
|
||
|
if dodge:
|
||
|
self._dodge(sub_vars, pos_data)
|
||
|
if gap:
|
||
|
pos_data["width"] *= 1 - gap
|
||
|
|
||
|
# Letter-value boxes
|
||
|
levels = lv_data["levels"]
|
||
|
exponent = (levels - 1 - lv_data["k"]).astype(float)
|
||
|
if width_method == "linear":
|
||
|
rel_widths = levels + 1
|
||
|
elif width_method == "exponential":
|
||
|
rel_widths = 2 ** exponent
|
||
|
elif width_method == "area":
|
||
|
tails = levels < (lv_data["k"] - 1)
|
||
|
rel_widths = 2 ** (exponent - tails) / np.diff(lv_data["values"])
|
||
|
|
||
|
center = pos_data[self.orient].item()
|
||
|
widths = rel_widths / rel_widths.max() * pos_data["width"].item()
|
||
|
|
||
|
box_vals = inv_val(vals)
|
||
|
box_pos = inv_ori(center - widths / 2)
|
||
|
box_heights = inv_val(vals[1:]) - inv_val(vals[:-1])
|
||
|
box_widths = inv_ori(center + widths / 2) - inv_ori(center - widths / 2)
|
||
|
|
||
|
maincolor = self._hue_map(sub_vars["hue"]) if "hue" in sub_vars else color
|
||
|
flier_colors = {
|
||
|
"facecolor": "none", "edgecolor": ".45" if fill else maincolor
|
||
|
}
|
||
|
if fill:
|
||
|
cmap = light_palette(maincolor, as_cmap=True)
|
||
|
boxcolors = cmap(2 ** ((exponent + 2) / 3))
|
||
|
else:
|
||
|
boxcolors = maincolor
|
||
|
|
||
|
boxen = []
|
||
|
for i in range(n):
|
||
|
if self.orient == "x":
|
||
|
xy = (box_pos[i], box_vals[i])
|
||
|
w, h = (box_widths[i], box_heights[i])
|
||
|
else:
|
||
|
xy = (box_vals[i], box_pos[i])
|
||
|
w, h = (box_heights[i], box_widths[i])
|
||
|
boxen.append(Rectangle(xy, w, h))
|
||
|
|
||
|
if fill:
|
||
|
box_colors = {"facecolors": boxcolors, "edgecolors": linecolor}
|
||
|
else:
|
||
|
box_colors = {"facecolors": "none", "edgecolors": boxcolors}
|
||
|
|
||
|
collection_kws = {**box_colors, "linewidth": linewidth, **box_kws}
|
||
|
ax.add_collection(PatchCollection(boxen, **collection_kws), autolim=False)
|
||
|
ax.update_datalim(
|
||
|
np.column_stack([box_vals, box_vals]),
|
||
|
updatex=self.orient == "y",
|
||
|
updatey=self.orient == "x",
|
||
|
)
|
||
|
|
||
|
# Median line
|
||
|
med = lv_data["median"]
|
||
|
hw = pos_data["width"].item() / 2
|
||
|
if self.orient == "x":
|
||
|
x, y = inv_ori([center - hw, center + hw]), inv_val([med, med])
|
||
|
else:
|
||
|
x, y = inv_val([med, med]), inv_ori([center - hw, center + hw])
|
||
|
default_kws = {
|
||
|
"color": linecolor if fill else maincolor,
|
||
|
"solid_capstyle": "butt",
|
||
|
"linewidth": 1.25 * linewidth,
|
||
|
}
|
||
|
ax.plot(x, y, **{**default_kws, **line_kws})
|
||
|
|
||
|
# Outliers ("fliers")
|
||
|
if showfliers:
|
||
|
vals = inv_val(lv_data["fliers"])
|
||
|
pos = np.full(len(vals), inv_ori(pos_data[self.orient].item()))
|
||
|
x, y = (pos, vals) if self.orient == "x" else (vals, pos)
|
||
|
ax.scatter(x, y, **{**flier_colors, "s": 25, **flier_kws})
|
||
|
|
||
|
ax.autoscale_view(scalex=self.orient == "y", scaley=self.orient == "x")
|
||
|
|
||
|
legend_artist = _get_patch_legend_artist(fill)
|
||
|
common_kws = {**box_kws, "linewidth": linewidth, "edgecolor": linecolor}
|
||
|
self._configure_legend(ax, legend_artist, common_kws)
|
||
|
|
||
|
def plot_violins(
|
||
|
self,
|
||
|
width,
|
||
|
dodge,
|
||
|
gap,
|
||
|
split,
|
||
|
color,
|
||
|
fill,
|
||
|
linecolor,
|
||
|
linewidth,
|
||
|
inner,
|
||
|
density_norm,
|
||
|
common_norm,
|
||
|
kde_kws,
|
||
|
inner_kws,
|
||
|
plot_kws,
|
||
|
):
|
||
|
|
||
|
iter_vars = [self.orient, "hue"]
|
||
|
value_var = {"x": "y", "y": "x"}[self.orient]
|
||
|
|
||
|
inner_options = ["box", "quart", "stick", "point", None]
|
||
|
_check_argument("inner", inner_options, inner, prefix=True)
|
||
|
_check_argument("density_norm", ["area", "count", "width"], density_norm)
|
||
|
|
||
|
if linewidth is None:
|
||
|
if fill:
|
||
|
linewidth = 1.25 * mpl.rcParams["patch.linewidth"]
|
||
|
else:
|
||
|
linewidth = mpl.rcParams["lines.linewidth"]
|
||
|
|
||
|
if inner is not None and inner.startswith("box"):
|
||
|
box_width = inner_kws.pop("box_width", linewidth * 4.5)
|
||
|
whis_width = inner_kws.pop("whis_width", box_width / 3)
|
||
|
marker = inner_kws.pop("marker", "_" if self.orient == "x" else "|")
|
||
|
|
||
|
kde = KDE(**kde_kws)
|
||
|
ax = self.ax
|
||
|
violin_data = []
|
||
|
|
||
|
# Iterate through all the data splits once to compute the KDEs
|
||
|
for sub_vars, sub_data in self.iter_data(iter_vars,
|
||
|
from_comp_data=True,
|
||
|
allow_empty=False):
|
||
|
|
||
|
sub_data["weight"] = sub_data.get("weights", 1)
|
||
|
stat_data = kde._transform(sub_data, value_var, [])
|
||
|
|
||
|
maincolor = self._hue_map(sub_vars["hue"]) if "hue" in sub_vars else color
|
||
|
if not fill:
|
||
|
linecolor = maincolor
|
||
|
maincolor = "none"
|
||
|
default_kws = dict(
|
||
|
facecolor=maincolor,
|
||
|
edgecolor=linecolor,
|
||
|
linewidth=linewidth,
|
||
|
)
|
||
|
|
||
|
violin_data.append({
|
||
|
"position": sub_vars[self.orient],
|
||
|
"observations": sub_data[value_var],
|
||
|
"density": stat_data["density"],
|
||
|
"support": stat_data[value_var],
|
||
|
"kwargs": {**default_kws, **plot_kws},
|
||
|
"sub_vars": sub_vars,
|
||
|
"ax": self._get_axes(sub_vars),
|
||
|
})
|
||
|
|
||
|
# Once we've computed all the KDEs, get statistics for normalization
|
||
|
def vars_to_key(sub_vars):
|
||
|
return tuple((k, v) for k, v in sub_vars.items() if k != self.orient)
|
||
|
|
||
|
norm_keys = [vars_to_key(violin["sub_vars"]) for violin in violin_data]
|
||
|
if common_norm:
|
||
|
common_max_density = np.nanmax([v["density"].max() for v in violin_data])
|
||
|
common_max_count = np.nanmax([len(v["observations"]) for v in violin_data])
|
||
|
max_density = {key: common_max_density for key in norm_keys}
|
||
|
max_count = {key: common_max_count for key in norm_keys}
|
||
|
else:
|
||
|
with warnings.catch_warnings():
|
||
|
# Ignore warning when all violins are singular; it's not important
|
||
|
warnings.filterwarnings('ignore', "All-NaN (slice|axis) encountered")
|
||
|
max_density = {
|
||
|
key: np.nanmax([
|
||
|
v["density"].max() for v in violin_data
|
||
|
if vars_to_key(v["sub_vars"]) == key
|
||
|
]) for key in norm_keys
|
||
|
}
|
||
|
max_count = {
|
||
|
key: np.nanmax([
|
||
|
len(v["observations"]) for v in violin_data
|
||
|
if vars_to_key(v["sub_vars"]) == key
|
||
|
]) for key in norm_keys
|
||
|
}
|
||
|
|
||
|
real_width = width * self._native_width
|
||
|
|
||
|
# Now iterate through the violins again to apply the normalization and plot
|
||
|
for violin in violin_data:
|
||
|
|
||
|
index = pd.RangeIndex(0, max(len(violin["support"]), 1))
|
||
|
data = pd.DataFrame({
|
||
|
self.orient: violin["position"],
|
||
|
value_var: violin["support"],
|
||
|
"density": violin["density"],
|
||
|
"width": real_width,
|
||
|
}, index=index)
|
||
|
|
||
|
if dodge:
|
||
|
self._dodge(violin["sub_vars"], data)
|
||
|
if gap:
|
||
|
data["width"] *= 1 - gap
|
||
|
|
||
|
# Normalize the density across the distribution(s) and relative to the width
|
||
|
norm_key = vars_to_key(violin["sub_vars"])
|
||
|
hw = data["width"] / 2
|
||
|
peak_density = violin["density"].max()
|
||
|
if np.isnan(peak_density):
|
||
|
span = 1
|
||
|
elif density_norm == "area":
|
||
|
span = data["density"] / max_density[norm_key]
|
||
|
elif density_norm == "count":
|
||
|
count = len(violin["observations"])
|
||
|
span = data["density"] / peak_density * (count / max_count[norm_key])
|
||
|
elif density_norm == "width":
|
||
|
span = data["density"] / peak_density
|
||
|
span = span * hw * (2 if split else 1)
|
||
|
|
||
|
# Handle split violins (i.e. asymmetric spans)
|
||
|
right_side = (
|
||
|
0 if "hue" not in self.variables
|
||
|
else self._hue_map.levels.index(violin["sub_vars"]["hue"]) % 2
|
||
|
)
|
||
|
if split:
|
||
|
offsets = (hw, span - hw) if right_side else (span - hw, hw)
|
||
|
else:
|
||
|
offsets = span, span
|
||
|
|
||
|
ax = violin["ax"]
|
||
|
_, invx = _get_transform_functions(ax, "x")
|
||
|
_, invy = _get_transform_functions(ax, "y")
|
||
|
inv_pos = {"x": invx, "y": invy}[self.orient]
|
||
|
inv_val = {"x": invx, "y": invy}[value_var]
|
||
|
|
||
|
linecolor = violin["kwargs"]["edgecolor"]
|
||
|
|
||
|
# Handle singular datasets (one or more observations with no variance
|
||
|
if np.isnan(peak_density):
|
||
|
pos = data[self.orient].iloc[0]
|
||
|
val = violin["observations"].mean()
|
||
|
if self.orient == "x":
|
||
|
x, y = [pos - offsets[0], pos + offsets[1]], [val, val]
|
||
|
else:
|
||
|
x, y = [val, val], [pos - offsets[0], pos + offsets[1]]
|
||
|
ax.plot(invx(x), invy(y), color=linecolor, linewidth=linewidth)
|
||
|
continue
|
||
|
|
||
|
# Plot the main violin body
|
||
|
plot_func = {"x": ax.fill_betweenx, "y": ax.fill_between}[self.orient]
|
||
|
plot_func(
|
||
|
inv_val(data[value_var]),
|
||
|
inv_pos(data[self.orient] - offsets[0]),
|
||
|
inv_pos(data[self.orient] + offsets[1]),
|
||
|
**violin["kwargs"]
|
||
|
)
|
||
|
|
||
|
# Adjust the observation data
|
||
|
obs = violin["observations"]
|
||
|
pos_dict = {self.orient: violin["position"], "width": real_width}
|
||
|
if dodge:
|
||
|
self._dodge(violin["sub_vars"], pos_dict)
|
||
|
if gap:
|
||
|
pos_dict["width"] *= (1 - gap)
|
||
|
|
||
|
# --- Plot the inner components
|
||
|
if inner is None:
|
||
|
continue
|
||
|
|
||
|
elif inner.startswith("point"):
|
||
|
pos = np.array([pos_dict[self.orient]] * len(obs))
|
||
|
if split:
|
||
|
pos += (-1 if right_side else 1) * pos_dict["width"] / 2
|
||
|
x, y = (pos, obs) if self.orient == "x" else (obs, pos)
|
||
|
kws = {
|
||
|
"color": linecolor,
|
||
|
"edgecolor": linecolor,
|
||
|
"s": (linewidth * 2) ** 2,
|
||
|
"zorder": violin["kwargs"].get("zorder", 2) + 1,
|
||
|
**inner_kws,
|
||
|
}
|
||
|
ax.scatter(invx(x), invy(y), **kws)
|
||
|
|
||
|
elif inner.startswith("stick"):
|
||
|
pos0 = np.interp(obs, data[value_var], data[self.orient] - offsets[0])
|
||
|
pos1 = np.interp(obs, data[value_var], data[self.orient] + offsets[1])
|
||
|
pos_pts = np.stack([inv_pos(pos0), inv_pos(pos1)])
|
||
|
val_pts = np.stack([inv_val(obs), inv_val(obs)])
|
||
|
segments = np.stack([pos_pts, val_pts]).transpose(2, 1, 0)
|
||
|
if self.orient == "y":
|
||
|
segments = segments[:, :, ::-1]
|
||
|
kws = {
|
||
|
"color": linecolor,
|
||
|
"linewidth": linewidth / 2,
|
||
|
**inner_kws,
|
||
|
}
|
||
|
lines = mpl.collections.LineCollection(segments, **kws)
|
||
|
ax.add_collection(lines, autolim=False)
|
||
|
|
||
|
elif inner.startswith("quart"):
|
||
|
stats = np.percentile(obs, [25, 50, 75])
|
||
|
pos0 = np.interp(stats, data[value_var], data[self.orient] - offsets[0])
|
||
|
pos1 = np.interp(stats, data[value_var], data[self.orient] + offsets[1])
|
||
|
pos_pts = np.stack([inv_pos(pos0), inv_pos(pos1)])
|
||
|
val_pts = np.stack([inv_val(stats), inv_val(stats)])
|
||
|
segments = np.stack([pos_pts, val_pts]).transpose(2, 0, 1)
|
||
|
if self.orient == "y":
|
||
|
segments = segments[:, ::-1, :]
|
||
|
dashes = [(1.25, .75), (2.5, 1), (1.25, .75)]
|
||
|
for i, segment in enumerate(segments):
|
||
|
kws = {
|
||
|
"color": linecolor,
|
||
|
"linewidth": linewidth,
|
||
|
"dashes": dashes[i],
|
||
|
**inner_kws,
|
||
|
}
|
||
|
ax.plot(*segment, **kws)
|
||
|
|
||
|
elif inner.startswith("box"):
|
||
|
stats = mpl.cbook.boxplot_stats(obs)[0]
|
||
|
pos = np.array(pos_dict[self.orient])
|
||
|
if split:
|
||
|
pos += (-1 if right_side else 1) * pos_dict["width"] / 2
|
||
|
pos = [pos, pos], [pos, pos], [pos]
|
||
|
val = (
|
||
|
[stats["whislo"], stats["whishi"]],
|
||
|
[stats["q1"], stats["q3"]],
|
||
|
[stats["med"]]
|
||
|
)
|
||
|
if self.orient == "x":
|
||
|
(x0, x1, x2), (y0, y1, y2) = pos, val
|
||
|
else:
|
||
|
(x0, x1, x2), (y0, y1, y2) = val, pos
|
||
|
|
||
|
if split:
|
||
|
offset = (1 if right_side else -1) * box_width / 72 / 2
|
||
|
dx, dy = (offset, 0) if self.orient == "x" else (0, -offset)
|
||
|
trans = ax.transData + mpl.transforms.ScaledTranslation(
|
||
|
dx, dy, ax.figure.dpi_scale_trans,
|
||
|
)
|
||
|
else:
|
||
|
trans = ax.transData
|
||
|
line_kws = {
|
||
|
"color": linecolor,
|
||
|
"transform": trans,
|
||
|
**inner_kws,
|
||
|
"linewidth": whis_width,
|
||
|
}
|
||
|
ax.plot(invx(x0), invy(y0), **line_kws)
|
||
|
line_kws["linewidth"] = box_width
|
||
|
ax.plot(invx(x1), invy(y1), **line_kws)
|
||
|
dot_kws = {
|
||
|
"marker": marker,
|
||
|
"markersize": box_width / 1.2,
|
||
|
"markeredgewidth": box_width / 5,
|
||
|
"transform": trans,
|
||
|
**inner_kws,
|
||
|
"markeredgecolor": "w",
|
||
|
"markerfacecolor": "w",
|
||
|
"color": linecolor, # simplify tests
|
||
|
}
|
||
|
ax.plot(invx(x2), invy(y2), **dot_kws)
|
||
|
|
||
|
legend_artist = _get_patch_legend_artist(fill)
|
||
|
common_kws = {**plot_kws, "linewidth": linewidth, "edgecolor": linecolor}
|
||
|
self._configure_legend(ax, legend_artist, common_kws)
|
||
|
|
||
|
def plot_points(
|
||
|
self,
|
||
|
aggregator,
|
||
|
markers,
|
||
|
linestyles,
|
||
|
dodge,
|
||
|
color,
|
||
|
capsize,
|
||
|
err_kws,
|
||
|
plot_kws,
|
||
|
):
|
||
|
|
||
|
agg_var = {"x": "y", "y": "x"}[self.orient]
|
||
|
iter_vars = ["hue"]
|
||
|
|
||
|
plot_kws = normalize_kwargs(plot_kws, mpl.lines.Line2D)
|
||
|
plot_kws.setdefault("linewidth", mpl.rcParams["lines.linewidth"] * 1.8)
|
||
|
plot_kws.setdefault("markeredgewidth", plot_kws["linewidth"] * 0.75)
|
||
|
plot_kws.setdefault("markersize", plot_kws["linewidth"] * np.sqrt(2 * np.pi))
|
||
|
|
||
|
markers = self._map_prop_with_hue("marker", markers, "o", plot_kws)
|
||
|
linestyles = self._map_prop_with_hue("linestyle", linestyles, "-", plot_kws)
|
||
|
|
||
|
base_positions = self.var_levels[self.orient]
|
||
|
if self.var_types[self.orient] == "categorical":
|
||
|
min_cat_val = int(self.comp_data[self.orient].min())
|
||
|
max_cat_val = int(self.comp_data[self.orient].max())
|
||
|
base_positions = [i for i in range(min_cat_val, max_cat_val + 1)]
|
||
|
|
||
|
n_hue_levels = 0 if self._hue_map.levels is None else len(self._hue_map.levels)
|
||
|
if dodge is True:
|
||
|
dodge = .025 * n_hue_levels
|
||
|
|
||
|
ax = self.ax
|
||
|
|
||
|
for sub_vars, sub_data in self.iter_data(iter_vars,
|
||
|
from_comp_data=True,
|
||
|
allow_empty=True):
|
||
|
|
||
|
ax = self._get_axes(sub_vars)
|
||
|
|
||
|
ori_axis = getattr(ax, f"{self.orient}axis")
|
||
|
transform, _ = _get_transform_functions(ax, self.orient)
|
||
|
positions = transform(ori_axis.convert_units(base_positions))
|
||
|
agg_data = sub_data if sub_data.empty else (
|
||
|
sub_data
|
||
|
.groupby(self.orient)
|
||
|
.apply(aggregator, agg_var, **groupby_apply_include_groups(False))
|
||
|
.reindex(pd.Index(positions, name=self.orient))
|
||
|
.reset_index()
|
||
|
)
|
||
|
|
||
|
if dodge:
|
||
|
hue_idx = self._hue_map.levels.index(sub_vars["hue"])
|
||
|
step_size = dodge / (n_hue_levels - 1)
|
||
|
offset = -dodge / 2 + step_size * hue_idx
|
||
|
agg_data[self.orient] += offset * self._native_width
|
||
|
|
||
|
self._invert_scale(ax, agg_data)
|
||
|
|
||
|
sub_kws = plot_kws.copy()
|
||
|
sub_kws.update(
|
||
|
marker=markers[sub_vars.get("hue")],
|
||
|
linestyle=linestyles[sub_vars.get("hue")],
|
||
|
color=self._hue_map(sub_vars["hue"]) if "hue" in sub_vars else color,
|
||
|
)
|
||
|
|
||
|
line, = ax.plot(agg_data["x"], agg_data["y"], **sub_kws)
|
||
|
|
||
|
sub_err_kws = err_kws.copy()
|
||
|
line_props = line.properties()
|
||
|
for prop in ["color", "linewidth", "alpha", "zorder"]:
|
||
|
sub_err_kws.setdefault(prop, line_props[prop])
|
||
|
if aggregator.error_method is not None:
|
||
|
self.plot_errorbars(ax, agg_data, capsize, sub_err_kws)
|
||
|
|
||
|
legend_artist = partial(mpl.lines.Line2D, [], [])
|
||
|
semantic_kws = {"hue": {"marker": markers, "linestyle": linestyles}}
|
||
|
self._configure_legend(ax, legend_artist, sub_kws, semantic_kws)
|
||
|
|
||
|
def plot_bars(
|
||
|
self,
|
||
|
aggregator,
|
||
|
dodge,
|
||
|
gap,
|
||
|
width,
|
||
|
fill,
|
||
|
color,
|
||
|
capsize,
|
||
|
err_kws,
|
||
|
plot_kws,
|
||
|
):
|
||
|
|
||
|
agg_var = {"x": "y", "y": "x"}[self.orient]
|
||
|
iter_vars = ["hue"]
|
||
|
|
||
|
ax = self.ax
|
||
|
|
||
|
if self._hue_map.levels is None:
|
||
|
dodge = False
|
||
|
|
||
|
if dodge and capsize is not None:
|
||
|
capsize = capsize / len(self._hue_map.levels)
|
||
|
|
||
|
if not fill:
|
||
|
plot_kws.setdefault("linewidth", 1.5 * mpl.rcParams["lines.linewidth"])
|
||
|
|
||
|
err_kws.setdefault("linewidth", 1.5 * mpl.rcParams["lines.linewidth"])
|
||
|
|
||
|
for sub_vars, sub_data in self.iter_data(iter_vars,
|
||
|
from_comp_data=True,
|
||
|
allow_empty=True):
|
||
|
|
||
|
ax = self._get_axes(sub_vars)
|
||
|
|
||
|
agg_data = sub_data if sub_data.empty else (
|
||
|
sub_data
|
||
|
.groupby(self.orient)
|
||
|
.apply(aggregator, agg_var, **groupby_apply_include_groups(False))
|
||
|
.reset_index()
|
||
|
)
|
||
|
|
||
|
agg_data["width"] = width * self._native_width
|
||
|
if dodge:
|
||
|
self._dodge(sub_vars, agg_data)
|
||
|
if gap:
|
||
|
agg_data["width"] *= 1 - gap
|
||
|
|
||
|
agg_data["edge"] = agg_data[self.orient] - agg_data["width"] / 2
|
||
|
self._invert_scale(ax, agg_data)
|
||
|
|
||
|
if self.orient == "x":
|
||
|
bar_func = ax.bar
|
||
|
kws = dict(
|
||
|
x=agg_data["edge"], height=agg_data["y"], width=agg_data["width"]
|
||
|
)
|
||
|
else:
|
||
|
bar_func = ax.barh
|
||
|
kws = dict(
|
||
|
y=agg_data["edge"], width=agg_data["x"], height=agg_data["width"]
|
||
|
)
|
||
|
|
||
|
main_color = self._hue_map(sub_vars["hue"]) if "hue" in sub_vars else color
|
||
|
|
||
|
# Set both color and facecolor for property cycle logic
|
||
|
kws["align"] = "edge"
|
||
|
if fill:
|
||
|
kws.update(color=main_color, facecolor=main_color)
|
||
|
else:
|
||
|
kws.update(color=main_color, edgecolor=main_color, facecolor="none")
|
||
|
|
||
|
bar_func(**{**kws, **plot_kws})
|
||
|
|
||
|
if aggregator.error_method is not None:
|
||
|
self.plot_errorbars(
|
||
|
ax, agg_data, capsize,
|
||
|
{"color": ".26" if fill else main_color, **err_kws}
|
||
|
)
|
||
|
|
||
|
legend_artist = _get_patch_legend_artist(fill)
|
||
|
self._configure_legend(ax, legend_artist, plot_kws)
|
||
|
|
||
|
def plot_errorbars(self, ax, data, capsize, err_kws):
|
||
|
|
||
|
var = {"x": "y", "y": "x"}[self.orient]
|
||
|
for row in data.to_dict("records"):
|
||
|
|
||
|
row = dict(row)
|
||
|
pos = np.array([row[self.orient], row[self.orient]])
|
||
|
val = np.array([row[f"{var}min"], row[f"{var}max"]])
|
||
|
|
||
|
if capsize:
|
||
|
|
||
|
cw = capsize * self._native_width / 2
|
||
|
scl, inv = _get_transform_functions(ax, self.orient)
|
||
|
cap = inv(scl(pos[0]) - cw), inv(scl(pos[1]) + cw)
|
||
|
|
||
|
pos = np.concatenate([
|
||
|
[*cap, np.nan], pos, [np.nan, *cap]
|
||
|
])
|
||
|
val = np.concatenate([
|
||
|
[val[0], val[0], np.nan], val, [np.nan, val[-1], val[-1]],
|
||
|
])
|
||
|
|
||
|
if self.orient == "x":
|
||
|
args = pos, val
|
||
|
else:
|
||
|
args = val, pos
|
||
|
ax.plot(*args, **err_kws)
|
||
|
|
||
|
|
||
|
class _CategoricalAggPlotter(_CategoricalPlotter):
|
||
|
|
||
|
flat_structure = {"x": "@index", "y": "@values"}
|
||
|
|
||
|
|
||
|
_categorical_docs = dict(
|
||
|
|
||
|
# Shared narrative docs
|
||
|
categorical_narrative=dedent("""\
|
||
|
See the :ref:`tutorial <categorical_tutorial>` for more information.
|
||
|
|
||
|
.. note::
|
||
|
By default, this function treats one of the variables as categorical
|
||
|
and draws data at ordinal positions (0, 1, ... n) on the relevant axis.
|
||
|
As of version 0.13.0, this can be disabled by setting `native_scale=True`.
|
||
|
"""),
|
||
|
|
||
|
# Shared function parameters
|
||
|
input_params=dedent("""\
|
||
|
x, y, hue : names of variables in `data` or vector data
|
||
|
Inputs for plotting long-form data. See examples for interpretation.\
|
||
|
"""),
|
||
|
categorical_data=dedent("""\
|
||
|
data : DataFrame, Series, dict, array, or list of arrays
|
||
|
Dataset for plotting. If `x` and `y` are absent, this is
|
||
|
interpreted as wide-form. Otherwise it is expected to be long-form.\
|
||
|
"""),
|
||
|
order_vars=dedent("""\
|
||
|
order, hue_order : lists of strings
|
||
|
Order to plot the categorical levels in; otherwise the levels are
|
||
|
inferred from the data objects.\
|
||
|
"""),
|
||
|
stat_api_params=dedent("""\
|
||
|
estimator : string or callable that maps vector -> scalar
|
||
|
Statistical function to estimate within each categorical bin.
|
||
|
errorbar : string, (string, number) tuple, callable or None
|
||
|
Name of errorbar method (either "ci", "pi", "se", or "sd"), or a tuple
|
||
|
with a method name and a level parameter, or a function that maps from a
|
||
|
vector to a (min, max) interval, or None to hide errorbar. See the
|
||
|
:doc:`errorbar tutorial </tutorial/error_bars>` for more information.
|
||
|
|
||
|
.. versionadded:: v0.12.0
|
||
|
n_boot : int
|
||
|
Number of bootstrap samples used to compute confidence intervals.
|
||
|
seed : int, `numpy.random.Generator`, or `numpy.random.RandomState`
|
||
|
Seed or random number generator for reproducible bootstrapping.
|
||
|
units : name of variable in `data` or vector data
|
||
|
Identifier of sampling units; used by the errorbar function to
|
||
|
perform a multilevel bootstrap and account for repeated measures
|
||
|
weights : name of variable in `data` or vector data
|
||
|
Data values or column used to compute weighted statistics.
|
||
|
Note that the use of weights may limit other statistical options.
|
||
|
|
||
|
.. versionadded:: v0.13.1\
|
||
|
"""),
|
||
|
ci=dedent("""\
|
||
|
ci : float
|
||
|
Level of the confidence interval to show, in [0, 100].
|
||
|
|
||
|
.. deprecated:: v0.12.0
|
||
|
Use `errorbar=("ci", ...)`.\
|
||
|
"""),
|
||
|
orient=dedent("""\
|
||
|
orient : "v" | "h" | "x" | "y"
|
||
|
Orientation of the plot (vertical or horizontal). This is usually
|
||
|
inferred based on the type of the input variables, but it can be used
|
||
|
to resolve ambiguity when both `x` and `y` are numeric or when
|
||
|
plotting wide-form data.
|
||
|
|
||
|
.. versionchanged:: v0.13.0
|
||
|
Added 'x'/'y' as options, equivalent to 'v'/'h'.\
|
||
|
"""),
|
||
|
color=dedent("""\
|
||
|
color : matplotlib color
|
||
|
Single color for the elements in the plot.\
|
||
|
"""),
|
||
|
palette=dedent("""\
|
||
|
palette : palette name, list, dict, or :class:`matplotlib.colors.Colormap`
|
||
|
Color palette that maps the hue variable. If the palette is a dictionary,
|
||
|
keys should be names of levels and values should be matplotlib colors.
|
||
|
The type/value will sometimes force a qualitative/quantitative mapping.\
|
||
|
"""),
|
||
|
hue_norm=dedent("""\
|
||
|
hue_norm : tuple or :class:`matplotlib.colors.Normalize` object
|
||
|
Normalization in data units for colormap applied to the `hue`
|
||
|
variable when it is numeric. Not relevant if `hue` is categorical.
|
||
|
|
||
|
.. versionadded:: v0.12.0\
|
||
|
"""),
|
||
|
saturation=dedent("""\
|
||
|
saturation : float
|
||
|
Proportion of the original saturation to draw fill colors in. Large
|
||
|
patches often look better with desaturated colors, but set this to
|
||
|
`1` if you want the colors to perfectly match the input values.\
|
||
|
"""),
|
||
|
capsize=dedent("""\
|
||
|
capsize : float
|
||
|
Width of the "caps" on error bars, relative to bar spacing.\
|
||
|
"""),
|
||
|
errcolor=dedent("""\
|
||
|
errcolor : matplotlib color
|
||
|
Color used for the error bar lines.
|
||
|
|
||
|
.. deprecated:: 0.13.0
|
||
|
Use `err_kws={'color': ...}`.\
|
||
|
"""),
|
||
|
errwidth=dedent("""\
|
||
|
errwidth : float
|
||
|
Thickness of error bar lines (and caps), in points.
|
||
|
|
||
|
.. deprecated:: 0.13.0
|
||
|
Use `err_kws={'linewidth': ...}`.\
|
||
|
"""),
|
||
|
fill=dedent("""\
|
||
|
fill : bool
|
||
|
If True, use a solid patch. Otherwise, draw as line art.
|
||
|
|
||
|
.. versionadded:: v0.13.0\
|
||
|
"""),
|
||
|
gap=dedent("""\
|
||
|
gap : float
|
||
|
Shrink on the orient axis by this factor to add a gap between dodged elements.
|
||
|
|
||
|
.. versionadded:: 0.13.0\
|
||
|
"""),
|
||
|
width=dedent("""\
|
||
|
width : float
|
||
|
Width allotted to each element on the orient axis. When `native_scale=True`,
|
||
|
it is relative to the minimum distance between two values in the native scale.\
|
||
|
"""),
|
||
|
dodge=dedent("""\
|
||
|
dodge : "auto" or bool
|
||
|
When hue mapping is used, whether elements should be narrowed and shifted along
|
||
|
the orient axis to eliminate overlap. If `"auto"`, set to `True` when the
|
||
|
orient variable is crossed with the categorical variable or `False` otherwise.
|
||
|
|
||
|
.. versionchanged:: 0.13.0
|
||
|
|
||
|
Added `"auto"` mode as a new default.\
|
||
|
"""),
|
||
|
linewidth=dedent("""\
|
||
|
linewidth : float
|
||
|
Width of the lines that frame the plot elements.\
|
||
|
"""),
|
||
|
linecolor=dedent("""\
|
||
|
linecolor : color
|
||
|
Color to use for line elements, when `fill` is True.
|
||
|
|
||
|
.. versionadded:: v0.13.0\
|
||
|
"""),
|
||
|
log_scale=dedent("""\
|
||
|
log_scale : bool or number, or pair of bools or numbers
|
||
|
Set axis scale(s) to log. A single value sets the data axis for any numeric
|
||
|
axes in the plot. A pair of values sets each axis independently.
|
||
|
Numeric values are interpreted as the desired base (default 10).
|
||
|
When `None` or `False`, seaborn defers to the existing Axes scale.
|
||
|
|
||
|
.. versionadded:: v0.13.0\
|
||
|
"""),
|
||
|
native_scale=dedent("""\
|
||
|
native_scale : bool
|
||
|
When True, numeric or datetime values on the categorical axis will maintain
|
||
|
their original scaling rather than being converted to fixed indices.
|
||
|
|
||
|
.. versionadded:: v0.13.0\
|
||
|
"""),
|
||
|
formatter=dedent("""\
|
||
|
formatter : callable
|
||
|
Function for converting categorical data into strings. Affects both grouping
|
||
|
and tick labels.
|
||
|
|
||
|
.. versionadded:: v0.13.0\
|
||
|
"""),
|
||
|
legend=dedent("""\
|
||
|
legend : "auto", "brief", "full", or False
|
||
|
How to draw the legend. If "brief", numeric `hue` and `size`
|
||
|
variables will be represented with a sample of evenly spaced values.
|
||
|
If "full", every group will get an entry in the legend. If "auto",
|
||
|
choose between brief or full representation based on number of levels.
|
||
|
If `False`, no legend data is added and no legend is drawn.
|
||
|
|
||
|
.. versionadded:: v0.13.0\
|
||
|
"""),
|
||
|
err_kws=dedent("""\
|
||
|
err_kws : dict
|
||
|
Parameters of :class:`matplotlib.lines.Line2D`, for the error bar artists.
|
||
|
|
||
|
.. versionadded:: v0.13.0\
|
||
|
"""),
|
||
|
ax_in=dedent("""\
|
||
|
ax : matplotlib Axes
|
||
|
Axes object to draw the plot onto, otherwise uses the current Axes.\
|
||
|
"""),
|
||
|
ax_out=dedent("""\
|
||
|
ax : matplotlib Axes
|
||
|
Returns the Axes object with the plot drawn onto it.\
|
||
|
"""),
|
||
|
|
||
|
# Shared see also
|
||
|
boxplot=dedent("""\
|
||
|
boxplot : A traditional box-and-whisker plot with a similar API.\
|
||
|
"""),
|
||
|
violinplot=dedent("""\
|
||
|
violinplot : A combination of boxplot and kernel density estimation.\
|
||
|
"""),
|
||
|
stripplot=dedent("""\
|
||
|
stripplot : A scatterplot where one variable is categorical. Can be used
|
||
|
in conjunction with other plots to show each observation.\
|
||
|
"""),
|
||
|
swarmplot=dedent("""\
|
||
|
swarmplot : A categorical scatterplot where the points do not overlap. Can
|
||
|
be used with other plots to show each observation.\
|
||
|
"""),
|
||
|
barplot=dedent("""\
|
||
|
barplot : Show point estimates and confidence intervals using bars.\
|
||
|
"""),
|
||
|
countplot=dedent("""\
|
||
|
countplot : Show the counts of observations in each categorical bin.\
|
||
|
"""),
|
||
|
pointplot=dedent("""\
|
||
|
pointplot : Show point estimates and confidence intervals using dots.\
|
||
|
"""),
|
||
|
catplot=dedent("""\
|
||
|
catplot : Combine a categorical plot with a :class:`FacetGrid`.\
|
||
|
"""),
|
||
|
boxenplot=dedent("""\
|
||
|
boxenplot : An enhanced boxplot for larger datasets.\
|
||
|
"""),
|
||
|
|
||
|
)
|
||
|
|
||
|
_categorical_docs.update(_facet_docs)
|
||
|
|
||
|
|
||
|
def boxplot(
|
||
|
data=None, *, x=None, y=None, hue=None, order=None, hue_order=None,
|
||
|
orient=None, color=None, palette=None, saturation=.75, fill=True,
|
||
|
dodge="auto", width=.8, gap=0, whis=1.5, linecolor="auto", linewidth=None,
|
||
|
fliersize=None, hue_norm=None, native_scale=False, log_scale=None, formatter=None,
|
||
|
legend="auto", ax=None, **kwargs
|
||
|
):
|
||
|
|
||
|
p = _CategoricalPlotter(
|
||
|
data=data,
|
||
|
variables=dict(x=x, y=y, hue=hue),
|
||
|
order=order,
|
||
|
orient=orient,
|
||
|
color=color,
|
||
|
legend=legend,
|
||
|
)
|
||
|
|
||
|
if ax is None:
|
||
|
ax = plt.gca()
|
||
|
|
||
|
if p.plot_data.empty:
|
||
|
return ax
|
||
|
|
||
|
if dodge == "auto":
|
||
|
# Needs to be before scale_categorical changes the coordinate series dtype
|
||
|
dodge = p._dodge_needed()
|
||
|
|
||
|
if p.var_types.get(p.orient) == "categorical" or not native_scale:
|
||
|
p.scale_categorical(p.orient, order=order, formatter=formatter)
|
||
|
|
||
|
p._attach(ax, log_scale=log_scale)
|
||
|
|
||
|
# Deprecations to remove in v0.14.0.
|
||
|
hue_order = p._palette_without_hue_backcompat(palette, hue_order)
|
||
|
palette, hue_order = p._hue_backcompat(color, palette, hue_order)
|
||
|
|
||
|
saturation = saturation if fill else 1
|
||
|
p.map_hue(palette=palette, order=hue_order, norm=hue_norm, saturation=saturation)
|
||
|
color = _default_color(
|
||
|
ax.fill_between, hue, color,
|
||
|
{k: v for k, v in kwargs.items() if k in ["c", "color", "fc", "facecolor"]},
|
||
|
saturation=saturation,
|
||
|
)
|
||
|
linecolor = p._complement_color(linecolor, color, p._hue_map)
|
||
|
|
||
|
p.plot_boxes(
|
||
|
width=width,
|
||
|
dodge=dodge,
|
||
|
gap=gap,
|
||
|
fill=fill,
|
||
|
whis=whis,
|
||
|
color=color,
|
||
|
linecolor=linecolor,
|
||
|
linewidth=linewidth,
|
||
|
fliersize=fliersize,
|
||
|
plot_kws=kwargs,
|
||
|
)
|
||
|
|
||
|
p._add_axis_labels(ax)
|
||
|
p._adjust_cat_axis(ax, axis=p.orient)
|
||
|
|
||
|
return ax
|
||
|
|
||
|
|
||
|
boxplot.__doc__ = dedent("""\
|
||
|
Draw a box plot to show distributions with respect to categories.
|
||
|
|
||
|
A box plot (or box-and-whisker plot) shows the distribution of quantitative
|
||
|
data in a way that facilitates comparisons between variables or across
|
||
|
levels of a categorical variable. The box shows the quartiles of the
|
||
|
dataset while the whiskers extend to show the rest of the distribution,
|
||
|
except for points that are determined to be "outliers" using a method
|
||
|
that is a function of the inter-quartile range.
|
||
|
|
||
|
{categorical_narrative}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{categorical_data}
|
||
|
{input_params}
|
||
|
{order_vars}
|
||
|
{orient}
|
||
|
{color}
|
||
|
{palette}
|
||
|
{saturation}
|
||
|
{fill}
|
||
|
{dodge}
|
||
|
{width}
|
||
|
{gap}
|
||
|
whis : float or pair of floats
|
||
|
Paramater that controls whisker length. If scalar, whiskers are drawn
|
||
|
to the farthest datapoint within *whis * IQR* from the nearest hinge.
|
||
|
If a tuple, it is interpreted as percentiles that whiskers represent.
|
||
|
{linecolor}
|
||
|
{linewidth}
|
||
|
fliersize : float
|
||
|
Size of the markers used to indicate outlier observations.
|
||
|
{hue_norm}
|
||
|
{log_scale}
|
||
|
{native_scale}
|
||
|
{formatter}
|
||
|
{legend}
|
||
|
{ax_in}
|
||
|
kwargs : key, value mappings
|
||
|
Other keyword arguments are passed through to
|
||
|
:meth:`matplotlib.axes.Axes.boxplot`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
{ax_out}
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
{violinplot}
|
||
|
{stripplot}
|
||
|
{swarmplot}
|
||
|
{catplot}
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. include:: ../docstrings/boxplot.rst
|
||
|
|
||
|
""").format(**_categorical_docs)
|
||
|
|
||
|
|
||
|
def violinplot(
|
||
|
data=None, *, x=None, y=None, hue=None, order=None, hue_order=None,
|
||
|
orient=None, color=None, palette=None, saturation=.75, fill=True,
|
||
|
inner="box", split=False, width=.8, dodge="auto", gap=0,
|
||
|
linewidth=None, linecolor="auto", cut=2, gridsize=100,
|
||
|
bw_method="scott", bw_adjust=1, density_norm="area", common_norm=False,
|
||
|
hue_norm=None, formatter=None, log_scale=None, native_scale=False,
|
||
|
legend="auto", scale=deprecated, scale_hue=deprecated, bw=deprecated,
|
||
|
inner_kws=None, ax=None, **kwargs,
|
||
|
):
|
||
|
|
||
|
p = _CategoricalPlotter(
|
||
|
data=data,
|
||
|
variables=dict(x=x, y=y, hue=hue),
|
||
|
order=order,
|
||
|
orient=orient,
|
||
|
color=color,
|
||
|
legend=legend,
|
||
|
)
|
||
|
|
||
|
if ax is None:
|
||
|
ax = plt.gca()
|
||
|
|
||
|
if p.plot_data.empty:
|
||
|
return ax
|
||
|
|
||
|
if dodge == "auto":
|
||
|
# Needs to be before scale_categorical changes the coordinate series dtype
|
||
|
dodge = p._dodge_needed()
|
||
|
|
||
|
if p.var_types.get(p.orient) == "categorical" or not native_scale:
|
||
|
p.scale_categorical(p.orient, order=order, formatter=formatter)
|
||
|
|
||
|
p._attach(ax, log_scale=log_scale)
|
||
|
|
||
|
# Deprecations to remove in v0.14.0.
|
||
|
hue_order = p._palette_without_hue_backcompat(palette, hue_order)
|
||
|
palette, hue_order = p._hue_backcompat(color, palette, hue_order)
|
||
|
|
||
|
saturation = saturation if fill else 1
|
||
|
p.map_hue(palette=palette, order=hue_order, norm=hue_norm, saturation=saturation)
|
||
|
color = _default_color(
|
||
|
ax.fill_between, hue, color,
|
||
|
{k: v for k, v in kwargs.items() if k in ["c", "color", "fc", "facecolor"]},
|
||
|
saturation=saturation,
|
||
|
)
|
||
|
linecolor = p._complement_color(linecolor, color, p._hue_map)
|
||
|
|
||
|
density_norm, common_norm = p._violin_scale_backcompat(
|
||
|
scale, scale_hue, density_norm, common_norm,
|
||
|
)
|
||
|
|
||
|
bw_method = p._violin_bw_backcompat(bw, bw_method)
|
||
|
kde_kws = dict(cut=cut, gridsize=gridsize, bw_method=bw_method, bw_adjust=bw_adjust)
|
||
|
inner_kws = {} if inner_kws is None else inner_kws.copy()
|
||
|
|
||
|
p.plot_violins(
|
||
|
width=width,
|
||
|
dodge=dodge,
|
||
|
gap=gap,
|
||
|
split=split,
|
||
|
color=color,
|
||
|
fill=fill,
|
||
|
linecolor=linecolor,
|
||
|
linewidth=linewidth,
|
||
|
inner=inner,
|
||
|
density_norm=density_norm,
|
||
|
common_norm=common_norm,
|
||
|
kde_kws=kde_kws,
|
||
|
inner_kws=inner_kws,
|
||
|
plot_kws=kwargs,
|
||
|
)
|
||
|
|
||
|
p._add_axis_labels(ax)
|
||
|
p._adjust_cat_axis(ax, axis=p.orient)
|
||
|
|
||
|
return ax
|
||
|
|
||
|
|
||
|
violinplot.__doc__ = dedent("""\
|
||
|
Draw a patch representing a KDE and add observations or box plot statistics.
|
||
|
|
||
|
A violin plot plays a similar role as a box-and-whisker plot. It shows the
|
||
|
distribution of data points after grouping by one (or more) variables.
|
||
|
Unlike a box plot, each violin is drawn using a kernel density estimate
|
||
|
of the underlying distribution.
|
||
|
|
||
|
{categorical_narrative}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{categorical_data}
|
||
|
{input_params}
|
||
|
{order_vars}
|
||
|
{orient}
|
||
|
{color}
|
||
|
{palette}
|
||
|
{saturation}
|
||
|
{fill}
|
||
|
inner : {{"box", "quart", "point", "stick", None}}
|
||
|
Representation of the data in the violin interior. One of the following:
|
||
|
|
||
|
- `"box"`: draw a miniature box-and-whisker plot
|
||
|
- `"quart"`: show the quartiles of the data
|
||
|
- `"point"` or `"stick"`: show each observation
|
||
|
split : bool
|
||
|
Show an un-mirrored distribution, alternating sides when using `hue`.
|
||
|
|
||
|
.. versionchanged:: v0.13.0
|
||
|
Previously, this option required a `hue` variable with exactly two levels.
|
||
|
{width}
|
||
|
{dodge}
|
||
|
{gap}
|
||
|
{linewidth}
|
||
|
{linecolor}
|
||
|
cut : float
|
||
|
Distance, in units of bandwidth, to extend the density past extreme
|
||
|
datapoints. Set to 0 to limit the violin within the data range.
|
||
|
gridsize : int
|
||
|
Number of points in the discrete grid used to evaluate the KDE.
|
||
|
bw_method : {{"scott", "silverman", float}}
|
||
|
Either the name of a reference rule or the scale factor to use when
|
||
|
computing the kernel bandwidth. The actual kernel size will be
|
||
|
determined by multiplying the scale factor by the standard deviation of
|
||
|
the data within each group.
|
||
|
|
||
|
.. versionadded:: v0.13.0
|
||
|
bw_adjust: float
|
||
|
Factor that scales the bandwidth to use more or less smoothing.
|
||
|
|
||
|
.. versionadded:: v0.13.0
|
||
|
density_norm : {{"area", "count", "width"}}
|
||
|
Method that normalizes each density to determine the violin's width.
|
||
|
If `area`, each violin will have the same area. If `count`, the width
|
||
|
will be proportional to the number of observations. If `width`, each
|
||
|
violin will have the same width.
|
||
|
|
||
|
.. versionadded:: v0.13.0
|
||
|
common_norm : bool
|
||
|
When `True`, normalize the density across all violins.
|
||
|
|
||
|
.. versionadded:: v0.13.0
|
||
|
{hue_norm}
|
||
|
{formatter}
|
||
|
{log_scale}
|
||
|
{native_scale}
|
||
|
{legend}
|
||
|
scale : {{"area", "count", "width"}}
|
||
|
.. deprecated:: v0.13.0
|
||
|
See `density_norm`.
|
||
|
scale_hue : bool
|
||
|
.. deprecated:: v0.13.0
|
||
|
See `common_norm`.
|
||
|
bw : {{'scott', 'silverman', float}}
|
||
|
.. deprecated:: v0.13.0
|
||
|
See `bw_method` and `bw_adjust`.
|
||
|
inner_kws : dict of key, value mappings
|
||
|
Keyword arguments for the "inner" plot, passed to one of:
|
||
|
|
||
|
- :class:`matplotlib.collections.LineCollection` (with `inner="stick"`)
|
||
|
- :meth:`matplotlib.axes.Axes.scatter` (with `inner="point"`)
|
||
|
- :meth:`matplotlib.axes.Axes.plot` (with `inner="quart"` or `inner="box"`)
|
||
|
|
||
|
Additionally, with `inner="box"`, the keywords `box_width`, `whis_width`,
|
||
|
and `marker` receive special handling for the components of the "box" plot.
|
||
|
|
||
|
.. versionadded:: v0.13.0
|
||
|
{ax_in}
|
||
|
kwargs : key, value mappings
|
||
|
Keyword arguments for the violin patches, passsed through to
|
||
|
:meth:`matplotlib.axes.Axes.fill_between`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
{ax_out}
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
{boxplot}
|
||
|
{stripplot}
|
||
|
{swarmplot}
|
||
|
{catplot}
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. include:: ../docstrings/violinplot.rst
|
||
|
|
||
|
""").format(**_categorical_docs)
|
||
|
|
||
|
|
||
|
def boxenplot(
|
||
|
data=None, *, x=None, y=None, hue=None, order=None, hue_order=None,
|
||
|
orient=None, color=None, palette=None, saturation=.75, fill=True,
|
||
|
dodge="auto", width=.8, gap=0, linewidth=None, linecolor=None,
|
||
|
width_method="exponential", k_depth="tukey", outlier_prop=0.007, trust_alpha=0.05,
|
||
|
showfliers=True, hue_norm=None, log_scale=None, native_scale=False, formatter=None,
|
||
|
legend="auto", scale=deprecated, box_kws=None, flier_kws=None, line_kws=None,
|
||
|
ax=None, **kwargs,
|
||
|
):
|
||
|
|
||
|
p = _CategoricalPlotter(
|
||
|
data=data,
|
||
|
variables=dict(x=x, y=y, hue=hue),
|
||
|
order=order,
|
||
|
orient=orient,
|
||
|
color=color,
|
||
|
legend=legend,
|
||
|
)
|
||
|
|
||
|
if ax is None:
|
||
|
ax = plt.gca()
|
||
|
|
||
|
if p.plot_data.empty:
|
||
|
return ax
|
||
|
|
||
|
if dodge == "auto":
|
||
|
# Needs to be before scale_categorical changes the coordinate series dtype
|
||
|
dodge = p._dodge_needed()
|
||
|
|
||
|
if p.var_types.get(p.orient) == "categorical" or not native_scale:
|
||
|
p.scale_categorical(p.orient, order=order, formatter=formatter)
|
||
|
|
||
|
p._attach(ax, log_scale=log_scale)
|
||
|
|
||
|
# Deprecations to remove in v0.14.0.
|
||
|
hue_order = p._palette_without_hue_backcompat(palette, hue_order)
|
||
|
palette, hue_order = p._hue_backcompat(color, palette, hue_order)
|
||
|
|
||
|
# Longer-term deprecations
|
||
|
width_method = p._boxen_scale_backcompat(scale, width_method)
|
||
|
|
||
|
saturation = saturation if fill else 1
|
||
|
p.map_hue(palette=palette, order=hue_order, norm=hue_norm, saturation=saturation)
|
||
|
color = _default_color(
|
||
|
ax.fill_between, hue, color,
|
||
|
{}, # TODO how to get default color?
|
||
|
# {k: v for k, v in kwargs.items() if k in ["c", "color", "fc", "facecolor"]},
|
||
|
saturation=saturation,
|
||
|
)
|
||
|
linecolor = p._complement_color(linecolor, color, p._hue_map)
|
||
|
|
||
|
p.plot_boxens(
|
||
|
width=width,
|
||
|
dodge=dodge,
|
||
|
gap=gap,
|
||
|
fill=fill,
|
||
|
color=color,
|
||
|
linecolor=linecolor,
|
||
|
linewidth=linewidth,
|
||
|
width_method=width_method,
|
||
|
k_depth=k_depth,
|
||
|
outlier_prop=outlier_prop,
|
||
|
trust_alpha=trust_alpha,
|
||
|
showfliers=showfliers,
|
||
|
box_kws=box_kws,
|
||
|
flier_kws=flier_kws,
|
||
|
line_kws=line_kws,
|
||
|
plot_kws=kwargs,
|
||
|
)
|
||
|
|
||
|
p._add_axis_labels(ax)
|
||
|
p._adjust_cat_axis(ax, axis=p.orient)
|
||
|
|
||
|
return ax
|
||
|
|
||
|
|
||
|
boxenplot.__doc__ = dedent("""\
|
||
|
Draw an enhanced box plot for larger datasets.
|
||
|
|
||
|
This style of plot was originally named a "letter value" plot because it
|
||
|
shows a large number of quantiles that are defined as "letter values". It
|
||
|
is similar to a box plot in plotting a nonparametric representation of a
|
||
|
distribution in which all features correspond to actual observations. By
|
||
|
plotting more quantiles, it provides more information about the shape of
|
||
|
the distribution, particularly in the tails.
|
||
|
|
||
|
{categorical_narrative}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{categorical_data}
|
||
|
{input_params}
|
||
|
{order_vars}
|
||
|
{orient}
|
||
|
{color}
|
||
|
{palette}
|
||
|
{saturation}
|
||
|
{fill}
|
||
|
{dodge}
|
||
|
{width}
|
||
|
{gap}
|
||
|
{linewidth}
|
||
|
{linecolor}
|
||
|
width_method : {{"exponential", "linear", "area"}}
|
||
|
Method to use for the width of the letter value boxes:
|
||
|
|
||
|
- `"exponential"`: Represent the corresponding percentile
|
||
|
- `"linear"`: Decrease by a constant amount for each box
|
||
|
- `"area"`: Represent the density of data points in that box
|
||
|
k_depth : {{"tukey", "proportion", "trustworthy", "full"}} or int
|
||
|
The number of levels to compute and draw in each tail:
|
||
|
|
||
|
- `"tukey"`: Use log2(n) - 3 levels, covering similar range as boxplot whiskers
|
||
|
- `"proportion"`: Leave approximately `outlier_prop` fliers
|
||
|
- `"trusthworthy"`: Extend to level with confidence of at least `trust_alpha`
|
||
|
- `"full"`: Use log2(n) + 1 levels and extend to most extreme points
|
||
|
outlier_prop : float
|
||
|
Proportion of data expected to be outliers; used when `k_depth="proportion"`.
|
||
|
trust_alpha : float
|
||
|
Confidence threshold for most extreme level; used when `k_depth="trustworthy"`.
|
||
|
showfliers : bool
|
||
|
If False, suppress the plotting of outliers.
|
||
|
{hue_norm}
|
||
|
{log_scale}
|
||
|
{native_scale}
|
||
|
{formatter}
|
||
|
{legend}
|
||
|
box_kws: dict
|
||
|
Keyword arguments for the box artists; passed to
|
||
|
:class:`matplotlib.patches.Rectangle`.
|
||
|
|
||
|
.. versionadded:: v0.12.0
|
||
|
line_kws: dict
|
||
|
Keyword arguments for the line denoting the median; passed to
|
||
|
:meth:`matplotlib.axes.Axes.plot`.
|
||
|
|
||
|
.. versionadded:: v0.12.0
|
||
|
flier_kws: dict
|
||
|
Keyword arguments for the scatter denoting the outlier observations;
|
||
|
passed to :meth:`matplotlib.axes.Axes.scatter`.
|
||
|
|
||
|
.. versionadded:: v0.12.0
|
||
|
{ax_in}
|
||
|
kwargs : key, value mappings
|
||
|
Other keyword arguments are passed to :class:`matplotlib.patches.Rectangle`,
|
||
|
superceded by those in `box_kws`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
{ax_out}
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
{violinplot}
|
||
|
{boxplot}
|
||
|
{catplot}
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
For a more extensive explanation, you can read the paper that introduced the plot:
|
||
|
https://vita.had.co.nz/papers/letter-value-plot.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. include:: ../docstrings/boxenplot.rst
|
||
|
|
||
|
""").format(**_categorical_docs)
|
||
|
|
||
|
|
||
|
def stripplot(
|
||
|
data=None, *, x=None, y=None, hue=None, order=None, hue_order=None,
|
||
|
jitter=True, dodge=False, orient=None, color=None, palette=None,
|
||
|
size=5, edgecolor=default, linewidth=0,
|
||
|
hue_norm=None, log_scale=None, native_scale=False, formatter=None, legend="auto",
|
||
|
ax=None, **kwargs
|
||
|
):
|
||
|
|
||
|
p = _CategoricalPlotter(
|
||
|
data=data,
|
||
|
variables=dict(x=x, y=y, hue=hue),
|
||
|
order=order,
|
||
|
orient=orient,
|
||
|
color=color,
|
||
|
legend=legend,
|
||
|
)
|
||
|
|
||
|
if ax is None:
|
||
|
ax = plt.gca()
|
||
|
|
||
|
if p.plot_data.empty:
|
||
|
return ax
|
||
|
|
||
|
if p.var_types.get(p.orient) == "categorical" or not native_scale:
|
||
|
p.scale_categorical(p.orient, order=order, formatter=formatter)
|
||
|
|
||
|
p._attach(ax, log_scale=log_scale)
|
||
|
|
||
|
# Deprecations to remove in v0.14.0.
|
||
|
hue_order = p._palette_without_hue_backcompat(palette, hue_order)
|
||
|
palette, hue_order = p._hue_backcompat(color, palette, hue_order)
|
||
|
|
||
|
p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
|
||
|
color = _default_color(ax.scatter, hue, color, kwargs)
|
||
|
edgecolor = p._complement_color(edgecolor, color, p._hue_map)
|
||
|
|
||
|
kwargs.setdefault("zorder", 3)
|
||
|
size = kwargs.get("s", size)
|
||
|
|
||
|
kwargs.update(
|
||
|
s=size ** 2,
|
||
|
edgecolor=edgecolor,
|
||
|
linewidth=linewidth,
|
||
|
)
|
||
|
|
||
|
p.plot_strips(
|
||
|
jitter=jitter,
|
||
|
dodge=dodge,
|
||
|
color=color,
|
||
|
plot_kws=kwargs,
|
||
|
)
|
||
|
|
||
|
# XXX this happens inside a plotting method in the distribution plots
|
||
|
# but maybe it's better out here? Alternatively, we have an open issue
|
||
|
# suggesting that _attach could add default axes labels, which seems smart.
|
||
|
p._add_axis_labels(ax)
|
||
|
p._adjust_cat_axis(ax, axis=p.orient)
|
||
|
|
||
|
return ax
|
||
|
|
||
|
|
||
|
stripplot.__doc__ = dedent("""\
|
||
|
Draw a categorical scatterplot using jitter to reduce overplotting.
|
||
|
|
||
|
A strip plot can be drawn on its own, but it is also a good complement
|
||
|
to a box or violin plot in cases where you want to show all observations
|
||
|
along with some representation of the underlying distribution.
|
||
|
|
||
|
{categorical_narrative}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{categorical_data}
|
||
|
{input_params}
|
||
|
{order_vars}
|
||
|
jitter : float, `True`/`1` is special-cased
|
||
|
Amount of jitter (only along the categorical axis) to apply. This
|
||
|
can be useful when you have many points and they overlap, so that
|
||
|
it is easier to see the distribution. You can specify the amount
|
||
|
of jitter (half the width of the uniform random variable support),
|
||
|
or use `True` for a good default.
|
||
|
dodge : bool
|
||
|
When a `hue` variable is assigned, setting this to `True` will
|
||
|
separate the strips for different hue levels along the categorical
|
||
|
axis and narrow the amount of space allotedto each strip. Otherwise,
|
||
|
the points for each level will be plotted in the same strip.
|
||
|
{orient}
|
||
|
{color}
|
||
|
{palette}
|
||
|
size : float
|
||
|
Radius of the markers, in points.
|
||
|
edgecolor : matplotlib color, "gray" is special-cased
|
||
|
Color of the lines around each point. If you pass `"gray"`, the
|
||
|
brightness is determined by the color palette used for the body
|
||
|
of the points. Note that `stripplot` has `linewidth=0` by default,
|
||
|
so edge colors are only visible with nonzero line width.
|
||
|
{linewidth}
|
||
|
{hue_norm}
|
||
|
{log_scale}
|
||
|
{native_scale}
|
||
|
{formatter}
|
||
|
{legend}
|
||
|
{ax_in}
|
||
|
kwargs : key, value mappings
|
||
|
Other keyword arguments are passed through to
|
||
|
:meth:`matplotlib.axes.Axes.scatter`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
{ax_out}
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
{swarmplot}
|
||
|
{boxplot}
|
||
|
{violinplot}
|
||
|
{catplot}
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. include:: ../docstrings/stripplot.rst
|
||
|
|
||
|
""").format(**_categorical_docs)
|
||
|
|
||
|
|
||
|
def swarmplot(
|
||
|
data=None, *, x=None, y=None, hue=None, order=None, hue_order=None,
|
||
|
dodge=False, orient=None, color=None, palette=None,
|
||
|
size=5, edgecolor=None, linewidth=0, hue_norm=None, log_scale=None,
|
||
|
native_scale=False, formatter=None, legend="auto", warn_thresh=.05,
|
||
|
ax=None, **kwargs
|
||
|
):
|
||
|
|
||
|
p = _CategoricalPlotter(
|
||
|
data=data,
|
||
|
variables=dict(x=x, y=y, hue=hue),
|
||
|
order=order,
|
||
|
orient=orient,
|
||
|
color=color,
|
||
|
legend=legend,
|
||
|
)
|
||
|
|
||
|
if ax is None:
|
||
|
ax = plt.gca()
|
||
|
|
||
|
if p.plot_data.empty:
|
||
|
return ax
|
||
|
|
||
|
if p.var_types.get(p.orient) == "categorical" or not native_scale:
|
||
|
p.scale_categorical(p.orient, order=order, formatter=formatter)
|
||
|
|
||
|
p._attach(ax, log_scale=log_scale)
|
||
|
|
||
|
if not p.has_xy_data:
|
||
|
return ax
|
||
|
|
||
|
# Deprecations to remove in v0.14.0.
|
||
|
hue_order = p._palette_without_hue_backcompat(palette, hue_order)
|
||
|
palette, hue_order = p._hue_backcompat(color, palette, hue_order)
|
||
|
|
||
|
p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
|
||
|
color = _default_color(ax.scatter, hue, color, kwargs)
|
||
|
edgecolor = p._complement_color(edgecolor, color, p._hue_map)
|
||
|
|
||
|
kwargs.setdefault("zorder", 3)
|
||
|
size = kwargs.get("s", size)
|
||
|
|
||
|
if linewidth is None:
|
||
|
linewidth = size / 10
|
||
|
|
||
|
kwargs.update(dict(
|
||
|
s=size ** 2,
|
||
|
edgecolor=edgecolor,
|
||
|
linewidth=linewidth,
|
||
|
))
|
||
|
|
||
|
p.plot_swarms(
|
||
|
dodge=dodge,
|
||
|
color=color,
|
||
|
warn_thresh=warn_thresh,
|
||
|
plot_kws=kwargs,
|
||
|
)
|
||
|
|
||
|
p._add_axis_labels(ax)
|
||
|
p._adjust_cat_axis(ax, axis=p.orient)
|
||
|
|
||
|
return ax
|
||
|
|
||
|
|
||
|
swarmplot.__doc__ = dedent("""\
|
||
|
Draw a categorical scatterplot with points adjusted to be non-overlapping.
|
||
|
|
||
|
This function is similar to :func:`stripplot`, but the points are adjusted
|
||
|
(only along the categorical axis) so that they don't overlap. This gives a
|
||
|
better representation of the distribution of values, but it does not scale
|
||
|
well to large numbers of observations. This style of plot is sometimes
|
||
|
called a "beeswarm".
|
||
|
|
||
|
A swarm plot can be drawn on its own, but it is also a good complement
|
||
|
to a box or violin plot in cases where you want to show all observations
|
||
|
along with some representation of the underlying distribution.
|
||
|
|
||
|
{categorical_narrative}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{categorical_data}
|
||
|
{input_params}
|
||
|
{order_vars}
|
||
|
dodge : bool
|
||
|
When a `hue` variable is assigned, setting this to `True` will
|
||
|
separate the swarms for different hue levels along the categorical
|
||
|
axis and narrow the amount of space allotedto each strip. Otherwise,
|
||
|
the points for each level will be plotted in the same swarm.
|
||
|
{orient}
|
||
|
{color}
|
||
|
{palette}
|
||
|
size : float
|
||
|
Radius of the markers, in points.
|
||
|
edgecolor : matplotlib color, "gray" is special-cased
|
||
|
Color of the lines around each point. If you pass `"gray"`, the
|
||
|
brightness is determined by the color palette used for the body
|
||
|
of the points.
|
||
|
{linewidth}
|
||
|
{log_scale}
|
||
|
{native_scale}
|
||
|
{formatter}
|
||
|
{legend}
|
||
|
{ax_in}
|
||
|
kwargs : key, value mappings
|
||
|
Other keyword arguments are passed through to
|
||
|
:meth:`matplotlib.axes.Axes.scatter`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
{ax_out}
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
{boxplot}
|
||
|
{violinplot}
|
||
|
{stripplot}
|
||
|
{catplot}
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. include:: ../docstrings/swarmplot.rst
|
||
|
|
||
|
""").format(**_categorical_docs)
|
||
|
|
||
|
|
||
|
def barplot(
|
||
|
data=None, *, x=None, y=None, hue=None, order=None, hue_order=None,
|
||
|
estimator="mean", errorbar=("ci", 95), n_boot=1000, seed=None, units=None,
|
||
|
weights=None, orient=None, color=None, palette=None, saturation=.75,
|
||
|
fill=True, hue_norm=None, width=.8, dodge="auto", gap=0, log_scale=None,
|
||
|
native_scale=False, formatter=None, legend="auto", capsize=0, err_kws=None,
|
||
|
ci=deprecated, errcolor=deprecated, errwidth=deprecated, ax=None, **kwargs,
|
||
|
):
|
||
|
|
||
|
errorbar = utils._deprecate_ci(errorbar, ci)
|
||
|
|
||
|
# Be backwards compatible with len passed directly, which
|
||
|
# does not work in Series.agg (maybe a pandas bug?)
|
||
|
if estimator is len:
|
||
|
estimator = "size"
|
||
|
|
||
|
p = _CategoricalAggPlotter(
|
||
|
data=data,
|
||
|
variables=dict(x=x, y=y, hue=hue, units=units, weight=weights),
|
||
|
order=order,
|
||
|
orient=orient,
|
||
|
color=color,
|
||
|
legend=legend,
|
||
|
)
|
||
|
|
||
|
if ax is None:
|
||
|
ax = plt.gca()
|
||
|
|
||
|
if p.plot_data.empty:
|
||
|
return ax
|
||
|
|
||
|
if dodge == "auto":
|
||
|
# Needs to be before scale_categorical changes the coordinate series dtype
|
||
|
dodge = p._dodge_needed()
|
||
|
|
||
|
if p.var_types.get(p.orient) == "categorical" or not native_scale:
|
||
|
p.scale_categorical(p.orient, order=order, formatter=formatter)
|
||
|
|
||
|
p._attach(ax, log_scale=log_scale)
|
||
|
|
||
|
# Deprecations to remove in v0.14.0.
|
||
|
hue_order = p._palette_without_hue_backcompat(palette, hue_order)
|
||
|
palette, hue_order = p._hue_backcompat(color, palette, hue_order)
|
||
|
|
||
|
saturation = saturation if fill else 1
|
||
|
p.map_hue(palette=palette, order=hue_order, norm=hue_norm, saturation=saturation)
|
||
|
color = _default_color(ax.bar, hue, color, kwargs, saturation=saturation)
|
||
|
|
||
|
agg_cls = WeightedAggregator if "weight" in p.plot_data else EstimateAggregator
|
||
|
aggregator = agg_cls(estimator, errorbar, n_boot=n_boot, seed=seed)
|
||
|
err_kws = {} if err_kws is None else normalize_kwargs(err_kws, mpl.lines.Line2D)
|
||
|
|
||
|
# Deprecations to remove in v0.15.0.
|
||
|
err_kws, capsize = p._err_kws_backcompat(err_kws, errcolor, errwidth, capsize)
|
||
|
|
||
|
p.plot_bars(
|
||
|
aggregator=aggregator,
|
||
|
dodge=dodge,
|
||
|
width=width,
|
||
|
gap=gap,
|
||
|
color=color,
|
||
|
fill=fill,
|
||
|
capsize=capsize,
|
||
|
err_kws=err_kws,
|
||
|
plot_kws=kwargs,
|
||
|
)
|
||
|
|
||
|
p._add_axis_labels(ax)
|
||
|
p._adjust_cat_axis(ax, axis=p.orient)
|
||
|
|
||
|
return ax
|
||
|
|
||
|
|
||
|
barplot.__doc__ = dedent("""\
|
||
|
Show point estimates and errors as rectangular bars.
|
||
|
|
||
|
A bar plot represents an aggregate or statistical estimate for a numeric
|
||
|
variable with the height of each rectangle and indicates the uncertainty
|
||
|
around that estimate using an error bar. Bar plots include 0 in the
|
||
|
axis range, and they are a good choice when 0 is a meaningful value
|
||
|
for the variable to take.
|
||
|
|
||
|
{categorical_narrative}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{categorical_data}
|
||
|
{input_params}
|
||
|
{order_vars}
|
||
|
{stat_api_params}
|
||
|
{orient}
|
||
|
{color}
|
||
|
{palette}
|
||
|
{saturation}
|
||
|
{fill}
|
||
|
{hue_norm}
|
||
|
{width}
|
||
|
{dodge}
|
||
|
{gap}
|
||
|
{log_scale}
|
||
|
{native_scale}
|
||
|
{formatter}
|
||
|
{legend}
|
||
|
{capsize}
|
||
|
{err_kws}
|
||
|
{ci}
|
||
|
{errcolor}
|
||
|
{errwidth}
|
||
|
{ax_in}
|
||
|
kwargs : key, value mappings
|
||
|
Other parameters are passed through to :class:`matplotlib.patches.Rectangle`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
{ax_out}
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
{countplot}
|
||
|
{pointplot}
|
||
|
{catplot}
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
For datasets where 0 is not a meaningful value, a :func:`pointplot` will
|
||
|
allow you to focus on differences between levels of one or more categorical
|
||
|
variables.
|
||
|
|
||
|
It is also important to keep in mind that a bar plot shows only the mean (or
|
||
|
other aggregate) value, but it is often more informative to show the
|
||
|
distribution of values at each level of the categorical variables. In those
|
||
|
cases, approaches such as a :func:`boxplot` or :func:`violinplot` may be
|
||
|
more appropriate.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. include:: ../docstrings/barplot.rst
|
||
|
|
||
|
""").format(**_categorical_docs)
|
||
|
|
||
|
|
||
|
def pointplot(
|
||
|
data=None, *, x=None, y=None, hue=None, order=None, hue_order=None,
|
||
|
estimator="mean", errorbar=("ci", 95), n_boot=1000, seed=None, units=None,
|
||
|
weights=None, color=None, palette=None, hue_norm=None, markers=default,
|
||
|
linestyles=default, dodge=False, log_scale=None, native_scale=False,
|
||
|
orient=None, capsize=0, formatter=None, legend="auto", err_kws=None,
|
||
|
ci=deprecated, errwidth=deprecated, join=deprecated, scale=deprecated,
|
||
|
ax=None, **kwargs,
|
||
|
):
|
||
|
|
||
|
errorbar = utils._deprecate_ci(errorbar, ci)
|
||
|
|
||
|
p = _CategoricalAggPlotter(
|
||
|
data=data,
|
||
|
variables=dict(x=x, y=y, hue=hue, units=units, weight=weights),
|
||
|
order=order,
|
||
|
orient=orient,
|
||
|
# Handle special backwards compatibility where pointplot originally
|
||
|
# did *not* default to multi-colored unless a palette was specified.
|
||
|
color="C0" if (color is None and palette is None) else color,
|
||
|
legend=legend,
|
||
|
)
|
||
|
|
||
|
if ax is None:
|
||
|
ax = plt.gca()
|
||
|
|
||
|
if p.plot_data.empty:
|
||
|
return ax
|
||
|
|
||
|
if p.var_types.get(p.orient) == "categorical" or not native_scale:
|
||
|
p.scale_categorical(p.orient, order=order, formatter=formatter)
|
||
|
|
||
|
p._attach(ax, log_scale=log_scale)
|
||
|
|
||
|
# Deprecations to remove in v0.14.0.
|
||
|
hue_order = p._palette_without_hue_backcompat(palette, hue_order)
|
||
|
palette, hue_order = p._hue_backcompat(color, palette, hue_order)
|
||
|
|
||
|
p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
|
||
|
color = _default_color(ax.plot, hue, color, kwargs)
|
||
|
|
||
|
agg_cls = WeightedAggregator if "weight" in p.plot_data else EstimateAggregator
|
||
|
aggregator = agg_cls(estimator, errorbar, n_boot=n_boot, seed=seed)
|
||
|
err_kws = {} if err_kws is None else normalize_kwargs(err_kws, mpl.lines.Line2D)
|
||
|
|
||
|
# Deprecations to remove in v0.15.0.
|
||
|
p._point_kwargs_backcompat(scale, join, kwargs)
|
||
|
err_kws, capsize = p._err_kws_backcompat(err_kws, None, errwidth, capsize)
|
||
|
|
||
|
p.plot_points(
|
||
|
aggregator=aggregator,
|
||
|
markers=markers,
|
||
|
linestyles=linestyles,
|
||
|
dodge=dodge,
|
||
|
color=color,
|
||
|
capsize=capsize,
|
||
|
err_kws=err_kws,
|
||
|
plot_kws=kwargs,
|
||
|
)
|
||
|
|
||
|
p._add_axis_labels(ax)
|
||
|
p._adjust_cat_axis(ax, axis=p.orient)
|
||
|
|
||
|
return ax
|
||
|
|
||
|
|
||
|
pointplot.__doc__ = dedent("""\
|
||
|
Show point estimates and errors using lines with markers.
|
||
|
|
||
|
A point plot represents an estimate of central tendency for a numeric
|
||
|
variable by the position of the dot and provides some indication of the
|
||
|
uncertainty around that estimate using error bars.
|
||
|
|
||
|
Point plots can be more useful than bar plots for focusing comparisons
|
||
|
between different levels of one or more categorical variables. They are
|
||
|
particularly adept at showing interactions: how the relationship between
|
||
|
levels of one categorical variable changes across levels of a second
|
||
|
categorical variable. The lines that join each point from the same `hue`
|
||
|
level allow interactions to be judged by differences in slope, which is
|
||
|
easier for the eyes than comparing the heights of several groups of points
|
||
|
or bars.
|
||
|
|
||
|
{categorical_narrative}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{categorical_data}
|
||
|
{input_params}
|
||
|
{order_vars}
|
||
|
{stat_api_params}
|
||
|
{color}
|
||
|
{palette}
|
||
|
markers : string or list of strings
|
||
|
Markers to use for each of the `hue` levels.
|
||
|
linestyles : string or list of strings
|
||
|
Line styles to use for each of the `hue` levels.
|
||
|
dodge : bool or float
|
||
|
Amount to separate the points for each level of the `hue` variable along
|
||
|
the categorical axis. Setting to `True` will apply a small default.
|
||
|
{log_scale}
|
||
|
{native_scale}
|
||
|
{orient}
|
||
|
{capsize}
|
||
|
{formatter}
|
||
|
{legend}
|
||
|
{err_kws}
|
||
|
{ci}
|
||
|
{errwidth}
|
||
|
join : bool
|
||
|
If `True`, connect point estimates with a line.
|
||
|
|
||
|
.. deprecated:: v0.13.0
|
||
|
Set `linestyle="none"` to remove the lines between the points.
|
||
|
scale : float
|
||
|
Scale factor for the plot elements.
|
||
|
|
||
|
.. deprecated:: v0.13.0
|
||
|
Control element sizes with :class:`matplotlib.lines.Line2D` parameters.
|
||
|
{ax_in}
|
||
|
kwargs : key, value mappings
|
||
|
Other parameters are passed through to :class:`matplotlib.lines.Line2D`.
|
||
|
|
||
|
.. versionadded:: v0.13.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
{ax_out}
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
{barplot}
|
||
|
{catplot}
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
It is important to keep in mind that a point plot shows only the mean (or
|
||
|
other estimator) value, but in many cases it may be more informative to
|
||
|
show the distribution of values at each level of the categorical variables.
|
||
|
In that case, other approaches such as a box or violin plot may be more
|
||
|
appropriate.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. include:: ../docstrings/pointplot.rst
|
||
|
|
||
|
""").format(**_categorical_docs)
|
||
|
|
||
|
|
||
|
def countplot(
|
||
|
data=None, *, x=None, y=None, hue=None, order=None, hue_order=None,
|
||
|
orient=None, color=None, palette=None, saturation=.75, fill=True, hue_norm=None,
|
||
|
stat="count", width=.8, dodge="auto", gap=0, log_scale=None, native_scale=False,
|
||
|
formatter=None, legend="auto", ax=None, **kwargs
|
||
|
):
|
||
|
|
||
|
if x is None and y is not None:
|
||
|
orient = "y"
|
||
|
x = 1 if list(y) else None
|
||
|
elif x is not None and y is None:
|
||
|
orient = "x"
|
||
|
y = 1 if list(x) else None
|
||
|
elif x is not None and y is not None:
|
||
|
raise TypeError("Cannot pass values for both `x` and `y`.")
|
||
|
|
||
|
p = _CategoricalAggPlotter(
|
||
|
data=data,
|
||
|
variables=dict(x=x, y=y, hue=hue),
|
||
|
order=order,
|
||
|
orient=orient,
|
||
|
color=color,
|
||
|
legend=legend,
|
||
|
)
|
||
|
|
||
|
if ax is None:
|
||
|
ax = plt.gca()
|
||
|
|
||
|
if p.plot_data.empty:
|
||
|
return ax
|
||
|
|
||
|
if dodge == "auto":
|
||
|
# Needs to be before scale_categorical changes the coordinate series dtype
|
||
|
dodge = p._dodge_needed()
|
||
|
|
||
|
if p.var_types.get(p.orient) == "categorical" or not native_scale:
|
||
|
p.scale_categorical(p.orient, order=order, formatter=formatter)
|
||
|
|
||
|
p._attach(ax, log_scale=log_scale)
|
||
|
|
||
|
# Deprecations to remove in v0.14.0.
|
||
|
hue_order = p._palette_without_hue_backcompat(palette, hue_order)
|
||
|
palette, hue_order = p._hue_backcompat(color, palette, hue_order)
|
||
|
|
||
|
saturation = saturation if fill else 1
|
||
|
p.map_hue(palette=palette, order=hue_order, norm=hue_norm, saturation=saturation)
|
||
|
color = _default_color(ax.bar, hue, color, kwargs, saturation)
|
||
|
|
||
|
count_axis = {"x": "y", "y": "x"}[p.orient]
|
||
|
if p.input_format == "wide":
|
||
|
p.plot_data[count_axis] = 1
|
||
|
|
||
|
_check_argument("stat", ["count", "percent", "probability", "proportion"], stat)
|
||
|
p.variables[count_axis] = stat
|
||
|
if stat != "count":
|
||
|
denom = 100 if stat == "percent" else 1
|
||
|
p.plot_data[count_axis] /= len(p.plot_data) / denom
|
||
|
|
||
|
aggregator = EstimateAggregator("sum", errorbar=None)
|
||
|
|
||
|
p.plot_bars(
|
||
|
aggregator=aggregator,
|
||
|
dodge=dodge,
|
||
|
width=width,
|
||
|
gap=gap,
|
||
|
color=color,
|
||
|
fill=fill,
|
||
|
capsize=0,
|
||
|
err_kws={},
|
||
|
plot_kws=kwargs,
|
||
|
)
|
||
|
|
||
|
p._add_axis_labels(ax)
|
||
|
p._adjust_cat_axis(ax, axis=p.orient)
|
||
|
|
||
|
return ax
|
||
|
|
||
|
|
||
|
countplot.__doc__ = dedent("""\
|
||
|
Show the counts of observations in each categorical bin using bars.
|
||
|
|
||
|
A count plot can be thought of as a histogram across a categorical, instead
|
||
|
of quantitative, variable. The basic API and options are identical to those
|
||
|
for :func:`barplot`, so you can compare counts across nested variables.
|
||
|
|
||
|
Note that :func:`histplot` function offers similar functionality with additional
|
||
|
features (e.g. bar stacking), although its default behavior is somewhat different.
|
||
|
|
||
|
{categorical_narrative}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{categorical_data}
|
||
|
{input_params}
|
||
|
{order_vars}
|
||
|
{orient}
|
||
|
{color}
|
||
|
{palette}
|
||
|
{saturation}
|
||
|
{hue_norm}
|
||
|
stat : {{'count', 'percent', 'proportion', 'probability'}}
|
||
|
Statistic to compute; when not `'count'`, bar heights will be normalized so that
|
||
|
they sum to 100 (for `'percent'`) or 1 (otherwise) across the plot.
|
||
|
|
||
|
.. versionadded:: v0.13.0
|
||
|
{width}
|
||
|
{dodge}
|
||
|
{log_scale}
|
||
|
{native_scale}
|
||
|
{formatter}
|
||
|
{legend}
|
||
|
{ax_in}
|
||
|
kwargs : key, value mappings
|
||
|
Other parameters are passed through to :class:`matplotlib.patches.Rectangle`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
{ax_out}
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
histplot : Bin and count observations with additional options.
|
||
|
{barplot}
|
||
|
{catplot}
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. include:: ../docstrings/countplot.rst
|
||
|
|
||
|
""").format(**_categorical_docs)
|
||
|
|
||
|
|
||
|
def catplot(
|
||
|
data=None, *, x=None, y=None, hue=None, row=None, col=None, kind="strip",
|
||
|
estimator="mean", errorbar=("ci", 95), n_boot=1000, seed=None, units=None,
|
||
|
weights=None, order=None, hue_order=None, row_order=None, col_order=None,
|
||
|
col_wrap=None, height=5, aspect=1, log_scale=None, native_scale=False,
|
||
|
formatter=None, orient=None, color=None, palette=None, hue_norm=None,
|
||
|
legend="auto", legend_out=True, sharex=True, sharey=True,
|
||
|
margin_titles=False, facet_kws=None, ci=deprecated, **kwargs
|
||
|
):
|
||
|
|
||
|
# Check for attempt to plot onto specific axes and warn
|
||
|
if "ax" in kwargs:
|
||
|
msg = ("catplot is a figure-level function and does not accept "
|
||
|
f"target axes. You may wish to try {kind}plot")
|
||
|
warnings.warn(msg, UserWarning)
|
||
|
kwargs.pop("ax")
|
||
|
|
||
|
desaturated_kinds = ["bar", "count", "box", "violin", "boxen"]
|
||
|
undodged_kinds = ["strip", "swarm", "point"]
|
||
|
|
||
|
if kind in ["bar", "point", "count"]:
|
||
|
Plotter = _CategoricalAggPlotter
|
||
|
else:
|
||
|
Plotter = _CategoricalPlotter
|
||
|
|
||
|
if kind == "count":
|
||
|
if x is None and y is not None:
|
||
|
orient = "y"
|
||
|
x = 1
|
||
|
elif x is not None and y is None:
|
||
|
orient = "x"
|
||
|
y = 1
|
||
|
elif x is not None and y is not None:
|
||
|
raise ValueError("Cannot pass values for both `x` and `y`.")
|
||
|
|
||
|
p = Plotter(
|
||
|
data=data,
|
||
|
variables=dict(
|
||
|
x=x, y=y, hue=hue, row=row, col=col, units=units, weight=weights
|
||
|
),
|
||
|
order=order,
|
||
|
orient=orient,
|
||
|
# Handle special backwards compatibility where pointplot originally
|
||
|
# did *not* default to multi-colored unless a palette was specified.
|
||
|
color="C0" if kind == "point" and palette is None and color is None else color,
|
||
|
legend=legend,
|
||
|
)
|
||
|
|
||
|
for var in ["row", "col"]:
|
||
|
# Handle faceting variables that lack name information
|
||
|
if var in p.variables and p.variables[var] is None:
|
||
|
p.variables[var] = f"_{var}_"
|
||
|
|
||
|
# Adapt the plot_data dataframe for use with FacetGrid
|
||
|
facet_data = p.plot_data.rename(columns=p.variables)
|
||
|
facet_data = facet_data.loc[:, ~facet_data.columns.duplicated()]
|
||
|
|
||
|
col_name = p.variables.get("col", None)
|
||
|
row_name = p.variables.get("row", None)
|
||
|
|
||
|
if facet_kws is None:
|
||
|
facet_kws = {}
|
||
|
|
||
|
g = FacetGrid(
|
||
|
data=facet_data, row=row_name, col=col_name, col_wrap=col_wrap,
|
||
|
row_order=row_order, col_order=col_order, sharex=sharex, sharey=sharey,
|
||
|
legend_out=legend_out, margin_titles=margin_titles,
|
||
|
height=height, aspect=aspect,
|
||
|
**facet_kws,
|
||
|
)
|
||
|
|
||
|
# Capture this here because scale_categorical is going to insert a (null)
|
||
|
# x variable even if it is empty. It's not clear whether that needs to
|
||
|
# happen or if disabling that is the cleaner solution.
|
||
|
has_xy_data = p.has_xy_data
|
||
|
|
||
|
if not native_scale or p.var_types[p.orient] == "categorical":
|
||
|
p.scale_categorical(p.orient, order=order, formatter=formatter)
|
||
|
|
||
|
p._attach(g, log_scale=log_scale)
|
||
|
|
||
|
if not has_xy_data:
|
||
|
return g
|
||
|
|
||
|
# Deprecations to remove in v0.14.0.
|
||
|
hue_order = p._palette_without_hue_backcompat(palette, hue_order)
|
||
|
palette, hue_order = p._hue_backcompat(color, palette, hue_order)
|
||
|
|
||
|
# Othe deprecations
|
||
|
errorbar = utils._deprecate_ci(errorbar, ci)
|
||
|
|
||
|
saturation = kwargs.pop(
|
||
|
"saturation",
|
||
|
0.75 if kind in desaturated_kinds and kwargs.get("fill", True) else 1
|
||
|
)
|
||
|
p.map_hue(palette=palette, order=hue_order, norm=hue_norm, saturation=saturation)
|
||
|
|
||
|
# Set a default color
|
||
|
# Otherwise each artist will be plotted separately and trip the color cycle
|
||
|
if hue is None:
|
||
|
color = "C0" if color is None else color
|
||
|
if saturation < 1:
|
||
|
color = desaturate(color, saturation)
|
||
|
|
||
|
if kind in ["strip", "swarm"]:
|
||
|
kwargs = normalize_kwargs(kwargs, mpl.collections.PathCollection)
|
||
|
kwargs["edgecolor"] = p._complement_color(
|
||
|
kwargs.pop("edgecolor", default), color, p._hue_map
|
||
|
)
|
||
|
|
||
|
width = kwargs.pop("width", 0.8)
|
||
|
dodge = kwargs.pop("dodge", False if kind in undodged_kinds else "auto")
|
||
|
if dodge == "auto":
|
||
|
dodge = p._dodge_needed()
|
||
|
|
||
|
if "weight" in p.plot_data:
|
||
|
if kind not in ["bar", "point"]:
|
||
|
msg = f"The `weights` parameter has no effect with kind={kind!r}."
|
||
|
warnings.warn(msg, stacklevel=2)
|
||
|
agg_cls = WeightedAggregator
|
||
|
else:
|
||
|
agg_cls = EstimateAggregator
|
||
|
|
||
|
if kind == "strip":
|
||
|
|
||
|
jitter = kwargs.pop("jitter", True)
|
||
|
plot_kws = kwargs.copy()
|
||
|
plot_kws.setdefault("zorder", 3)
|
||
|
plot_kws.setdefault("linewidth", 0)
|
||
|
if "s" not in plot_kws:
|
||
|
plot_kws["s"] = plot_kws.pop("size", 5) ** 2
|
||
|
|
||
|
p.plot_strips(
|
||
|
jitter=jitter,
|
||
|
dodge=dodge,
|
||
|
color=color,
|
||
|
plot_kws=plot_kws,
|
||
|
)
|
||
|
|
||
|
elif kind == "swarm":
|
||
|
|
||
|
warn_thresh = kwargs.pop("warn_thresh", .05)
|
||
|
plot_kws = kwargs.copy()
|
||
|
plot_kws.setdefault("zorder", 3)
|
||
|
if "s" not in plot_kws:
|
||
|
plot_kws["s"] = plot_kws.pop("size", 5) ** 2
|
||
|
|
||
|
if plot_kws.setdefault("linewidth", 0) is None:
|
||
|
plot_kws["linewidth"] = np.sqrt(plot_kws["s"]) / 10
|
||
|
|
||
|
p.plot_swarms(
|
||
|
dodge=dodge,
|
||
|
color=color,
|
||
|
warn_thresh=warn_thresh,
|
||
|
plot_kws=plot_kws,
|
||
|
)
|
||
|
|
||
|
elif kind == "box":
|
||
|
|
||
|
plot_kws = kwargs.copy()
|
||
|
gap = plot_kws.pop("gap", 0)
|
||
|
fill = plot_kws.pop("fill", True)
|
||
|
whis = plot_kws.pop("whis", 1.5)
|
||
|
linewidth = plot_kws.pop("linewidth", None)
|
||
|
fliersize = plot_kws.pop("fliersize", 5)
|
||
|
linecolor = p._complement_color(
|
||
|
plot_kws.pop("linecolor", "auto"), color, p._hue_map
|
||
|
)
|
||
|
|
||
|
p.plot_boxes(
|
||
|
width=width,
|
||
|
dodge=dodge,
|
||
|
gap=gap,
|
||
|
fill=fill,
|
||
|
whis=whis,
|
||
|
color=color,
|
||
|
linecolor=linecolor,
|
||
|
linewidth=linewidth,
|
||
|
fliersize=fliersize,
|
||
|
plot_kws=plot_kws,
|
||
|
)
|
||
|
|
||
|
elif kind == "violin":
|
||
|
|
||
|
plot_kws = kwargs.copy()
|
||
|
gap = plot_kws.pop("gap", 0)
|
||
|
fill = plot_kws.pop("fill", True)
|
||
|
split = plot_kws.pop("split", False)
|
||
|
inner = plot_kws.pop("inner", "box")
|
||
|
density_norm = plot_kws.pop("density_norm", "area")
|
||
|
common_norm = plot_kws.pop("common_norm", False)
|
||
|
|
||
|
scale = plot_kws.pop("scale", deprecated)
|
||
|
scale_hue = plot_kws.pop("scale_hue", deprecated)
|
||
|
density_norm, common_norm = p._violin_scale_backcompat(
|
||
|
scale, scale_hue, density_norm, common_norm,
|
||
|
)
|
||
|
|
||
|
bw_method = p._violin_bw_backcompat(
|
||
|
plot_kws.pop("bw", deprecated), plot_kws.pop("bw_method", "scott")
|
||
|
)
|
||
|
kde_kws = dict(
|
||
|
cut=plot_kws.pop("cut", 2),
|
||
|
gridsize=plot_kws.pop("gridsize", 100),
|
||
|
bw_adjust=plot_kws.pop("bw_adjust", 1),
|
||
|
bw_method=bw_method,
|
||
|
)
|
||
|
|
||
|
inner_kws = plot_kws.pop("inner_kws", {}).copy()
|
||
|
linewidth = plot_kws.pop("linewidth", None)
|
||
|
linecolor = plot_kws.pop("linecolor", "auto")
|
||
|
linecolor = p._complement_color(linecolor, color, p._hue_map)
|
||
|
|
||
|
p.plot_violins(
|
||
|
width=width,
|
||
|
dodge=dodge,
|
||
|
gap=gap,
|
||
|
split=split,
|
||
|
color=color,
|
||
|
fill=fill,
|
||
|
linecolor=linecolor,
|
||
|
linewidth=linewidth,
|
||
|
inner=inner,
|
||
|
density_norm=density_norm,
|
||
|
common_norm=common_norm,
|
||
|
kde_kws=kde_kws,
|
||
|
inner_kws=inner_kws,
|
||
|
plot_kws=plot_kws,
|
||
|
)
|
||
|
|
||
|
elif kind == "boxen":
|
||
|
|
||
|
plot_kws = kwargs.copy()
|
||
|
gap = plot_kws.pop("gap", 0)
|
||
|
fill = plot_kws.pop("fill", True)
|
||
|
linecolor = plot_kws.pop("linecolor", "auto")
|
||
|
linewidth = plot_kws.pop("linewidth", None)
|
||
|
k_depth = plot_kws.pop("k_depth", "tukey")
|
||
|
width_method = plot_kws.pop("width_method", "exponential")
|
||
|
outlier_prop = plot_kws.pop("outlier_prop", 0.007)
|
||
|
trust_alpha = plot_kws.pop("trust_alpha", 0.05)
|
||
|
showfliers = plot_kws.pop("showfliers", True)
|
||
|
box_kws = plot_kws.pop("box_kws", {})
|
||
|
flier_kws = plot_kws.pop("flier_kws", {})
|
||
|
line_kws = plot_kws.pop("line_kws", {})
|
||
|
if "scale" in plot_kws:
|
||
|
width_method = p._boxen_scale_backcompat(
|
||
|
plot_kws["scale"], width_method
|
||
|
)
|
||
|
linecolor = p._complement_color(linecolor, color, p._hue_map)
|
||
|
|
||
|
p.plot_boxens(
|
||
|
width=width,
|
||
|
dodge=dodge,
|
||
|
gap=gap,
|
||
|
fill=fill,
|
||
|
color=color,
|
||
|
linecolor=linecolor,
|
||
|
linewidth=linewidth,
|
||
|
width_method=width_method,
|
||
|
k_depth=k_depth,
|
||
|
outlier_prop=outlier_prop,
|
||
|
trust_alpha=trust_alpha,
|
||
|
showfliers=showfliers,
|
||
|
box_kws=box_kws,
|
||
|
flier_kws=flier_kws,
|
||
|
line_kws=line_kws,
|
||
|
plot_kws=plot_kws,
|
||
|
)
|
||
|
|
||
|
elif kind == "point":
|
||
|
|
||
|
aggregator = agg_cls(estimator, errorbar, n_boot=n_boot, seed=seed)
|
||
|
|
||
|
markers = kwargs.pop("markers", default)
|
||
|
linestyles = kwargs.pop("linestyles", default)
|
||
|
|
||
|
# Deprecations to remove in v0.15.0.
|
||
|
# TODO Uncomment when removing deprecation backcompat
|
||
|
# capsize = kwargs.pop("capsize", 0)
|
||
|
# err_kws = normalize_kwargs(kwargs.pop("err_kws", {}), mpl.lines.Line2D)
|
||
|
p._point_kwargs_backcompat(
|
||
|
kwargs.pop("scale", deprecated),
|
||
|
kwargs.pop("join", deprecated),
|
||
|
kwargs
|
||
|
)
|
||
|
err_kws, capsize = p._err_kws_backcompat(
|
||
|
normalize_kwargs(kwargs.pop("err_kws", {}), mpl.lines.Line2D),
|
||
|
None,
|
||
|
errwidth=kwargs.pop("errwidth", deprecated),
|
||
|
capsize=kwargs.pop("capsize", 0),
|
||
|
)
|
||
|
|
||
|
p.plot_points(
|
||
|
aggregator=aggregator,
|
||
|
markers=markers,
|
||
|
linestyles=linestyles,
|
||
|
dodge=dodge,
|
||
|
color=color,
|
||
|
capsize=capsize,
|
||
|
err_kws=err_kws,
|
||
|
plot_kws=kwargs,
|
||
|
)
|
||
|
|
||
|
elif kind == "bar":
|
||
|
|
||
|
aggregator = agg_cls(estimator, errorbar, n_boot=n_boot, seed=seed)
|
||
|
|
||
|
err_kws, capsize = p._err_kws_backcompat(
|
||
|
normalize_kwargs(kwargs.pop("err_kws", {}), mpl.lines.Line2D),
|
||
|
errcolor=kwargs.pop("errcolor", deprecated),
|
||
|
errwidth=kwargs.pop("errwidth", deprecated),
|
||
|
capsize=kwargs.pop("capsize", 0),
|
||
|
)
|
||
|
gap = kwargs.pop("gap", 0)
|
||
|
fill = kwargs.pop("fill", True)
|
||
|
|
||
|
p.plot_bars(
|
||
|
aggregator=aggregator,
|
||
|
dodge=dodge,
|
||
|
width=width,
|
||
|
gap=gap,
|
||
|
color=color,
|
||
|
fill=fill,
|
||
|
capsize=capsize,
|
||
|
err_kws=err_kws,
|
||
|
plot_kws=kwargs,
|
||
|
)
|
||
|
|
||
|
elif kind == "count":
|
||
|
|
||
|
aggregator = EstimateAggregator("sum", errorbar=None)
|
||
|
|
||
|
count_axis = {"x": "y", "y": "x"}[p.orient]
|
||
|
p.plot_data[count_axis] = 1
|
||
|
|
||
|
stat_options = ["count", "percent", "probability", "proportion"]
|
||
|
stat = _check_argument("stat", stat_options, kwargs.pop("stat", "count"))
|
||
|
p.variables[count_axis] = stat
|
||
|
if stat != "count":
|
||
|
denom = 100 if stat == "percent" else 1
|
||
|
p.plot_data[count_axis] /= len(p.plot_data) / denom
|
||
|
|
||
|
gap = kwargs.pop("gap", 0)
|
||
|
fill = kwargs.pop("fill", True)
|
||
|
|
||
|
p.plot_bars(
|
||
|
aggregator=aggregator,
|
||
|
dodge=dodge,
|
||
|
width=width,
|
||
|
gap=gap,
|
||
|
color=color,
|
||
|
fill=fill,
|
||
|
capsize=0,
|
||
|
err_kws={},
|
||
|
plot_kws=kwargs,
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
msg = (
|
||
|
f"Invalid `kind`: {kind!r}. Options are 'strip', 'swarm', "
|
||
|
"'box', 'boxen', 'violin', 'bar', 'count', and 'point'."
|
||
|
)
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
for ax in g.axes.flat:
|
||
|
p._adjust_cat_axis(ax, axis=p.orient)
|
||
|
|
||
|
g.set_axis_labels(p.variables.get("x"), p.variables.get("y"))
|
||
|
g.set_titles()
|
||
|
g.tight_layout()
|
||
|
|
||
|
for ax in g.axes.flat:
|
||
|
g._update_legend_data(ax)
|
||
|
ax.legend_ = None
|
||
|
|
||
|
if legend == "auto":
|
||
|
show_legend = not p._redundant_hue and p.input_format != "wide"
|
||
|
else:
|
||
|
show_legend = bool(legend)
|
||
|
if show_legend:
|
||
|
g.add_legend(title=p.variables.get("hue"), label_order=hue_order)
|
||
|
|
||
|
if data is not None:
|
||
|
# Replace the dataframe on the FacetGrid for any subsequent maps
|
||
|
g.data = data
|
||
|
|
||
|
return g
|
||
|
|
||
|
|
||
|
catplot.__doc__ = dedent("""\
|
||
|
Figure-level interface for drawing categorical plots onto a FacetGrid.
|
||
|
|
||
|
This function provides access to several axes-level functions that
|
||
|
show the relationship between a numerical and one or more categorical
|
||
|
variables using one of several visual representations. The `kind`
|
||
|
parameter selects the underlying axes-level function to use.
|
||
|
|
||
|
Categorical scatterplots:
|
||
|
|
||
|
- :func:`stripplot` (with `kind="strip"`; the default)
|
||
|
- :func:`swarmplot` (with `kind="swarm"`)
|
||
|
|
||
|
Categorical distribution plots:
|
||
|
|
||
|
- :func:`boxplot` (with `kind="box"`)
|
||
|
- :func:`violinplot` (with `kind="violin"`)
|
||
|
- :func:`boxenplot` (with `kind="boxen"`)
|
||
|
|
||
|
Categorical estimate plots:
|
||
|
|
||
|
- :func:`pointplot` (with `kind="point"`)
|
||
|
- :func:`barplot` (with `kind="bar"`)
|
||
|
- :func:`countplot` (with `kind="count"`)
|
||
|
|
||
|
Extra keyword arguments are passed to the underlying function, so you
|
||
|
should refer to the documentation for each to see kind-specific options.
|
||
|
|
||
|
{categorical_narrative}
|
||
|
|
||
|
After plotting, the :class:`FacetGrid` with the plot is returned and can
|
||
|
be used directly to tweak supporting plot details or add other layers.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{categorical_data}
|
||
|
{input_params}
|
||
|
row, col : names of variables in `data` or vector data
|
||
|
Categorical variables that will determine the faceting of the grid.
|
||
|
kind : str
|
||
|
The kind of plot to draw, corresponds to the name of a categorical
|
||
|
axes-level plotting function. Options are: "strip", "swarm", "box", "violin",
|
||
|
"boxen", "point", "bar", or "count".
|
||
|
{stat_api_params}
|
||
|
{order_vars}
|
||
|
row_order, col_order : lists of strings
|
||
|
Order to organize the rows and/or columns of the grid in; otherwise the
|
||
|
orders are inferred from the data objects.
|
||
|
{col_wrap}
|
||
|
{height}
|
||
|
{aspect}
|
||
|
{native_scale}
|
||
|
{formatter}
|
||
|
{orient}
|
||
|
{color}
|
||
|
{palette}
|
||
|
{hue_norm}
|
||
|
{legend}
|
||
|
{legend_out}
|
||
|
{share_xy}
|
||
|
{margin_titles}
|
||
|
facet_kws : dict
|
||
|
Dictionary of other keyword arguments to pass to :class:`FacetGrid`.
|
||
|
kwargs : key, value pairings
|
||
|
Other keyword arguments are passed through to the underlying plotting
|
||
|
function.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
:class:`FacetGrid`
|
||
|
Returns the :class:`FacetGrid` object with the plot on it for further
|
||
|
tweaking.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. include:: ../docstrings/catplot.rst
|
||
|
|
||
|
""").format(**_categorical_docs)
|
||
|
|
||
|
|
||
|
class Beeswarm:
|
||
|
"""Modifies a scatterplot artist to show a beeswarm plot."""
|
||
|
def __init__(self, orient="x", width=0.8, warn_thresh=.05):
|
||
|
|
||
|
self.orient = orient
|
||
|
self.width = width
|
||
|
self.warn_thresh = warn_thresh
|
||
|
|
||
|
def __call__(self, points, center):
|
||
|
"""Swarm `points`, a PathCollection, around the `center` position."""
|
||
|
# Convert from point size (area) to diameter
|
||
|
|
||
|
ax = points.axes
|
||
|
dpi = ax.figure.dpi
|
||
|
|
||
|
# Get the original positions of the points
|
||
|
orig_xy_data = points.get_offsets()
|
||
|
|
||
|
# Reset the categorical positions to the center line
|
||
|
cat_idx = 1 if self.orient == "y" else 0
|
||
|
orig_xy_data[:, cat_idx] = center
|
||
|
|
||
|
# Transform the data coordinates to point coordinates.
|
||
|
# We'll figure out the swarm positions in the latter
|
||
|
# and then convert back to data coordinates and replot
|
||
|
orig_x_data, orig_y_data = orig_xy_data.T
|
||
|
orig_xy = ax.transData.transform(orig_xy_data)
|
||
|
|
||
|
# Order the variables so that x is the categorical axis
|
||
|
if self.orient == "y":
|
||
|
orig_xy = orig_xy[:, [1, 0]]
|
||
|
|
||
|
# Add a column with each point's radius
|
||
|
sizes = points.get_sizes()
|
||
|
if sizes.size == 1:
|
||
|
sizes = np.repeat(sizes, orig_xy.shape[0])
|
||
|
edge = points.get_linewidth().item()
|
||
|
radii = (np.sqrt(sizes) + edge) / 2 * (dpi / 72)
|
||
|
orig_xy = np.c_[orig_xy, radii]
|
||
|
|
||
|
# Sort along the value axis to facilitate the beeswarm
|
||
|
sorter = np.argsort(orig_xy[:, 1])
|
||
|
orig_xyr = orig_xy[sorter]
|
||
|
|
||
|
# Adjust points along the categorical axis to prevent overlaps
|
||
|
new_xyr = np.empty_like(orig_xyr)
|
||
|
new_xyr[sorter] = self.beeswarm(orig_xyr)
|
||
|
|
||
|
# Transform the point coordinates back to data coordinates
|
||
|
if self.orient == "y":
|
||
|
new_xy = new_xyr[:, [1, 0]]
|
||
|
else:
|
||
|
new_xy = new_xyr[:, :2]
|
||
|
new_x_data, new_y_data = ax.transData.inverted().transform(new_xy).T
|
||
|
|
||
|
# Add gutters
|
||
|
t_fwd, t_inv = _get_transform_functions(ax, self.orient)
|
||
|
if self.orient == "y":
|
||
|
self.add_gutters(new_y_data, center, t_fwd, t_inv)
|
||
|
else:
|
||
|
self.add_gutters(new_x_data, center, t_fwd, t_inv)
|
||
|
|
||
|
# Reposition the points so they do not overlap
|
||
|
if self.orient == "y":
|
||
|
points.set_offsets(np.c_[orig_x_data, new_y_data])
|
||
|
else:
|
||
|
points.set_offsets(np.c_[new_x_data, orig_y_data])
|
||
|
|
||
|
def beeswarm(self, orig_xyr):
|
||
|
"""Adjust x position of points to avoid overlaps."""
|
||
|
# In this method, `x` is always the categorical axis
|
||
|
# Center of the swarm, in point coordinates
|
||
|
midline = orig_xyr[0, 0]
|
||
|
|
||
|
# Start the swarm with the first point
|
||
|
swarm = np.atleast_2d(orig_xyr[0])
|
||
|
|
||
|
# Loop over the remaining points
|
||
|
for xyr_i in orig_xyr[1:]:
|
||
|
|
||
|
# Find the points in the swarm that could possibly
|
||
|
# overlap with the point we are currently placing
|
||
|
neighbors = self.could_overlap(xyr_i, swarm)
|
||
|
|
||
|
# Find positions that would be valid individually
|
||
|
# with respect to each of the swarm neighbors
|
||
|
candidates = self.position_candidates(xyr_i, neighbors)
|
||
|
|
||
|
# Sort candidates by their centrality
|
||
|
offsets = np.abs(candidates[:, 0] - midline)
|
||
|
candidates = candidates[np.argsort(offsets)]
|
||
|
|
||
|
# Find the first candidate that does not overlap any neighbors
|
||
|
new_xyr_i = self.first_non_overlapping_candidate(candidates, neighbors)
|
||
|
|
||
|
# Place it into the swarm
|
||
|
swarm = np.vstack([swarm, new_xyr_i])
|
||
|
|
||
|
return swarm
|
||
|
|
||
|
def could_overlap(self, xyr_i, swarm):
|
||
|
"""Return a list of all swarm points that could overlap with target."""
|
||
|
# Because we work backwards through the swarm and can short-circuit,
|
||
|
# the for-loop is faster than vectorization
|
||
|
_, y_i, r_i = xyr_i
|
||
|
neighbors = []
|
||
|
for xyr_j in reversed(swarm):
|
||
|
_, y_j, r_j = xyr_j
|
||
|
if (y_i - y_j) < (r_i + r_j):
|
||
|
neighbors.append(xyr_j)
|
||
|
else:
|
||
|
break
|
||
|
return np.array(neighbors)[::-1]
|
||
|
|
||
|
def position_candidates(self, xyr_i, neighbors):
|
||
|
"""Return a list of coordinates that might be valid by adjusting x."""
|
||
|
candidates = [xyr_i]
|
||
|
x_i, y_i, r_i = xyr_i
|
||
|
left_first = True
|
||
|
for x_j, y_j, r_j in neighbors:
|
||
|
dy = y_i - y_j
|
||
|
dx = np.sqrt(max((r_i + r_j) ** 2 - dy ** 2, 0)) * 1.05
|
||
|
cl, cr = (x_j - dx, y_i, r_i), (x_j + dx, y_i, r_i)
|
||
|
if left_first:
|
||
|
new_candidates = [cl, cr]
|
||
|
else:
|
||
|
new_candidates = [cr, cl]
|
||
|
candidates.extend(new_candidates)
|
||
|
left_first = not left_first
|
||
|
return np.array(candidates)
|
||
|
|
||
|
def first_non_overlapping_candidate(self, candidates, neighbors):
|
||
|
"""Find the first candidate that does not overlap with the swarm."""
|
||
|
|
||
|
# If we have no neighbors, all candidates are good.
|
||
|
if len(neighbors) == 0:
|
||
|
return candidates[0]
|
||
|
|
||
|
neighbors_x = neighbors[:, 0]
|
||
|
neighbors_y = neighbors[:, 1]
|
||
|
neighbors_r = neighbors[:, 2]
|
||
|
|
||
|
for xyr_i in candidates:
|
||
|
|
||
|
x_i, y_i, r_i = xyr_i
|
||
|
|
||
|
dx = neighbors_x - x_i
|
||
|
dy = neighbors_y - y_i
|
||
|
sq_distances = np.square(dx) + np.square(dy)
|
||
|
|
||
|
sep_needed = np.square(neighbors_r + r_i)
|
||
|
|
||
|
# Good candidate does not overlap any of neighbors which means that
|
||
|
# squared distance between candidate and any of the neighbors has
|
||
|
# to be at least square of the summed radii
|
||
|
good_candidate = np.all(sq_distances >= sep_needed)
|
||
|
|
||
|
if good_candidate:
|
||
|
return xyr_i
|
||
|
|
||
|
raise RuntimeError(
|
||
|
"No non-overlapping candidates found. This should not happen."
|
||
|
)
|
||
|
|
||
|
def add_gutters(self, points, center, trans_fwd, trans_inv):
|
||
|
"""Stop points from extending beyond their territory."""
|
||
|
half_width = self.width / 2
|
||
|
low_gutter = trans_inv(trans_fwd(center) - half_width)
|
||
|
off_low = points < low_gutter
|
||
|
if off_low.any():
|
||
|
points[off_low] = low_gutter
|
||
|
high_gutter = trans_inv(trans_fwd(center) + half_width)
|
||
|
off_high = points > high_gutter
|
||
|
if off_high.any():
|
||
|
points[off_high] = high_gutter
|
||
|
|
||
|
gutter_prop = (off_high + off_low).sum() / len(points)
|
||
|
if gutter_prop > self.warn_thresh:
|
||
|
msg = (
|
||
|
"{:.1%} of the points cannot be placed; you may want "
|
||
|
"to decrease the size of the markers or use stripplot."
|
||
|
).format(gutter_prop)
|
||
|
warnings.warn(msg, UserWarning)
|
||
|
|
||
|
return points
|
||
|
|
||
|
|
||
|
BoxPlotArtists = namedtuple("BoxPlotArtists", "box median whiskers caps fliers mean")
|
||
|
|
||
|
|
||
|
class BoxPlotContainer:
|
||
|
|
||
|
def __init__(self, artist_dict):
|
||
|
|
||
|
self.boxes = artist_dict["boxes"]
|
||
|
self.medians = artist_dict["medians"]
|
||
|
self.whiskers = artist_dict["whiskers"]
|
||
|
self.caps = artist_dict["caps"]
|
||
|
self.fliers = artist_dict["fliers"]
|
||
|
self.means = artist_dict["means"]
|
||
|
|
||
|
self._label = None
|
||
|
self._children = [
|
||
|
*self.boxes,
|
||
|
*self.medians,
|
||
|
*self.whiskers,
|
||
|
*self.caps,
|
||
|
*self.fliers,
|
||
|
*self.means,
|
||
|
]
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"<BoxPlotContainer object with {len(self.boxes)} boxes>"
|
||
|
|
||
|
def __getitem__(self, idx):
|
||
|
pair_slice = slice(2 * idx, 2 * idx + 2)
|
||
|
return BoxPlotArtists(
|
||
|
self.boxes[idx] if self.boxes else [],
|
||
|
self.medians[idx] if self.medians else [],
|
||
|
self.whiskers[pair_slice] if self.whiskers else [],
|
||
|
self.caps[pair_slice] if self.caps else [],
|
||
|
self.fliers[idx] if self.fliers else [],
|
||
|
self.means[idx]if self.means else [],
|
||
|
)
|
||
|
|
||
|
def __iter__(self):
|
||
|
yield from (self[i] for i in range(len(self.boxes)))
|
||
|
|
||
|
def get_label(self):
|
||
|
return self._label
|
||
|
|
||
|
def set_label(self, value):
|
||
|
self._label = value
|
||
|
|
||
|
def get_children(self):
|
||
|
return self._children
|
||
|
|
||
|
def remove(self):
|
||
|
for child in self._children:
|
||
|
child.remove()
|