2402 lines
86 KiB
Python
2402 lines
86 KiB
Python
|
from __future__ import annotations
|
||
|
from itertools import product
|
||
|
from inspect import signature
|
||
|
import warnings
|
||
|
from textwrap import dedent
|
||
|
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
import matplotlib as mpl
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
from ._base import VectorPlotter, variable_type, categorical_order
|
||
|
from ._core.data import handle_data_source
|
||
|
from ._compat import share_axis, get_legend_handles
|
||
|
from . import utils
|
||
|
from .utils import (
|
||
|
adjust_legend_subtitles,
|
||
|
set_hls_values,
|
||
|
_check_argument,
|
||
|
_draw_figure,
|
||
|
_disable_autolayout
|
||
|
)
|
||
|
from .palettes import color_palette, blend_palette
|
||
|
from ._docstrings import (
|
||
|
DocstringComponents,
|
||
|
_core_docs,
|
||
|
)
|
||
|
|
||
|
__all__ = ["FacetGrid", "PairGrid", "JointGrid", "pairplot", "jointplot"]
|
||
|
|
||
|
|
||
|
_param_docs = DocstringComponents.from_nested_components(
|
||
|
core=_core_docs["params"],
|
||
|
)
|
||
|
|
||
|
|
||
|
class _BaseGrid:
|
||
|
"""Base class for grids of subplots."""
|
||
|
|
||
|
def set(self, **kwargs):
|
||
|
"""Set attributes on each subplot Axes."""
|
||
|
for ax in self.axes.flat:
|
||
|
if ax is not None: # Handle removed axes
|
||
|
ax.set(**kwargs)
|
||
|
return self
|
||
|
|
||
|
@property
|
||
|
def fig(self):
|
||
|
"""DEPRECATED: prefer the `figure` property."""
|
||
|
# Grid.figure is preferred because it matches the Axes attribute name.
|
||
|
# But as the maintanace burden on having this property is minimal,
|
||
|
# let's be slow about formally deprecating it. For now just note its deprecation
|
||
|
# in the docstring; add a warning in version 0.13, and eventually remove it.
|
||
|
return self._figure
|
||
|
|
||
|
@property
|
||
|
def figure(self):
|
||
|
"""Access the :class:`matplotlib.figure.Figure` object underlying the grid."""
|
||
|
return self._figure
|
||
|
|
||
|
def apply(self, func, *args, **kwargs):
|
||
|
"""
|
||
|
Pass the grid to a user-supplied function and return self.
|
||
|
|
||
|
The `func` must accept an object of this type for its first
|
||
|
positional argument. Additional arguments are passed through.
|
||
|
The return value of `func` is ignored; this method returns self.
|
||
|
See the `pipe` method if you want the return value.
|
||
|
|
||
|
Added in v0.12.0.
|
||
|
|
||
|
"""
|
||
|
func(self, *args, **kwargs)
|
||
|
return self
|
||
|
|
||
|
def pipe(self, func, *args, **kwargs):
|
||
|
"""
|
||
|
Pass the grid to a user-supplied function and return its value.
|
||
|
|
||
|
The `func` must accept an object of this type for its first
|
||
|
positional argument. Additional arguments are passed through.
|
||
|
The return value of `func` becomes the return value of this method.
|
||
|
See the `apply` method if you want to return self instead.
|
||
|
|
||
|
Added in v0.12.0.
|
||
|
|
||
|
"""
|
||
|
return func(self, *args, **kwargs)
|
||
|
|
||
|
def savefig(self, *args, **kwargs):
|
||
|
"""
|
||
|
Save an image of the plot.
|
||
|
|
||
|
This wraps :meth:`matplotlib.figure.Figure.savefig`, using bbox_inches="tight"
|
||
|
by default. Parameters are passed through to the matplotlib function.
|
||
|
|
||
|
"""
|
||
|
kwargs = kwargs.copy()
|
||
|
kwargs.setdefault("bbox_inches", "tight")
|
||
|
self.figure.savefig(*args, **kwargs)
|
||
|
|
||
|
|
||
|
class Grid(_BaseGrid):
|
||
|
"""A grid that can have multiple subplots and an external legend."""
|
||
|
_margin_titles = False
|
||
|
_legend_out = True
|
||
|
|
||
|
def __init__(self):
|
||
|
|
||
|
self._tight_layout_rect = [0, 0, 1, 1]
|
||
|
self._tight_layout_pad = None
|
||
|
|
||
|
# This attribute is set externally and is a hack to handle newer functions that
|
||
|
# don't add proxy artists onto the Axes. We need an overall cleaner approach.
|
||
|
self._extract_legend_handles = False
|
||
|
|
||
|
def tight_layout(self, *args, **kwargs):
|
||
|
"""Call fig.tight_layout within rect that exclude the legend."""
|
||
|
kwargs = kwargs.copy()
|
||
|
kwargs.setdefault("rect", self._tight_layout_rect)
|
||
|
if self._tight_layout_pad is not None:
|
||
|
kwargs.setdefault("pad", self._tight_layout_pad)
|
||
|
self._figure.tight_layout(*args, **kwargs)
|
||
|
return self
|
||
|
|
||
|
def add_legend(self, legend_data=None, title=None, label_order=None,
|
||
|
adjust_subtitles=False, **kwargs):
|
||
|
"""Draw a legend, maybe placing it outside axes and resizing the figure.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
legend_data : dict
|
||
|
Dictionary mapping label names (or two-element tuples where the
|
||
|
second element is a label name) to matplotlib artist handles. The
|
||
|
default reads from ``self._legend_data``.
|
||
|
title : string
|
||
|
Title for the legend. The default reads from ``self._hue_var``.
|
||
|
label_order : list of labels
|
||
|
The order that the legend entries should appear in. The default
|
||
|
reads from ``self.hue_names``.
|
||
|
adjust_subtitles : bool
|
||
|
If True, modify entries with invisible artists to left-align
|
||
|
the labels and set the font size to that of a title.
|
||
|
kwargs : key, value pairings
|
||
|
Other keyword arguments are passed to the underlying legend methods
|
||
|
on the Figure or Axes object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Grid instance
|
||
|
Returns self for easy chaining.
|
||
|
|
||
|
"""
|
||
|
# Find the data for the legend
|
||
|
if legend_data is None:
|
||
|
legend_data = self._legend_data
|
||
|
if label_order is None:
|
||
|
if self.hue_names is None:
|
||
|
label_order = list(legend_data.keys())
|
||
|
else:
|
||
|
label_order = list(map(utils.to_utf8, self.hue_names))
|
||
|
|
||
|
blank_handle = mpl.patches.Patch(alpha=0, linewidth=0)
|
||
|
handles = [legend_data.get(lab, blank_handle) for lab in label_order]
|
||
|
title = self._hue_var if title is None else title
|
||
|
title_size = mpl.rcParams["legend.title_fontsize"]
|
||
|
|
||
|
# Unpack nested labels from a hierarchical legend
|
||
|
labels = []
|
||
|
for entry in label_order:
|
||
|
if isinstance(entry, tuple):
|
||
|
_, label = entry
|
||
|
else:
|
||
|
label = entry
|
||
|
labels.append(label)
|
||
|
|
||
|
# Set default legend kwargs
|
||
|
kwargs.setdefault("scatterpoints", 1)
|
||
|
|
||
|
if self._legend_out:
|
||
|
|
||
|
kwargs.setdefault("frameon", False)
|
||
|
kwargs.setdefault("loc", "center right")
|
||
|
|
||
|
# Draw a full-figure legend outside the grid
|
||
|
figlegend = self._figure.legend(handles, labels, **kwargs)
|
||
|
|
||
|
self._legend = figlegend
|
||
|
figlegend.set_title(title, prop={"size": title_size})
|
||
|
|
||
|
if adjust_subtitles:
|
||
|
adjust_legend_subtitles(figlegend)
|
||
|
|
||
|
# Draw the plot to set the bounding boxes correctly
|
||
|
_draw_figure(self._figure)
|
||
|
|
||
|
# Calculate and set the new width of the figure so the legend fits
|
||
|
legend_width = figlegend.get_window_extent().width / self._figure.dpi
|
||
|
fig_width, fig_height = self._figure.get_size_inches()
|
||
|
self._figure.set_size_inches(fig_width + legend_width, fig_height)
|
||
|
|
||
|
# Draw the plot again to get the new transformations
|
||
|
_draw_figure(self._figure)
|
||
|
|
||
|
# Now calculate how much space we need on the right side
|
||
|
legend_width = figlegend.get_window_extent().width / self._figure.dpi
|
||
|
space_needed = legend_width / (fig_width + legend_width)
|
||
|
margin = .04 if self._margin_titles else .01
|
||
|
self._space_needed = margin + space_needed
|
||
|
right = 1 - self._space_needed
|
||
|
|
||
|
# Place the subplot axes to give space for the legend
|
||
|
self._figure.subplots_adjust(right=right)
|
||
|
self._tight_layout_rect[2] = right
|
||
|
|
||
|
else:
|
||
|
# Draw a legend in the first axis
|
||
|
ax = self.axes.flat[0]
|
||
|
kwargs.setdefault("loc", "best")
|
||
|
|
||
|
leg = ax.legend(handles, labels, **kwargs)
|
||
|
leg.set_title(title, prop={"size": title_size})
|
||
|
self._legend = leg
|
||
|
|
||
|
if adjust_subtitles:
|
||
|
adjust_legend_subtitles(leg)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def _update_legend_data(self, ax):
|
||
|
"""Extract the legend data from an axes object and save it."""
|
||
|
data = {}
|
||
|
|
||
|
# Get data directly from the legend, which is necessary
|
||
|
# for newer functions that don't add labeled proxy artists
|
||
|
if ax.legend_ is not None and self._extract_legend_handles:
|
||
|
handles = get_legend_handles(ax.legend_)
|
||
|
labels = [t.get_text() for t in ax.legend_.texts]
|
||
|
data.update({label: handle for handle, label in zip(handles, labels)})
|
||
|
|
||
|
handles, labels = ax.get_legend_handles_labels()
|
||
|
data.update({label: handle for handle, label in zip(handles, labels)})
|
||
|
|
||
|
self._legend_data.update(data)
|
||
|
|
||
|
# Now clear the legend
|
||
|
ax.legend_ = None
|
||
|
|
||
|
def _get_palette(self, data, hue, hue_order, palette):
|
||
|
"""Get a list of colors for the hue variable."""
|
||
|
if hue is None:
|
||
|
palette = color_palette(n_colors=1)
|
||
|
|
||
|
else:
|
||
|
hue_names = categorical_order(data[hue], hue_order)
|
||
|
n_colors = len(hue_names)
|
||
|
|
||
|
# By default use either the current color palette or HUSL
|
||
|
if palette is None:
|
||
|
current_palette = utils.get_color_cycle()
|
||
|
if n_colors > len(current_palette):
|
||
|
colors = color_palette("husl", n_colors)
|
||
|
else:
|
||
|
colors = color_palette(n_colors=n_colors)
|
||
|
|
||
|
# Allow for palette to map from hue variable names
|
||
|
elif isinstance(palette, dict):
|
||
|
color_names = [palette[h] for h in hue_names]
|
||
|
colors = color_palette(color_names, n_colors)
|
||
|
|
||
|
# Otherwise act as if we just got a list of colors
|
||
|
else:
|
||
|
colors = color_palette(palette, n_colors)
|
||
|
|
||
|
palette = color_palette(colors, n_colors)
|
||
|
|
||
|
return palette
|
||
|
|
||
|
@property
|
||
|
def legend(self):
|
||
|
"""The :class:`matplotlib.legend.Legend` object, if present."""
|
||
|
try:
|
||
|
return self._legend
|
||
|
except AttributeError:
|
||
|
return None
|
||
|
|
||
|
def tick_params(self, axis='both', **kwargs):
|
||
|
"""Modify the ticks, tick labels, and gridlines.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
axis : {'x', 'y', 'both'}
|
||
|
The axis on which to apply the formatting.
|
||
|
kwargs : keyword arguments
|
||
|
Additional keyword arguments to pass to
|
||
|
:meth:`matplotlib.axes.Axes.tick_params`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Grid instance
|
||
|
Returns self for easy chaining.
|
||
|
|
||
|
"""
|
||
|
for ax in self.figure.axes:
|
||
|
ax.tick_params(axis=axis, **kwargs)
|
||
|
return self
|
||
|
|
||
|
|
||
|
_facet_docs = dict(
|
||
|
|
||
|
data=dedent("""\
|
||
|
data : DataFrame
|
||
|
Tidy ("long-form") dataframe where each column is a variable and each
|
||
|
row is an observation.\
|
||
|
"""),
|
||
|
rowcol=dedent("""\
|
||
|
row, col : vectors or keys in ``data``
|
||
|
Variables that define subsets to plot on different facets.\
|
||
|
"""),
|
||
|
rowcol_order=dedent("""\
|
||
|
{row,col}_order : vector of strings
|
||
|
Specify the order in which levels of the ``row`` and/or ``col`` variables
|
||
|
appear in the grid of subplots.\
|
||
|
"""),
|
||
|
col_wrap=dedent("""\
|
||
|
col_wrap : int
|
||
|
"Wrap" the column variable at this width, so that the column facets
|
||
|
span multiple rows. Incompatible with a ``row`` facet.\
|
||
|
"""),
|
||
|
share_xy=dedent("""\
|
||
|
share{x,y} : bool, 'col', or 'row' optional
|
||
|
If true, the facets will share y axes across columns and/or x axes
|
||
|
across rows.\
|
||
|
"""),
|
||
|
height=dedent("""\
|
||
|
height : scalar
|
||
|
Height (in inches) of each facet. See also: ``aspect``.\
|
||
|
"""),
|
||
|
aspect=dedent("""\
|
||
|
aspect : scalar
|
||
|
Aspect ratio of each facet, so that ``aspect * height`` gives the width
|
||
|
of each facet in inches.\
|
||
|
"""),
|
||
|
palette=dedent("""\
|
||
|
palette : palette name, list, or dict
|
||
|
Colors to use for the different levels of the ``hue`` variable. Should
|
||
|
be something that can be interpreted by :func:`color_palette`, or a
|
||
|
dictionary mapping hue levels to matplotlib colors.\
|
||
|
"""),
|
||
|
legend_out=dedent("""\
|
||
|
legend_out : bool
|
||
|
If ``True``, the figure size will be extended, and the legend will be
|
||
|
drawn outside the plot on the center right.\
|
||
|
"""),
|
||
|
margin_titles=dedent("""\
|
||
|
margin_titles : bool
|
||
|
If ``True``, the titles for the row variable are drawn to the right of
|
||
|
the last column. This option is experimental and may not work in all
|
||
|
cases.\
|
||
|
"""),
|
||
|
facet_kws=dedent("""\
|
||
|
facet_kws : dict
|
||
|
Additional parameters passed to :class:`FacetGrid`.
|
||
|
"""),
|
||
|
)
|
||
|
|
||
|
|
||
|
class FacetGrid(Grid):
|
||
|
"""Multi-plot grid for plotting conditional relationships."""
|
||
|
|
||
|
def __init__(
|
||
|
self, data, *,
|
||
|
row=None, col=None, hue=None, col_wrap=None,
|
||
|
sharex=True, sharey=True, height=3, aspect=1, palette=None,
|
||
|
row_order=None, col_order=None, hue_order=None, hue_kws=None,
|
||
|
dropna=False, legend_out=True, despine=True,
|
||
|
margin_titles=False, xlim=None, ylim=None, subplot_kws=None,
|
||
|
gridspec_kws=None,
|
||
|
):
|
||
|
|
||
|
super().__init__()
|
||
|
data = handle_data_source(data)
|
||
|
|
||
|
# Determine the hue facet layer information
|
||
|
hue_var = hue
|
||
|
if hue is None:
|
||
|
hue_names = None
|
||
|
else:
|
||
|
hue_names = categorical_order(data[hue], hue_order)
|
||
|
|
||
|
colors = self._get_palette(data, hue, hue_order, palette)
|
||
|
|
||
|
# Set up the lists of names for the row and column facet variables
|
||
|
if row is None:
|
||
|
row_names = []
|
||
|
else:
|
||
|
row_names = categorical_order(data[row], row_order)
|
||
|
|
||
|
if col is None:
|
||
|
col_names = []
|
||
|
else:
|
||
|
col_names = categorical_order(data[col], col_order)
|
||
|
|
||
|
# Additional dict of kwarg -> list of values for mapping the hue var
|
||
|
hue_kws = hue_kws if hue_kws is not None else {}
|
||
|
|
||
|
# Make a boolean mask that is True anywhere there is an NA
|
||
|
# value in one of the faceting variables, but only if dropna is True
|
||
|
none_na = np.zeros(len(data), bool)
|
||
|
if dropna:
|
||
|
row_na = none_na if row is None else data[row].isnull()
|
||
|
col_na = none_na if col is None else data[col].isnull()
|
||
|
hue_na = none_na if hue is None else data[hue].isnull()
|
||
|
not_na = ~(row_na | col_na | hue_na)
|
||
|
else:
|
||
|
not_na = ~none_na
|
||
|
|
||
|
# Compute the grid shape
|
||
|
ncol = 1 if col is None else len(col_names)
|
||
|
nrow = 1 if row is None else len(row_names)
|
||
|
self._n_facets = ncol * nrow
|
||
|
|
||
|
self._col_wrap = col_wrap
|
||
|
if col_wrap is not None:
|
||
|
if row is not None:
|
||
|
err = "Cannot use `row` and `col_wrap` together."
|
||
|
raise ValueError(err)
|
||
|
ncol = col_wrap
|
||
|
nrow = int(np.ceil(len(col_names) / col_wrap))
|
||
|
self._ncol = ncol
|
||
|
self._nrow = nrow
|
||
|
|
||
|
# Calculate the base figure size
|
||
|
# This can get stretched later by a legend
|
||
|
# TODO this doesn't account for axis labels
|
||
|
figsize = (ncol * height * aspect, nrow * height)
|
||
|
|
||
|
# Validate some inputs
|
||
|
if col_wrap is not None:
|
||
|
margin_titles = False
|
||
|
|
||
|
# Build the subplot keyword dictionary
|
||
|
subplot_kws = {} if subplot_kws is None else subplot_kws.copy()
|
||
|
gridspec_kws = {} if gridspec_kws is None else gridspec_kws.copy()
|
||
|
if xlim is not None:
|
||
|
subplot_kws["xlim"] = xlim
|
||
|
if ylim is not None:
|
||
|
subplot_kws["ylim"] = ylim
|
||
|
|
||
|
# --- Initialize the subplot grid
|
||
|
|
||
|
with _disable_autolayout():
|
||
|
fig = plt.figure(figsize=figsize)
|
||
|
|
||
|
if col_wrap is None:
|
||
|
|
||
|
kwargs = dict(squeeze=False,
|
||
|
sharex=sharex, sharey=sharey,
|
||
|
subplot_kw=subplot_kws,
|
||
|
gridspec_kw=gridspec_kws)
|
||
|
|
||
|
axes = fig.subplots(nrow, ncol, **kwargs)
|
||
|
|
||
|
if col is None and row is None:
|
||
|
axes_dict = {}
|
||
|
elif col is None:
|
||
|
axes_dict = dict(zip(row_names, axes.flat))
|
||
|
elif row is None:
|
||
|
axes_dict = dict(zip(col_names, axes.flat))
|
||
|
else:
|
||
|
facet_product = product(row_names, col_names)
|
||
|
axes_dict = dict(zip(facet_product, axes.flat))
|
||
|
|
||
|
else:
|
||
|
|
||
|
# If wrapping the col variable we need to make the grid ourselves
|
||
|
if gridspec_kws:
|
||
|
warnings.warn("`gridspec_kws` ignored when using `col_wrap`")
|
||
|
|
||
|
n_axes = len(col_names)
|
||
|
axes = np.empty(n_axes, object)
|
||
|
axes[0] = fig.add_subplot(nrow, ncol, 1, **subplot_kws)
|
||
|
if sharex:
|
||
|
subplot_kws["sharex"] = axes[0]
|
||
|
if sharey:
|
||
|
subplot_kws["sharey"] = axes[0]
|
||
|
for i in range(1, n_axes):
|
||
|
axes[i] = fig.add_subplot(nrow, ncol, i + 1, **subplot_kws)
|
||
|
|
||
|
axes_dict = dict(zip(col_names, axes))
|
||
|
|
||
|
# --- Set up the class attributes
|
||
|
|
||
|
# Attributes that are part of the public API but accessed through
|
||
|
# a property so that Sphinx adds them to the auto class doc
|
||
|
self._figure = fig
|
||
|
self._axes = axes
|
||
|
self._axes_dict = axes_dict
|
||
|
self._legend = None
|
||
|
|
||
|
# Public attributes that aren't explicitly documented
|
||
|
# (It's not obvious that having them be public was a good idea)
|
||
|
self.data = data
|
||
|
self.row_names = row_names
|
||
|
self.col_names = col_names
|
||
|
self.hue_names = hue_names
|
||
|
self.hue_kws = hue_kws
|
||
|
|
||
|
# Next the private variables
|
||
|
self._nrow = nrow
|
||
|
self._row_var = row
|
||
|
self._ncol = ncol
|
||
|
self._col_var = col
|
||
|
|
||
|
self._margin_titles = margin_titles
|
||
|
self._margin_titles_texts = []
|
||
|
self._col_wrap = col_wrap
|
||
|
self._hue_var = hue_var
|
||
|
self._colors = colors
|
||
|
self._legend_out = legend_out
|
||
|
self._legend_data = {}
|
||
|
self._x_var = None
|
||
|
self._y_var = None
|
||
|
self._sharex = sharex
|
||
|
self._sharey = sharey
|
||
|
self._dropna = dropna
|
||
|
self._not_na = not_na
|
||
|
|
||
|
# --- Make the axes look good
|
||
|
|
||
|
self.set_titles()
|
||
|
self.tight_layout()
|
||
|
|
||
|
if despine:
|
||
|
self.despine()
|
||
|
|
||
|
if sharex in [True, 'col']:
|
||
|
for ax in self._not_bottom_axes:
|
||
|
for label in ax.get_xticklabels():
|
||
|
label.set_visible(False)
|
||
|
ax.xaxis.offsetText.set_visible(False)
|
||
|
ax.xaxis.label.set_visible(False)
|
||
|
|
||
|
if sharey in [True, 'row']:
|
||
|
for ax in self._not_left_axes:
|
||
|
for label in ax.get_yticklabels():
|
||
|
label.set_visible(False)
|
||
|
ax.yaxis.offsetText.set_visible(False)
|
||
|
ax.yaxis.label.set_visible(False)
|
||
|
|
||
|
__init__.__doc__ = dedent("""\
|
||
|
Initialize the matplotlib figure and FacetGrid object.
|
||
|
|
||
|
This class maps a dataset onto multiple axes arrayed in a grid of rows
|
||
|
and columns that correspond to *levels* of variables in the dataset.
|
||
|
The plots it produces are often called "lattice", "trellis", or
|
||
|
"small-multiple" graphics.
|
||
|
|
||
|
It can also represent levels of a third variable with the ``hue``
|
||
|
parameter, which plots different subsets of data in different colors.
|
||
|
This uses color to resolve elements on a third dimension, but only
|
||
|
draws subsets on top of each other and will not tailor the ``hue``
|
||
|
parameter for the specific visualization the way that axes-level
|
||
|
functions that accept ``hue`` will.
|
||
|
|
||
|
The basic workflow is to initialize the :class:`FacetGrid` object with
|
||
|
the dataset and the variables that are used to structure the grid. Then
|
||
|
one or more plotting functions can be applied to each subset by calling
|
||
|
:meth:`FacetGrid.map` or :meth:`FacetGrid.map_dataframe`. Finally, the
|
||
|
plot can be tweaked with other methods to do things like change the
|
||
|
axis labels, use different ticks, or add a legend. See the detailed
|
||
|
code examples below for more information.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
When using seaborn functions that infer semantic mappings from a
|
||
|
dataset, care must be taken to synchronize those mappings across
|
||
|
facets (e.g., by defining the ``hue`` mapping with a palette dict or
|
||
|
setting the data type of the variables to ``category``). In most cases,
|
||
|
it will be better to use a figure-level function (e.g. :func:`relplot`
|
||
|
or :func:`catplot`) than to use :class:`FacetGrid` directly.
|
||
|
|
||
|
See the :ref:`tutorial <grid_tutorial>` for more information.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{data}
|
||
|
row, col, hue : strings
|
||
|
Variables that define subsets of the data, which will be drawn on
|
||
|
separate facets in the grid. See the ``{{var}}_order`` parameters to
|
||
|
control the order of levels of this variable.
|
||
|
{col_wrap}
|
||
|
{share_xy}
|
||
|
{height}
|
||
|
{aspect}
|
||
|
{palette}
|
||
|
{{row,col,hue}}_order : lists
|
||
|
Order for the levels of the faceting variables. By default, this
|
||
|
will be the order that the levels appear in ``data`` or, if the
|
||
|
variables are pandas categoricals, the category order.
|
||
|
hue_kws : dictionary of param -> list of values mapping
|
||
|
Other keyword arguments to insert into the plotting call to let
|
||
|
other plot attributes vary across levels of the hue variable (e.g.
|
||
|
the markers in a scatterplot).
|
||
|
{legend_out}
|
||
|
despine : boolean
|
||
|
Remove the top and right spines from the plots.
|
||
|
{margin_titles}
|
||
|
{{x, y}}lim: tuples
|
||
|
Limits for each of the axes on each facet (only relevant when
|
||
|
share{{x, y}} is True).
|
||
|
subplot_kws : dict
|
||
|
Dictionary of keyword arguments passed to matplotlib subplot(s)
|
||
|
methods.
|
||
|
gridspec_kws : dict
|
||
|
Dictionary of keyword arguments passed to
|
||
|
:class:`matplotlib.gridspec.GridSpec`
|
||
|
(via :meth:`matplotlib.figure.Figure.subplots`).
|
||
|
Ignored if ``col_wrap`` is not ``None``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
PairGrid : Subplot grid for plotting pairwise relationships
|
||
|
relplot : Combine a relational plot and a :class:`FacetGrid`
|
||
|
displot : Combine a distribution plot and a :class:`FacetGrid`
|
||
|
catplot : Combine a categorical plot and a :class:`FacetGrid`
|
||
|
lmplot : Combine a regression plot and a :class:`FacetGrid`
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
These examples use seaborn functions to demonstrate some of the
|
||
|
advanced features of the class, but in most cases you will want
|
||
|
to use figue-level functions (e.g. :func:`displot`, :func:`relplot`)
|
||
|
to make the plots shown here.
|
||
|
|
||
|
.. include:: ../docstrings/FacetGrid.rst
|
||
|
|
||
|
""").format(**_facet_docs)
|
||
|
|
||
|
def facet_data(self):
|
||
|
"""Generator for name indices and data subsets for each facet.
|
||
|
|
||
|
Yields
|
||
|
------
|
||
|
(i, j, k), data_ijk : tuple of ints, DataFrame
|
||
|
The ints provide an index into the {row, col, hue}_names attribute,
|
||
|
and the dataframe contains a subset of the full data corresponding
|
||
|
to each facet. The generator yields subsets that correspond with
|
||
|
the self.axes.flat iterator, or self.axes[i, j] when `col_wrap`
|
||
|
is None.
|
||
|
|
||
|
"""
|
||
|
data = self.data
|
||
|
|
||
|
# Construct masks for the row variable
|
||
|
if self.row_names:
|
||
|
row_masks = [data[self._row_var] == n for n in self.row_names]
|
||
|
else:
|
||
|
row_masks = [np.repeat(True, len(self.data))]
|
||
|
|
||
|
# Construct masks for the column variable
|
||
|
if self.col_names:
|
||
|
col_masks = [data[self._col_var] == n for n in self.col_names]
|
||
|
else:
|
||
|
col_masks = [np.repeat(True, len(self.data))]
|
||
|
|
||
|
# Construct masks for the hue variable
|
||
|
if self.hue_names:
|
||
|
hue_masks = [data[self._hue_var] == n for n in self.hue_names]
|
||
|
else:
|
||
|
hue_masks = [np.repeat(True, len(self.data))]
|
||
|
|
||
|
# Here is the main generator loop
|
||
|
for (i, row), (j, col), (k, hue) in product(enumerate(row_masks),
|
||
|
enumerate(col_masks),
|
||
|
enumerate(hue_masks)):
|
||
|
data_ijk = data[row & col & hue & self._not_na]
|
||
|
yield (i, j, k), data_ijk
|
||
|
|
||
|
def map(self, func, *args, **kwargs):
|
||
|
"""Apply a plotting function to each facet's subset of the data.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable
|
||
|
A plotting function that takes data and keyword arguments. It
|
||
|
must plot to the currently active matplotlib Axes and take a
|
||
|
`color` keyword argument. If faceting on the `hue` dimension,
|
||
|
it must also take a `label` keyword argument.
|
||
|
args : strings
|
||
|
Column names in self.data that identify variables with data to
|
||
|
plot. The data for each variable is passed to `func` in the
|
||
|
order the variables are specified in the call.
|
||
|
kwargs : keyword arguments
|
||
|
All keyword arguments are passed to the plotting function.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Returns self.
|
||
|
|
||
|
"""
|
||
|
# If color was a keyword argument, grab it here
|
||
|
kw_color = kwargs.pop("color", None)
|
||
|
|
||
|
# How we use the function depends on where it comes from
|
||
|
func_module = str(getattr(func, "__module__", ""))
|
||
|
|
||
|
# Check for categorical plots without order information
|
||
|
if func_module == "seaborn.categorical":
|
||
|
if "order" not in kwargs:
|
||
|
warning = ("Using the {} function without specifying "
|
||
|
"`order` is likely to produce an incorrect "
|
||
|
"plot.".format(func.__name__))
|
||
|
warnings.warn(warning)
|
||
|
if len(args) == 3 and "hue_order" not in kwargs:
|
||
|
warning = ("Using the {} function without specifying "
|
||
|
"`hue_order` is likely to produce an incorrect "
|
||
|
"plot.".format(func.__name__))
|
||
|
warnings.warn(warning)
|
||
|
|
||
|
# Iterate over the data subsets
|
||
|
for (row_i, col_j, hue_k), data_ijk in self.facet_data():
|
||
|
|
||
|
# If this subset is null, move on
|
||
|
if not data_ijk.values.size:
|
||
|
continue
|
||
|
|
||
|
# Get the current axis
|
||
|
modify_state = not func_module.startswith("seaborn")
|
||
|
ax = self.facet_axis(row_i, col_j, modify_state)
|
||
|
|
||
|
# Decide what color to plot with
|
||
|
kwargs["color"] = self._facet_color(hue_k, kw_color)
|
||
|
|
||
|
# Insert the other hue aesthetics if appropriate
|
||
|
for kw, val_list in self.hue_kws.items():
|
||
|
kwargs[kw] = val_list[hue_k]
|
||
|
|
||
|
# Insert a label in the keyword arguments for the legend
|
||
|
if self._hue_var is not None:
|
||
|
kwargs["label"] = utils.to_utf8(self.hue_names[hue_k])
|
||
|
|
||
|
# Get the actual data we are going to plot with
|
||
|
plot_data = data_ijk[list(args)]
|
||
|
if self._dropna:
|
||
|
plot_data = plot_data.dropna()
|
||
|
plot_args = [v for k, v in plot_data.items()]
|
||
|
|
||
|
# Some matplotlib functions don't handle pandas objects correctly
|
||
|
if func_module.startswith("matplotlib"):
|
||
|
plot_args = [v.values for v in plot_args]
|
||
|
|
||
|
# Draw the plot
|
||
|
self._facet_plot(func, ax, plot_args, kwargs)
|
||
|
|
||
|
# Finalize the annotations and layout
|
||
|
self._finalize_grid(args[:2])
|
||
|
|
||
|
return self
|
||
|
|
||
|
def map_dataframe(self, func, *args, **kwargs):
|
||
|
"""Like ``.map`` but passes args as strings and inserts data in kwargs.
|
||
|
|
||
|
This method is suitable for plotting with functions that accept a
|
||
|
long-form DataFrame as a `data` keyword argument and access the
|
||
|
data in that DataFrame using string variable names.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable
|
||
|
A plotting function that takes data and keyword arguments. Unlike
|
||
|
the `map` method, a function used here must "understand" Pandas
|
||
|
objects. It also must plot to the currently active matplotlib Axes
|
||
|
and take a `color` keyword argument. If faceting on the `hue`
|
||
|
dimension, it must also take a `label` keyword argument.
|
||
|
args : strings
|
||
|
Column names in self.data that identify variables with data to
|
||
|
plot. The data for each variable is passed to `func` in the
|
||
|
order the variables are specified in the call.
|
||
|
kwargs : keyword arguments
|
||
|
All keyword arguments are passed to the plotting function.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Returns self.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# If color was a keyword argument, grab it here
|
||
|
kw_color = kwargs.pop("color", None)
|
||
|
|
||
|
# Iterate over the data subsets
|
||
|
for (row_i, col_j, hue_k), data_ijk in self.facet_data():
|
||
|
|
||
|
# If this subset is null, move on
|
||
|
if not data_ijk.values.size:
|
||
|
continue
|
||
|
|
||
|
# Get the current axis
|
||
|
modify_state = not str(func.__module__).startswith("seaborn")
|
||
|
ax = self.facet_axis(row_i, col_j, modify_state)
|
||
|
|
||
|
# Decide what color to plot with
|
||
|
kwargs["color"] = self._facet_color(hue_k, kw_color)
|
||
|
|
||
|
# Insert the other hue aesthetics if appropriate
|
||
|
for kw, val_list in self.hue_kws.items():
|
||
|
kwargs[kw] = val_list[hue_k]
|
||
|
|
||
|
# Insert a label in the keyword arguments for the legend
|
||
|
if self._hue_var is not None:
|
||
|
kwargs["label"] = self.hue_names[hue_k]
|
||
|
|
||
|
# Stick the facet dataframe into the kwargs
|
||
|
if self._dropna:
|
||
|
data_ijk = data_ijk.dropna()
|
||
|
kwargs["data"] = data_ijk
|
||
|
|
||
|
# Draw the plot
|
||
|
self._facet_plot(func, ax, args, kwargs)
|
||
|
|
||
|
# For axis labels, prefer to use positional args for backcompat
|
||
|
# but also extract the x/y kwargs and use if no corresponding arg
|
||
|
axis_labels = [kwargs.get("x", None), kwargs.get("y", None)]
|
||
|
for i, val in enumerate(args[:2]):
|
||
|
axis_labels[i] = val
|
||
|
self._finalize_grid(axis_labels)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def _facet_color(self, hue_index, kw_color):
|
||
|
|
||
|
color = self._colors[hue_index]
|
||
|
if kw_color is not None:
|
||
|
return kw_color
|
||
|
elif color is not None:
|
||
|
return color
|
||
|
|
||
|
def _facet_plot(self, func, ax, plot_args, plot_kwargs):
|
||
|
|
||
|
# Draw the plot
|
||
|
if str(func.__module__).startswith("seaborn"):
|
||
|
plot_kwargs = plot_kwargs.copy()
|
||
|
semantics = ["x", "y", "hue", "size", "style"]
|
||
|
for key, val in zip(semantics, plot_args):
|
||
|
plot_kwargs[key] = val
|
||
|
plot_args = []
|
||
|
plot_kwargs["ax"] = ax
|
||
|
func(*plot_args, **plot_kwargs)
|
||
|
|
||
|
# Sort out the supporting information
|
||
|
self._update_legend_data(ax)
|
||
|
|
||
|
def _finalize_grid(self, axlabels):
|
||
|
"""Finalize the annotations and layout."""
|
||
|
self.set_axis_labels(*axlabels)
|
||
|
self.tight_layout()
|
||
|
|
||
|
def facet_axis(self, row_i, col_j, modify_state=True):
|
||
|
"""Make the axis identified by these indices active and return it."""
|
||
|
|
||
|
# Calculate the actual indices of the axes to plot on
|
||
|
if self._col_wrap is not None:
|
||
|
ax = self.axes.flat[col_j]
|
||
|
else:
|
||
|
ax = self.axes[row_i, col_j]
|
||
|
|
||
|
# Get a reference to the axes object we want, and make it active
|
||
|
if modify_state:
|
||
|
plt.sca(ax)
|
||
|
return ax
|
||
|
|
||
|
def despine(self, **kwargs):
|
||
|
"""Remove axis spines from the facets."""
|
||
|
utils.despine(self._figure, **kwargs)
|
||
|
return self
|
||
|
|
||
|
def set_axis_labels(self, x_var=None, y_var=None, clear_inner=True, **kwargs):
|
||
|
"""Set axis labels on the left column and bottom row of the grid."""
|
||
|
if x_var is not None:
|
||
|
self._x_var = x_var
|
||
|
self.set_xlabels(x_var, clear_inner=clear_inner, **kwargs)
|
||
|
if y_var is not None:
|
||
|
self._y_var = y_var
|
||
|
self.set_ylabels(y_var, clear_inner=clear_inner, **kwargs)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def set_xlabels(self, label=None, clear_inner=True, **kwargs):
|
||
|
"""Label the x axis on the bottom row of the grid."""
|
||
|
if label is None:
|
||
|
label = self._x_var
|
||
|
for ax in self._bottom_axes:
|
||
|
ax.set_xlabel(label, **kwargs)
|
||
|
if clear_inner:
|
||
|
for ax in self._not_bottom_axes:
|
||
|
ax.set_xlabel("")
|
||
|
return self
|
||
|
|
||
|
def set_ylabels(self, label=None, clear_inner=True, **kwargs):
|
||
|
"""Label the y axis on the left column of the grid."""
|
||
|
if label is None:
|
||
|
label = self._y_var
|
||
|
for ax in self._left_axes:
|
||
|
ax.set_ylabel(label, **kwargs)
|
||
|
if clear_inner:
|
||
|
for ax in self._not_left_axes:
|
||
|
ax.set_ylabel("")
|
||
|
return self
|
||
|
|
||
|
def set_xticklabels(self, labels=None, step=None, **kwargs):
|
||
|
"""Set x axis tick labels of the grid."""
|
||
|
for ax in self.axes.flat:
|
||
|
curr_ticks = ax.get_xticks()
|
||
|
ax.set_xticks(curr_ticks)
|
||
|
if labels is None:
|
||
|
curr_labels = [label.get_text() for label in ax.get_xticklabels()]
|
||
|
if step is not None:
|
||
|
xticks = ax.get_xticks()[::step]
|
||
|
curr_labels = curr_labels[::step]
|
||
|
ax.set_xticks(xticks)
|
||
|
ax.set_xticklabels(curr_labels, **kwargs)
|
||
|
else:
|
||
|
ax.set_xticklabels(labels, **kwargs)
|
||
|
return self
|
||
|
|
||
|
def set_yticklabels(self, labels=None, **kwargs):
|
||
|
"""Set y axis tick labels on the left column of the grid."""
|
||
|
for ax in self.axes.flat:
|
||
|
curr_ticks = ax.get_yticks()
|
||
|
ax.set_yticks(curr_ticks)
|
||
|
if labels is None:
|
||
|
curr_labels = [label.get_text() for label in ax.get_yticklabels()]
|
||
|
ax.set_yticklabels(curr_labels, **kwargs)
|
||
|
else:
|
||
|
ax.set_yticklabels(labels, **kwargs)
|
||
|
return self
|
||
|
|
||
|
def set_titles(self, template=None, row_template=None, col_template=None, **kwargs):
|
||
|
"""Draw titles either above each facet or on the grid margins.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
template : string
|
||
|
Template for all titles with the formatting keys {col_var} and
|
||
|
{col_name} (if using a `col` faceting variable) and/or {row_var}
|
||
|
and {row_name} (if using a `row` faceting variable).
|
||
|
row_template:
|
||
|
Template for the row variable when titles are drawn on the grid
|
||
|
margins. Must have {row_var} and {row_name} formatting keys.
|
||
|
col_template:
|
||
|
Template for the column variable when titles are drawn on the grid
|
||
|
margins. Must have {col_var} and {col_name} formatting keys.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self: object
|
||
|
Returns self.
|
||
|
|
||
|
"""
|
||
|
args = dict(row_var=self._row_var, col_var=self._col_var)
|
||
|
kwargs["size"] = kwargs.pop("size", mpl.rcParams["axes.labelsize"])
|
||
|
|
||
|
# Establish default templates
|
||
|
if row_template is None:
|
||
|
row_template = "{row_var} = {row_name}"
|
||
|
if col_template is None:
|
||
|
col_template = "{col_var} = {col_name}"
|
||
|
if template is None:
|
||
|
if self._row_var is None:
|
||
|
template = col_template
|
||
|
elif self._col_var is None:
|
||
|
template = row_template
|
||
|
else:
|
||
|
template = " | ".join([row_template, col_template])
|
||
|
|
||
|
row_template = utils.to_utf8(row_template)
|
||
|
col_template = utils.to_utf8(col_template)
|
||
|
template = utils.to_utf8(template)
|
||
|
|
||
|
if self._margin_titles:
|
||
|
|
||
|
# Remove any existing title texts
|
||
|
for text in self._margin_titles_texts:
|
||
|
text.remove()
|
||
|
self._margin_titles_texts = []
|
||
|
|
||
|
if self.row_names is not None:
|
||
|
# Draw the row titles on the right edge of the grid
|
||
|
for i, row_name in enumerate(self.row_names):
|
||
|
ax = self.axes[i, -1]
|
||
|
args.update(dict(row_name=row_name))
|
||
|
title = row_template.format(**args)
|
||
|
text = ax.annotate(
|
||
|
title, xy=(1.02, .5), xycoords="axes fraction",
|
||
|
rotation=270, ha="left", va="center",
|
||
|
**kwargs
|
||
|
)
|
||
|
self._margin_titles_texts.append(text)
|
||
|
|
||
|
if self.col_names is not None:
|
||
|
# Draw the column titles as normal titles
|
||
|
for j, col_name in enumerate(self.col_names):
|
||
|
args.update(dict(col_name=col_name))
|
||
|
title = col_template.format(**args)
|
||
|
self.axes[0, j].set_title(title, **kwargs)
|
||
|
|
||
|
return self
|
||
|
|
||
|
# Otherwise title each facet with all the necessary information
|
||
|
if (self._row_var is not None) and (self._col_var is not None):
|
||
|
for i, row_name in enumerate(self.row_names):
|
||
|
for j, col_name in enumerate(self.col_names):
|
||
|
args.update(dict(row_name=row_name, col_name=col_name))
|
||
|
title = template.format(**args)
|
||
|
self.axes[i, j].set_title(title, **kwargs)
|
||
|
elif self.row_names is not None and len(self.row_names):
|
||
|
for i, row_name in enumerate(self.row_names):
|
||
|
args.update(dict(row_name=row_name))
|
||
|
title = template.format(**args)
|
||
|
self.axes[i, 0].set_title(title, **kwargs)
|
||
|
elif self.col_names is not None and len(self.col_names):
|
||
|
for i, col_name in enumerate(self.col_names):
|
||
|
args.update(dict(col_name=col_name))
|
||
|
title = template.format(**args)
|
||
|
# Index the flat array so col_wrap works
|
||
|
self.axes.flat[i].set_title(title, **kwargs)
|
||
|
return self
|
||
|
|
||
|
def refline(self, *, x=None, y=None, color='.5', linestyle='--', **line_kws):
|
||
|
"""Add a reference line(s) to each facet.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : numeric
|
||
|
Value(s) to draw the line(s) at.
|
||
|
color : :mod:`matplotlib color <matplotlib.colors>`
|
||
|
Specifies the color of the reference line(s). Pass ``color=None`` to
|
||
|
use ``hue`` mapping.
|
||
|
linestyle : str
|
||
|
Specifies the style of the reference line(s).
|
||
|
line_kws : key, value mappings
|
||
|
Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.axvline`
|
||
|
when ``x`` is not None and :meth:`matplotlib.axes.Axes.axhline` when ``y``
|
||
|
is not None.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
:class:`FacetGrid` instance
|
||
|
Returns ``self`` for easy method chaining.
|
||
|
|
||
|
"""
|
||
|
line_kws['color'] = color
|
||
|
line_kws['linestyle'] = linestyle
|
||
|
|
||
|
if x is not None:
|
||
|
self.map(plt.axvline, x=x, **line_kws)
|
||
|
|
||
|
if y is not None:
|
||
|
self.map(plt.axhline, y=y, **line_kws)
|
||
|
|
||
|
return self
|
||
|
|
||
|
# ------ Properties that are part of the public API and documented by Sphinx
|
||
|
|
||
|
@property
|
||
|
def axes(self):
|
||
|
"""An array of the :class:`matplotlib.axes.Axes` objects in the grid."""
|
||
|
return self._axes
|
||
|
|
||
|
@property
|
||
|
def ax(self):
|
||
|
"""The :class:`matplotlib.axes.Axes` when no faceting variables are assigned."""
|
||
|
if self.axes.shape == (1, 1):
|
||
|
return self.axes[0, 0]
|
||
|
else:
|
||
|
err = (
|
||
|
"Use the `.axes` attribute when facet variables are assigned."
|
||
|
)
|
||
|
raise AttributeError(err)
|
||
|
|
||
|
@property
|
||
|
def axes_dict(self):
|
||
|
"""A mapping of facet names to corresponding :class:`matplotlib.axes.Axes`.
|
||
|
|
||
|
If only one of ``row`` or ``col`` is assigned, each key is a string
|
||
|
representing a level of that variable. If both facet dimensions are
|
||
|
assigned, each key is a ``({row_level}, {col_level})`` tuple.
|
||
|
|
||
|
"""
|
||
|
return self._axes_dict
|
||
|
|
||
|
# ------ Private properties, that require some computation to get
|
||
|
|
||
|
@property
|
||
|
def _inner_axes(self):
|
||
|
"""Return a flat array of the inner axes."""
|
||
|
if self._col_wrap is None:
|
||
|
return self.axes[:-1, 1:].flat
|
||
|
else:
|
||
|
axes = []
|
||
|
n_empty = self._nrow * self._ncol - self._n_facets
|
||
|
for i, ax in enumerate(self.axes):
|
||
|
append = (
|
||
|
i % self._ncol
|
||
|
and i < (self._ncol * (self._nrow - 1))
|
||
|
and i < (self._ncol * (self._nrow - 1) - n_empty)
|
||
|
)
|
||
|
if append:
|
||
|
axes.append(ax)
|
||
|
return np.array(axes, object).flat
|
||
|
|
||
|
@property
|
||
|
def _left_axes(self):
|
||
|
"""Return a flat array of the left column of axes."""
|
||
|
if self._col_wrap is None:
|
||
|
return self.axes[:, 0].flat
|
||
|
else:
|
||
|
axes = []
|
||
|
for i, ax in enumerate(self.axes):
|
||
|
if not i % self._ncol:
|
||
|
axes.append(ax)
|
||
|
return np.array(axes, object).flat
|
||
|
|
||
|
@property
|
||
|
def _not_left_axes(self):
|
||
|
"""Return a flat array of axes that aren't on the left column."""
|
||
|
if self._col_wrap is None:
|
||
|
return self.axes[:, 1:].flat
|
||
|
else:
|
||
|
axes = []
|
||
|
for i, ax in enumerate(self.axes):
|
||
|
if i % self._ncol:
|
||
|
axes.append(ax)
|
||
|
return np.array(axes, object).flat
|
||
|
|
||
|
@property
|
||
|
def _bottom_axes(self):
|
||
|
"""Return a flat array of the bottom row of axes."""
|
||
|
if self._col_wrap is None:
|
||
|
return self.axes[-1, :].flat
|
||
|
else:
|
||
|
axes = []
|
||
|
n_empty = self._nrow * self._ncol - self._n_facets
|
||
|
for i, ax in enumerate(self.axes):
|
||
|
append = (
|
||
|
i >= (self._ncol * (self._nrow - 1))
|
||
|
or i >= (self._ncol * (self._nrow - 1) - n_empty)
|
||
|
)
|
||
|
if append:
|
||
|
axes.append(ax)
|
||
|
return np.array(axes, object).flat
|
||
|
|
||
|
@property
|
||
|
def _not_bottom_axes(self):
|
||
|
"""Return a flat array of axes that aren't on the bottom row."""
|
||
|
if self._col_wrap is None:
|
||
|
return self.axes[:-1, :].flat
|
||
|
else:
|
||
|
axes = []
|
||
|
n_empty = self._nrow * self._ncol - self._n_facets
|
||
|
for i, ax in enumerate(self.axes):
|
||
|
append = (
|
||
|
i < (self._ncol * (self._nrow - 1))
|
||
|
and i < (self._ncol * (self._nrow - 1) - n_empty)
|
||
|
)
|
||
|
if append:
|
||
|
axes.append(ax)
|
||
|
return np.array(axes, object).flat
|
||
|
|
||
|
|
||
|
class PairGrid(Grid):
|
||
|
"""Subplot grid for plotting pairwise relationships in a dataset.
|
||
|
|
||
|
This object maps each variable in a dataset onto a column and row in a
|
||
|
grid of multiple axes. Different axes-level plotting functions can be
|
||
|
used to draw bivariate plots in the upper and lower triangles, and the
|
||
|
marginal distribution of each variable can be shown on the diagonal.
|
||
|
|
||
|
Several different common plots can be generated in a single line using
|
||
|
:func:`pairplot`. Use :class:`PairGrid` when you need more flexibility.
|
||
|
|
||
|
See the :ref:`tutorial <grid_tutorial>` for more information.
|
||
|
|
||
|
"""
|
||
|
def __init__(
|
||
|
self, data, *, hue=None, vars=None, x_vars=None, y_vars=None,
|
||
|
hue_order=None, palette=None, hue_kws=None, corner=False, diag_sharey=True,
|
||
|
height=2.5, aspect=1, layout_pad=.5, despine=True, dropna=False,
|
||
|
):
|
||
|
"""Initialize the plot figure and PairGrid object.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : DataFrame
|
||
|
Tidy (long-form) dataframe where each column is a variable and
|
||
|
each row is an observation.
|
||
|
hue : string (variable name)
|
||
|
Variable in ``data`` to map plot aspects to different colors. This
|
||
|
variable will be excluded from the default x and y variables.
|
||
|
vars : list of variable names
|
||
|
Variables within ``data`` to use, otherwise use every column with
|
||
|
a numeric datatype.
|
||
|
{x, y}_vars : lists of variable names
|
||
|
Variables within ``data`` to use separately for the rows and
|
||
|
columns of the figure; i.e. to make a non-square plot.
|
||
|
hue_order : list of strings
|
||
|
Order for the levels of the hue variable in the palette
|
||
|
palette : dict or seaborn color palette
|
||
|
Set of colors for mapping the ``hue`` variable. If a dict, keys
|
||
|
should be values in the ``hue`` variable.
|
||
|
hue_kws : dictionary of param -> list of values mapping
|
||
|
Other keyword arguments to insert into the plotting call to let
|
||
|
other plot attributes vary across levels of the hue variable (e.g.
|
||
|
the markers in a scatterplot).
|
||
|
corner : bool
|
||
|
If True, don't add axes to the upper (off-diagonal) triangle of the
|
||
|
grid, making this a "corner" plot.
|
||
|
height : scalar
|
||
|
Height (in inches) of each facet.
|
||
|
aspect : scalar
|
||
|
Aspect * height gives the width (in inches) of each facet.
|
||
|
layout_pad : scalar
|
||
|
Padding between axes; passed to ``fig.tight_layout``.
|
||
|
despine : boolean
|
||
|
Remove the top and right spines from the plots.
|
||
|
dropna : boolean
|
||
|
Drop missing values from the data before plotting.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pairplot : Easily drawing common uses of :class:`PairGrid`.
|
||
|
FacetGrid : Subplot grid for plotting conditional relationships.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
.. include:: ../docstrings/PairGrid.rst
|
||
|
|
||
|
"""
|
||
|
|
||
|
super().__init__()
|
||
|
data = handle_data_source(data)
|
||
|
|
||
|
# Sort out the variables that define the grid
|
||
|
numeric_cols = self._find_numeric_cols(data)
|
||
|
if hue in numeric_cols:
|
||
|
numeric_cols.remove(hue)
|
||
|
if vars is not None:
|
||
|
x_vars = list(vars)
|
||
|
y_vars = list(vars)
|
||
|
if x_vars is None:
|
||
|
x_vars = numeric_cols
|
||
|
if y_vars is None:
|
||
|
y_vars = numeric_cols
|
||
|
|
||
|
if np.isscalar(x_vars):
|
||
|
x_vars = [x_vars]
|
||
|
if np.isscalar(y_vars):
|
||
|
y_vars = [y_vars]
|
||
|
|
||
|
self.x_vars = x_vars = list(x_vars)
|
||
|
self.y_vars = y_vars = list(y_vars)
|
||
|
self.square_grid = self.x_vars == self.y_vars
|
||
|
|
||
|
if not x_vars:
|
||
|
raise ValueError("No variables found for grid columns.")
|
||
|
if not y_vars:
|
||
|
raise ValueError("No variables found for grid rows.")
|
||
|
|
||
|
# Create the figure and the array of subplots
|
||
|
figsize = len(x_vars) * height * aspect, len(y_vars) * height
|
||
|
|
||
|
with _disable_autolayout():
|
||
|
fig = plt.figure(figsize=figsize)
|
||
|
|
||
|
axes = fig.subplots(len(y_vars), len(x_vars),
|
||
|
sharex="col", sharey="row",
|
||
|
squeeze=False)
|
||
|
|
||
|
# Possibly remove upper axes to make a corner grid
|
||
|
# Note: setting up the axes is usually the most time-intensive part
|
||
|
# of using the PairGrid. We are foregoing the speed improvement that
|
||
|
# we would get by just not setting up the hidden axes so that we can
|
||
|
# avoid implementing fig.subplots ourselves. But worth thinking about.
|
||
|
self._corner = corner
|
||
|
if corner:
|
||
|
hide_indices = np.triu_indices_from(axes, 1)
|
||
|
for i, j in zip(*hide_indices):
|
||
|
axes[i, j].remove()
|
||
|
axes[i, j] = None
|
||
|
|
||
|
self._figure = fig
|
||
|
self.axes = axes
|
||
|
self.data = data
|
||
|
|
||
|
# Save what we are going to do with the diagonal
|
||
|
self.diag_sharey = diag_sharey
|
||
|
self.diag_vars = None
|
||
|
self.diag_axes = None
|
||
|
|
||
|
self._dropna = dropna
|
||
|
|
||
|
# Label the axes
|
||
|
self._add_axis_labels()
|
||
|
|
||
|
# Sort out the hue variable
|
||
|
self._hue_var = hue
|
||
|
if hue is None:
|
||
|
self.hue_names = hue_order = ["_nolegend_"]
|
||
|
self.hue_vals = pd.Series(["_nolegend_"] * len(data),
|
||
|
index=data.index)
|
||
|
else:
|
||
|
# We need hue_order and hue_names because the former is used to control
|
||
|
# the order of drawing and the latter is used to control the order of
|
||
|
# the legend. hue_names can become string-typed while hue_order must
|
||
|
# retain the type of the input data. This is messy but results from
|
||
|
# the fact that PairGrid can implement the hue-mapping logic itself
|
||
|
# (and was originally written exclusively that way) but now can delegate
|
||
|
# to the axes-level functions, while always handling legend creation.
|
||
|
# See GH2307
|
||
|
hue_names = hue_order = categorical_order(data[hue], hue_order)
|
||
|
if dropna:
|
||
|
# Filter NA from the list of unique hue names
|
||
|
hue_names = list(filter(pd.notnull, hue_names))
|
||
|
self.hue_names = hue_names
|
||
|
self.hue_vals = data[hue]
|
||
|
|
||
|
# Additional dict of kwarg -> list of values for mapping the hue var
|
||
|
self.hue_kws = hue_kws if hue_kws is not None else {}
|
||
|
|
||
|
self._orig_palette = palette
|
||
|
self._hue_order = hue_order
|
||
|
self.palette = self._get_palette(data, hue, hue_order, palette)
|
||
|
self._legend_data = {}
|
||
|
|
||
|
# Make the plot look nice
|
||
|
for ax in axes[:-1, :].flat:
|
||
|
if ax is None:
|
||
|
continue
|
||
|
for label in ax.get_xticklabels():
|
||
|
label.set_visible(False)
|
||
|
ax.xaxis.offsetText.set_visible(False)
|
||
|
ax.xaxis.label.set_visible(False)
|
||
|
|
||
|
for ax in axes[:, 1:].flat:
|
||
|
if ax is None:
|
||
|
continue
|
||
|
for label in ax.get_yticklabels():
|
||
|
label.set_visible(False)
|
||
|
ax.yaxis.offsetText.set_visible(False)
|
||
|
ax.yaxis.label.set_visible(False)
|
||
|
|
||
|
self._tight_layout_rect = [.01, .01, .99, .99]
|
||
|
self._tight_layout_pad = layout_pad
|
||
|
self._despine = despine
|
||
|
if despine:
|
||
|
utils.despine(fig=fig)
|
||
|
self.tight_layout(pad=layout_pad)
|
||
|
|
||
|
def map(self, func, **kwargs):
|
||
|
"""Plot with the same function in every subplot.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable plotting function
|
||
|
Must take x, y arrays as positional arguments and draw onto the
|
||
|
"currently active" matplotlib Axes. Also needs to accept kwargs
|
||
|
called ``color`` and ``label``.
|
||
|
|
||
|
"""
|
||
|
row_indices, col_indices = np.indices(self.axes.shape)
|
||
|
indices = zip(row_indices.flat, col_indices.flat)
|
||
|
self._map_bivariate(func, indices, **kwargs)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def map_lower(self, func, **kwargs):
|
||
|
"""Plot with a bivariate function on the lower diagonal subplots.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable plotting function
|
||
|
Must take x, y arrays as positional arguments and draw onto the
|
||
|
"currently active" matplotlib Axes. Also needs to accept kwargs
|
||
|
called ``color`` and ``label``.
|
||
|
|
||
|
"""
|
||
|
indices = zip(*np.tril_indices_from(self.axes, -1))
|
||
|
self._map_bivariate(func, indices, **kwargs)
|
||
|
return self
|
||
|
|
||
|
def map_upper(self, func, **kwargs):
|
||
|
"""Plot with a bivariate function on the upper diagonal subplots.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable plotting function
|
||
|
Must take x, y arrays as positional arguments and draw onto the
|
||
|
"currently active" matplotlib Axes. Also needs to accept kwargs
|
||
|
called ``color`` and ``label``.
|
||
|
|
||
|
"""
|
||
|
indices = zip(*np.triu_indices_from(self.axes, 1))
|
||
|
self._map_bivariate(func, indices, **kwargs)
|
||
|
return self
|
||
|
|
||
|
def map_offdiag(self, func, **kwargs):
|
||
|
"""Plot with a bivariate function on the off-diagonal subplots.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable plotting function
|
||
|
Must take x, y arrays as positional arguments and draw onto the
|
||
|
"currently active" matplotlib Axes. Also needs to accept kwargs
|
||
|
called ``color`` and ``label``.
|
||
|
|
||
|
"""
|
||
|
if self.square_grid:
|
||
|
self.map_lower(func, **kwargs)
|
||
|
if not self._corner:
|
||
|
self.map_upper(func, **kwargs)
|
||
|
else:
|
||
|
indices = []
|
||
|
for i, (y_var) in enumerate(self.y_vars):
|
||
|
for j, (x_var) in enumerate(self.x_vars):
|
||
|
if x_var != y_var:
|
||
|
indices.append((i, j))
|
||
|
self._map_bivariate(func, indices, **kwargs)
|
||
|
return self
|
||
|
|
||
|
def map_diag(self, func, **kwargs):
|
||
|
"""Plot with a univariate function on each diagonal subplot.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable plotting function
|
||
|
Must take an x array as a positional argument and draw onto the
|
||
|
"currently active" matplotlib Axes. Also needs to accept kwargs
|
||
|
called ``color`` and ``label``.
|
||
|
|
||
|
"""
|
||
|
# Add special diagonal axes for the univariate plot
|
||
|
if self.diag_axes is None:
|
||
|
diag_vars = []
|
||
|
diag_axes = []
|
||
|
for i, y_var in enumerate(self.y_vars):
|
||
|
for j, x_var in enumerate(self.x_vars):
|
||
|
if x_var == y_var:
|
||
|
|
||
|
# Make the density axes
|
||
|
diag_vars.append(x_var)
|
||
|
ax = self.axes[i, j]
|
||
|
diag_ax = ax.twinx()
|
||
|
diag_ax.set_axis_off()
|
||
|
diag_axes.append(diag_ax)
|
||
|
|
||
|
# Work around matplotlib bug
|
||
|
# https://github.com/matplotlib/matplotlib/issues/15188
|
||
|
if not plt.rcParams.get("ytick.left", True):
|
||
|
for tick in ax.yaxis.majorTicks:
|
||
|
tick.tick1line.set_visible(False)
|
||
|
|
||
|
# Remove main y axis from density axes in a corner plot
|
||
|
if self._corner:
|
||
|
ax.yaxis.set_visible(False)
|
||
|
if self._despine:
|
||
|
utils.despine(ax=ax, left=True)
|
||
|
# TODO add optional density ticks (on the right)
|
||
|
# when drawing a corner plot?
|
||
|
|
||
|
if self.diag_sharey and diag_axes:
|
||
|
for ax in diag_axes[1:]:
|
||
|
share_axis(diag_axes[0], ax, "y")
|
||
|
|
||
|
self.diag_vars = diag_vars
|
||
|
self.diag_axes = diag_axes
|
||
|
|
||
|
if "hue" not in signature(func).parameters:
|
||
|
return self._map_diag_iter_hue(func, **kwargs)
|
||
|
|
||
|
# Loop over diagonal variables and axes, making one plot in each
|
||
|
for var, ax in zip(self.diag_vars, self.diag_axes):
|
||
|
|
||
|
plot_kwargs = kwargs.copy()
|
||
|
if str(func.__module__).startswith("seaborn"):
|
||
|
plot_kwargs["ax"] = ax
|
||
|
else:
|
||
|
plt.sca(ax)
|
||
|
|
||
|
vector = self.data[var]
|
||
|
if self._hue_var is not None:
|
||
|
hue = self.data[self._hue_var]
|
||
|
else:
|
||
|
hue = None
|
||
|
|
||
|
if self._dropna:
|
||
|
not_na = vector.notna()
|
||
|
if hue is not None:
|
||
|
not_na &= hue.notna()
|
||
|
vector = vector[not_na]
|
||
|
if hue is not None:
|
||
|
hue = hue[not_na]
|
||
|
|
||
|
plot_kwargs.setdefault("hue", hue)
|
||
|
plot_kwargs.setdefault("hue_order", self._hue_order)
|
||
|
plot_kwargs.setdefault("palette", self._orig_palette)
|
||
|
func(x=vector, **plot_kwargs)
|
||
|
ax.legend_ = None
|
||
|
|
||
|
self._add_axis_labels()
|
||
|
return self
|
||
|
|
||
|
def _map_diag_iter_hue(self, func, **kwargs):
|
||
|
"""Put marginal plot on each diagonal axes, iterating over hue."""
|
||
|
# Plot on each of the diagonal axes
|
||
|
fixed_color = kwargs.pop("color", None)
|
||
|
|
||
|
for var, ax in zip(self.diag_vars, self.diag_axes):
|
||
|
hue_grouped = self.data[var].groupby(self.hue_vals, observed=True)
|
||
|
|
||
|
plot_kwargs = kwargs.copy()
|
||
|
if str(func.__module__).startswith("seaborn"):
|
||
|
plot_kwargs["ax"] = ax
|
||
|
else:
|
||
|
plt.sca(ax)
|
||
|
|
||
|
for k, label_k in enumerate(self._hue_order):
|
||
|
|
||
|
# Attempt to get data for this level, allowing for empty
|
||
|
try:
|
||
|
data_k = hue_grouped.get_group(label_k)
|
||
|
except KeyError:
|
||
|
data_k = pd.Series([], dtype=float)
|
||
|
|
||
|
if fixed_color is None:
|
||
|
color = self.palette[k]
|
||
|
else:
|
||
|
color = fixed_color
|
||
|
|
||
|
if self._dropna:
|
||
|
data_k = utils.remove_na(data_k)
|
||
|
|
||
|
if str(func.__module__).startswith("seaborn"):
|
||
|
func(x=data_k, label=label_k, color=color, **plot_kwargs)
|
||
|
else:
|
||
|
func(data_k, label=label_k, color=color, **plot_kwargs)
|
||
|
|
||
|
self._add_axis_labels()
|
||
|
|
||
|
return self
|
||
|
|
||
|
def _map_bivariate(self, func, indices, **kwargs):
|
||
|
"""Draw a bivariate plot on the indicated axes."""
|
||
|
# This is a hack to handle the fact that new distribution plots don't add
|
||
|
# their artists onto the axes. This is probably superior in general, but
|
||
|
# we'll need a better way to handle it in the axisgrid functions.
|
||
|
from .distributions import histplot, kdeplot
|
||
|
if func is histplot or func is kdeplot:
|
||
|
self._extract_legend_handles = True
|
||
|
|
||
|
kws = kwargs.copy() # Use copy as we insert other kwargs
|
||
|
for i, j in indices:
|
||
|
x_var = self.x_vars[j]
|
||
|
y_var = self.y_vars[i]
|
||
|
ax = self.axes[i, j]
|
||
|
if ax is None: # i.e. we are in corner mode
|
||
|
continue
|
||
|
self._plot_bivariate(x_var, y_var, ax, func, **kws)
|
||
|
self._add_axis_labels()
|
||
|
|
||
|
if "hue" in signature(func).parameters:
|
||
|
self.hue_names = list(self._legend_data)
|
||
|
|
||
|
def _plot_bivariate(self, x_var, y_var, ax, func, **kwargs):
|
||
|
"""Draw a bivariate plot on the specified axes."""
|
||
|
if "hue" not in signature(func).parameters:
|
||
|
self._plot_bivariate_iter_hue(x_var, y_var, ax, func, **kwargs)
|
||
|
return
|
||
|
|
||
|
kwargs = kwargs.copy()
|
||
|
if str(func.__module__).startswith("seaborn"):
|
||
|
kwargs["ax"] = ax
|
||
|
else:
|
||
|
plt.sca(ax)
|
||
|
|
||
|
if x_var == y_var:
|
||
|
axes_vars = [x_var]
|
||
|
else:
|
||
|
axes_vars = [x_var, y_var]
|
||
|
|
||
|
if self._hue_var is not None and self._hue_var not in axes_vars:
|
||
|
axes_vars.append(self._hue_var)
|
||
|
|
||
|
data = self.data[axes_vars]
|
||
|
if self._dropna:
|
||
|
data = data.dropna()
|
||
|
|
||
|
x = data[x_var]
|
||
|
y = data[y_var]
|
||
|
if self._hue_var is None:
|
||
|
hue = None
|
||
|
else:
|
||
|
hue = data.get(self._hue_var)
|
||
|
|
||
|
if "hue" not in kwargs:
|
||
|
kwargs.update({
|
||
|
"hue": hue, "hue_order": self._hue_order, "palette": self._orig_palette,
|
||
|
})
|
||
|
func(x=x, y=y, **kwargs)
|
||
|
|
||
|
self._update_legend_data(ax)
|
||
|
|
||
|
def _plot_bivariate_iter_hue(self, x_var, y_var, ax, func, **kwargs):
|
||
|
"""Draw a bivariate plot while iterating over hue subsets."""
|
||
|
kwargs = kwargs.copy()
|
||
|
if str(func.__module__).startswith("seaborn"):
|
||
|
kwargs["ax"] = ax
|
||
|
else:
|
||
|
plt.sca(ax)
|
||
|
|
||
|
if x_var == y_var:
|
||
|
axes_vars = [x_var]
|
||
|
else:
|
||
|
axes_vars = [x_var, y_var]
|
||
|
|
||
|
hue_grouped = self.data.groupby(self.hue_vals, observed=True)
|
||
|
for k, label_k in enumerate(self._hue_order):
|
||
|
|
||
|
kws = kwargs.copy()
|
||
|
|
||
|
# Attempt to get data for this level, allowing for empty
|
||
|
try:
|
||
|
data_k = hue_grouped.get_group(label_k)
|
||
|
except KeyError:
|
||
|
data_k = pd.DataFrame(columns=axes_vars,
|
||
|
dtype=float)
|
||
|
|
||
|
if self._dropna:
|
||
|
data_k = data_k[axes_vars].dropna()
|
||
|
|
||
|
x = data_k[x_var]
|
||
|
y = data_k[y_var]
|
||
|
|
||
|
for kw, val_list in self.hue_kws.items():
|
||
|
kws[kw] = val_list[k]
|
||
|
kws.setdefault("color", self.palette[k])
|
||
|
if self._hue_var is not None:
|
||
|
kws["label"] = label_k
|
||
|
|
||
|
if str(func.__module__).startswith("seaborn"):
|
||
|
func(x=x, y=y, **kws)
|
||
|
else:
|
||
|
func(x, y, **kws)
|
||
|
|
||
|
self._update_legend_data(ax)
|
||
|
|
||
|
def _add_axis_labels(self):
|
||
|
"""Add labels to the left and bottom Axes."""
|
||
|
for ax, label in zip(self.axes[-1, :], self.x_vars):
|
||
|
ax.set_xlabel(label)
|
||
|
for ax, label in zip(self.axes[:, 0], self.y_vars):
|
||
|
ax.set_ylabel(label)
|
||
|
|
||
|
def _find_numeric_cols(self, data):
|
||
|
"""Find which variables in a DataFrame are numeric."""
|
||
|
numeric_cols = []
|
||
|
for col in data:
|
||
|
if variable_type(data[col]) == "numeric":
|
||
|
numeric_cols.append(col)
|
||
|
return numeric_cols
|
||
|
|
||
|
|
||
|
class JointGrid(_BaseGrid):
|
||
|
"""Grid for drawing a bivariate plot with marginal univariate plots.
|
||
|
|
||
|
Many plots can be drawn by using the figure-level interface :func:`jointplot`.
|
||
|
Use this class directly when you need more flexibility.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self, data=None, *,
|
||
|
x=None, y=None, hue=None,
|
||
|
height=6, ratio=5, space=.2,
|
||
|
palette=None, hue_order=None, hue_norm=None,
|
||
|
dropna=False, xlim=None, ylim=None, marginal_ticks=False,
|
||
|
):
|
||
|
|
||
|
# Set up the subplot grid
|
||
|
f = plt.figure(figsize=(height, height))
|
||
|
gs = plt.GridSpec(ratio + 1, ratio + 1)
|
||
|
|
||
|
ax_joint = f.add_subplot(gs[1:, :-1])
|
||
|
ax_marg_x = f.add_subplot(gs[0, :-1], sharex=ax_joint)
|
||
|
ax_marg_y = f.add_subplot(gs[1:, -1], sharey=ax_joint)
|
||
|
|
||
|
self._figure = f
|
||
|
self.ax_joint = ax_joint
|
||
|
self.ax_marg_x = ax_marg_x
|
||
|
self.ax_marg_y = ax_marg_y
|
||
|
|
||
|
# Turn off tick visibility for the measure axis on the marginal plots
|
||
|
plt.setp(ax_marg_x.get_xticklabels(), visible=False)
|
||
|
plt.setp(ax_marg_y.get_yticklabels(), visible=False)
|
||
|
plt.setp(ax_marg_x.get_xticklabels(minor=True), visible=False)
|
||
|
plt.setp(ax_marg_y.get_yticklabels(minor=True), visible=False)
|
||
|
|
||
|
# Turn off the ticks on the density axis for the marginal plots
|
||
|
if not marginal_ticks:
|
||
|
plt.setp(ax_marg_x.yaxis.get_majorticklines(), visible=False)
|
||
|
plt.setp(ax_marg_x.yaxis.get_minorticklines(), visible=False)
|
||
|
plt.setp(ax_marg_y.xaxis.get_majorticklines(), visible=False)
|
||
|
plt.setp(ax_marg_y.xaxis.get_minorticklines(), visible=False)
|
||
|
plt.setp(ax_marg_x.get_yticklabels(), visible=False)
|
||
|
plt.setp(ax_marg_y.get_xticklabels(), visible=False)
|
||
|
plt.setp(ax_marg_x.get_yticklabels(minor=True), visible=False)
|
||
|
plt.setp(ax_marg_y.get_xticklabels(minor=True), visible=False)
|
||
|
ax_marg_x.yaxis.grid(False)
|
||
|
ax_marg_y.xaxis.grid(False)
|
||
|
|
||
|
# Process the input variables
|
||
|
p = VectorPlotter(data=data, variables=dict(x=x, y=y, hue=hue))
|
||
|
plot_data = p.plot_data.loc[:, p.plot_data.notna().any()]
|
||
|
|
||
|
# Possibly drop NA
|
||
|
if dropna:
|
||
|
plot_data = plot_data.dropna()
|
||
|
|
||
|
def get_var(var):
|
||
|
vector = plot_data.get(var, None)
|
||
|
if vector is not None:
|
||
|
vector = vector.rename(p.variables.get(var, None))
|
||
|
return vector
|
||
|
|
||
|
self.x = get_var("x")
|
||
|
self.y = get_var("y")
|
||
|
self.hue = get_var("hue")
|
||
|
|
||
|
for axis in "xy":
|
||
|
name = p.variables.get(axis, None)
|
||
|
if name is not None:
|
||
|
getattr(ax_joint, f"set_{axis}label")(name)
|
||
|
|
||
|
if xlim is not None:
|
||
|
ax_joint.set_xlim(xlim)
|
||
|
if ylim is not None:
|
||
|
ax_joint.set_ylim(ylim)
|
||
|
|
||
|
# Store the semantic mapping parameters for axes-level functions
|
||
|
self._hue_params = dict(palette=palette, hue_order=hue_order, hue_norm=hue_norm)
|
||
|
|
||
|
# Make the grid look nice
|
||
|
utils.despine(f)
|
||
|
if not marginal_ticks:
|
||
|
utils.despine(ax=ax_marg_x, left=True)
|
||
|
utils.despine(ax=ax_marg_y, bottom=True)
|
||
|
for axes in [ax_marg_x, ax_marg_y]:
|
||
|
for axis in [axes.xaxis, axes.yaxis]:
|
||
|
axis.label.set_visible(False)
|
||
|
f.tight_layout()
|
||
|
f.subplots_adjust(hspace=space, wspace=space)
|
||
|
|
||
|
def _inject_kwargs(self, func, kws, params):
|
||
|
"""Add params to kws if they are accepted by func."""
|
||
|
func_params = signature(func).parameters
|
||
|
for key, val in params.items():
|
||
|
if key in func_params:
|
||
|
kws.setdefault(key, val)
|
||
|
|
||
|
def plot(self, joint_func, marginal_func, **kwargs):
|
||
|
"""Draw the plot by passing functions for joint and marginal axes.
|
||
|
|
||
|
This method passes the ``kwargs`` dictionary to both functions. If you
|
||
|
need more control, call :meth:`JointGrid.plot_joint` and
|
||
|
:meth:`JointGrid.plot_marginals` directly with specific parameters.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
joint_func, marginal_func : callables
|
||
|
Functions to draw the bivariate and univariate plots. See methods
|
||
|
referenced above for information about the required characteristics
|
||
|
of these functions.
|
||
|
kwargs
|
||
|
Additional keyword arguments are passed to both functions.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
:class:`JointGrid` instance
|
||
|
Returns ``self`` for easy method chaining.
|
||
|
|
||
|
"""
|
||
|
self.plot_marginals(marginal_func, **kwargs)
|
||
|
self.plot_joint(joint_func, **kwargs)
|
||
|
return self
|
||
|
|
||
|
def plot_joint(self, func, **kwargs):
|
||
|
"""Draw a bivariate plot on the joint axes of the grid.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : plotting callable
|
||
|
If a seaborn function, it should accept ``x`` and ``y``. Otherwise,
|
||
|
it must accept ``x`` and ``y`` vectors of data as the first two
|
||
|
positional arguments, and it must plot on the "current" axes.
|
||
|
If ``hue`` was defined in the class constructor, the function must
|
||
|
accept ``hue`` as a parameter.
|
||
|
kwargs
|
||
|
Keyword argument are passed to the plotting function.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
:class:`JointGrid` instance
|
||
|
Returns ``self`` for easy method chaining.
|
||
|
|
||
|
"""
|
||
|
kwargs = kwargs.copy()
|
||
|
if str(func.__module__).startswith("seaborn"):
|
||
|
kwargs["ax"] = self.ax_joint
|
||
|
else:
|
||
|
plt.sca(self.ax_joint)
|
||
|
if self.hue is not None:
|
||
|
kwargs["hue"] = self.hue
|
||
|
self._inject_kwargs(func, kwargs, self._hue_params)
|
||
|
|
||
|
if str(func.__module__).startswith("seaborn"):
|
||
|
func(x=self.x, y=self.y, **kwargs)
|
||
|
else:
|
||
|
func(self.x, self.y, **kwargs)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def plot_marginals(self, func, **kwargs):
|
||
|
"""Draw univariate plots on each marginal axes.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : plotting callable
|
||
|
If a seaborn function, it should accept ``x`` and ``y`` and plot
|
||
|
when only one of them is defined. Otherwise, it must accept a vector
|
||
|
of data as the first positional argument and determine its orientation
|
||
|
using the ``vertical`` parameter, and it must plot on the "current" axes.
|
||
|
If ``hue`` was defined in the class constructor, it must accept ``hue``
|
||
|
as a parameter.
|
||
|
kwargs
|
||
|
Keyword argument are passed to the plotting function.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
:class:`JointGrid` instance
|
||
|
Returns ``self`` for easy method chaining.
|
||
|
|
||
|
"""
|
||
|
seaborn_func = (
|
||
|
str(func.__module__).startswith("seaborn")
|
||
|
# deprecated distplot has a legacy API, special case it
|
||
|
and not func.__name__ == "distplot"
|
||
|
)
|
||
|
func_params = signature(func).parameters
|
||
|
kwargs = kwargs.copy()
|
||
|
if self.hue is not None:
|
||
|
kwargs["hue"] = self.hue
|
||
|
self._inject_kwargs(func, kwargs, self._hue_params)
|
||
|
|
||
|
if "legend" in func_params:
|
||
|
kwargs.setdefault("legend", False)
|
||
|
|
||
|
if "orientation" in func_params:
|
||
|
# e.g. plt.hist
|
||
|
orient_kw_x = {"orientation": "vertical"}
|
||
|
orient_kw_y = {"orientation": "horizontal"}
|
||
|
elif "vertical" in func_params:
|
||
|
# e.g. sns.distplot (also how did this get backwards?)
|
||
|
orient_kw_x = {"vertical": False}
|
||
|
orient_kw_y = {"vertical": True}
|
||
|
|
||
|
if seaborn_func:
|
||
|
func(x=self.x, ax=self.ax_marg_x, **kwargs)
|
||
|
else:
|
||
|
plt.sca(self.ax_marg_x)
|
||
|
func(self.x, **orient_kw_x, **kwargs)
|
||
|
|
||
|
if seaborn_func:
|
||
|
func(y=self.y, ax=self.ax_marg_y, **kwargs)
|
||
|
else:
|
||
|
plt.sca(self.ax_marg_y)
|
||
|
func(self.y, **orient_kw_y, **kwargs)
|
||
|
|
||
|
self.ax_marg_x.yaxis.get_label().set_visible(False)
|
||
|
self.ax_marg_y.xaxis.get_label().set_visible(False)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def refline(
|
||
|
self, *, x=None, y=None, joint=True, marginal=True,
|
||
|
color='.5', linestyle='--', **line_kws
|
||
|
):
|
||
|
"""Add a reference line(s) to joint and/or marginal axes.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : numeric
|
||
|
Value(s) to draw the line(s) at.
|
||
|
joint, marginal : bools
|
||
|
Whether to add the reference line(s) to the joint/marginal axes.
|
||
|
color : :mod:`matplotlib color <matplotlib.colors>`
|
||
|
Specifies the color of the reference line(s).
|
||
|
linestyle : str
|
||
|
Specifies the style of the reference line(s).
|
||
|
line_kws : key, value mappings
|
||
|
Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.axvline`
|
||
|
when ``x`` is not None and :meth:`matplotlib.axes.Axes.axhline` when ``y``
|
||
|
is not None.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
:class:`JointGrid` instance
|
||
|
Returns ``self`` for easy method chaining.
|
||
|
|
||
|
"""
|
||
|
line_kws['color'] = color
|
||
|
line_kws['linestyle'] = linestyle
|
||
|
|
||
|
if x is not None:
|
||
|
if joint:
|
||
|
self.ax_joint.axvline(x, **line_kws)
|
||
|
if marginal:
|
||
|
self.ax_marg_x.axvline(x, **line_kws)
|
||
|
|
||
|
if y is not None:
|
||
|
if joint:
|
||
|
self.ax_joint.axhline(y, **line_kws)
|
||
|
if marginal:
|
||
|
self.ax_marg_y.axhline(y, **line_kws)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def set_axis_labels(self, xlabel="", ylabel="", **kwargs):
|
||
|
"""Set axis labels on the bivariate axes.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xlabel, ylabel : strings
|
||
|
Label names for the x and y variables.
|
||
|
kwargs : key, value mappings
|
||
|
Other keyword arguments are passed to the following functions:
|
||
|
|
||
|
- :meth:`matplotlib.axes.Axes.set_xlabel`
|
||
|
- :meth:`matplotlib.axes.Axes.set_ylabel`
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
:class:`JointGrid` instance
|
||
|
Returns ``self`` for easy method chaining.
|
||
|
|
||
|
"""
|
||
|
self.ax_joint.set_xlabel(xlabel, **kwargs)
|
||
|
self.ax_joint.set_ylabel(ylabel, **kwargs)
|
||
|
return self
|
||
|
|
||
|
|
||
|
JointGrid.__init__.__doc__ = """\
|
||
|
Set up the grid of subplots and store data internally for easy plotting.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{params.core.data}
|
||
|
{params.core.xy}
|
||
|
height : number
|
||
|
Size of each side of the figure in inches (it will be square).
|
||
|
ratio : number
|
||
|
Ratio of joint axes height to marginal axes height.
|
||
|
space : number
|
||
|
Space between the joint and marginal axes
|
||
|
dropna : bool
|
||
|
If True, remove missing observations before plotting.
|
||
|
{{x, y}}lim : pairs of numbers
|
||
|
Set axis limits to these values before plotting.
|
||
|
marginal_ticks : bool
|
||
|
If False, suppress ticks on the count/density axis of the marginal plots.
|
||
|
{params.core.hue}
|
||
|
Note: unlike in :class:`FacetGrid` or :class:`PairGrid`, the axes-level
|
||
|
functions must support ``hue`` to use it in :class:`JointGrid`.
|
||
|
{params.core.palette}
|
||
|
{params.core.hue_order}
|
||
|
{params.core.hue_norm}
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
{seealso.jointplot}
|
||
|
{seealso.pairgrid}
|
||
|
{seealso.pairplot}
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
.. include:: ../docstrings/JointGrid.rst
|
||
|
|
||
|
""".format(
|
||
|
params=_param_docs,
|
||
|
seealso=_core_docs["seealso"],
|
||
|
)
|
||
|
|
||
|
|
||
|
def pairplot(
|
||
|
data, *,
|
||
|
hue=None, hue_order=None, palette=None,
|
||
|
vars=None, x_vars=None, y_vars=None,
|
||
|
kind="scatter", diag_kind="auto", markers=None,
|
||
|
height=2.5, aspect=1, corner=False, dropna=False,
|
||
|
plot_kws=None, diag_kws=None, grid_kws=None, size=None,
|
||
|
):
|
||
|
"""Plot pairwise relationships in a dataset.
|
||
|
|
||
|
By default, this function will create a grid of Axes such that each numeric
|
||
|
variable in ``data`` will by shared across the y-axes across a single row and
|
||
|
the x-axes across a single column. The diagonal plots are treated
|
||
|
differently: a univariate distribution plot is drawn to show the marginal
|
||
|
distribution of the data in each column.
|
||
|
|
||
|
It is also possible to show a subset of variables or plot different
|
||
|
variables on the rows and columns.
|
||
|
|
||
|
This is a high-level interface for :class:`PairGrid` that is intended to
|
||
|
make it easy to draw a few common styles. You should use :class:`PairGrid`
|
||
|
directly if you need more flexibility.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : `pandas.DataFrame`
|
||
|
Tidy (long-form) dataframe where each column is a variable and
|
||
|
each row is an observation.
|
||
|
hue : name of variable in ``data``
|
||
|
Variable in ``data`` to map plot aspects to different colors.
|
||
|
hue_order : list of strings
|
||
|
Order for the levels of the hue variable in the palette
|
||
|
palette : dict or seaborn color palette
|
||
|
Set of colors for mapping the ``hue`` variable. If a dict, keys
|
||
|
should be values in the ``hue`` variable.
|
||
|
vars : list of variable names
|
||
|
Variables within ``data`` to use, otherwise use every column with
|
||
|
a numeric datatype.
|
||
|
{x, y}_vars : lists of variable names
|
||
|
Variables within ``data`` to use separately for the rows and
|
||
|
columns of the figure; i.e. to make a non-square plot.
|
||
|
kind : {'scatter', 'kde', 'hist', 'reg'}
|
||
|
Kind of plot to make.
|
||
|
diag_kind : {'auto', 'hist', 'kde', None}
|
||
|
Kind of plot for the diagonal subplots. If 'auto', choose based on
|
||
|
whether or not ``hue`` is used.
|
||
|
markers : single matplotlib marker code or list
|
||
|
Either the marker to use for all scatterplot points or a list of markers
|
||
|
with a length the same as the number of levels in the hue variable so that
|
||
|
differently colored points will also have different scatterplot
|
||
|
markers.
|
||
|
height : scalar
|
||
|
Height (in inches) of each facet.
|
||
|
aspect : scalar
|
||
|
Aspect * height gives the width (in inches) of each facet.
|
||
|
corner : bool
|
||
|
If True, don't add axes to the upper (off-diagonal) triangle of the
|
||
|
grid, making this a "corner" plot.
|
||
|
dropna : boolean
|
||
|
Drop missing values from the data before plotting.
|
||
|
{plot, diag, grid}_kws : dicts
|
||
|
Dictionaries of keyword arguments. ``plot_kws`` are passed to the
|
||
|
bivariate plotting function, ``diag_kws`` are passed to the univariate
|
||
|
plotting function, and ``grid_kws`` are passed to the :class:`PairGrid`
|
||
|
constructor.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
grid : :class:`PairGrid`
|
||
|
Returns the underlying :class:`PairGrid` instance for further tweaking.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
PairGrid : Subplot grid for more flexible plotting of pairwise relationships.
|
||
|
JointGrid : Grid for plotting joint and marginal distributions of two variables.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
.. include:: ../docstrings/pairplot.rst
|
||
|
|
||
|
"""
|
||
|
# Avoid circular import
|
||
|
from .distributions import histplot, kdeplot
|
||
|
|
||
|
# Handle deprecations
|
||
|
if size is not None:
|
||
|
height = size
|
||
|
msg = ("The `size` parameter has been renamed to `height`; "
|
||
|
"please update your code.")
|
||
|
warnings.warn(msg, UserWarning)
|
||
|
|
||
|
if not isinstance(data, pd.DataFrame):
|
||
|
raise TypeError(
|
||
|
f"'data' must be pandas DataFrame object, not: {type(data)}")
|
||
|
|
||
|
plot_kws = {} if plot_kws is None else plot_kws.copy()
|
||
|
diag_kws = {} if diag_kws is None else diag_kws.copy()
|
||
|
grid_kws = {} if grid_kws is None else grid_kws.copy()
|
||
|
|
||
|
# Resolve "auto" diag kind
|
||
|
if diag_kind == "auto":
|
||
|
if hue is None:
|
||
|
diag_kind = "kde" if kind == "kde" else "hist"
|
||
|
else:
|
||
|
diag_kind = "hist" if kind == "hist" else "kde"
|
||
|
|
||
|
# Set up the PairGrid
|
||
|
grid_kws.setdefault("diag_sharey", diag_kind == "hist")
|
||
|
grid = PairGrid(data, vars=vars, x_vars=x_vars, y_vars=y_vars, hue=hue,
|
||
|
hue_order=hue_order, palette=palette, corner=corner,
|
||
|
height=height, aspect=aspect, dropna=dropna, **grid_kws)
|
||
|
|
||
|
# Add the markers here as PairGrid has figured out how many levels of the
|
||
|
# hue variable are needed and we don't want to duplicate that process
|
||
|
if markers is not None:
|
||
|
if kind == "reg":
|
||
|
# Needed until regplot supports style
|
||
|
if grid.hue_names is None:
|
||
|
n_markers = 1
|
||
|
else:
|
||
|
n_markers = len(grid.hue_names)
|
||
|
if not isinstance(markers, list):
|
||
|
markers = [markers] * n_markers
|
||
|
if len(markers) != n_markers:
|
||
|
raise ValueError("markers must be a singleton or a list of "
|
||
|
"markers for each level of the hue variable")
|
||
|
grid.hue_kws = {"marker": markers}
|
||
|
elif kind == "scatter":
|
||
|
if isinstance(markers, str):
|
||
|
plot_kws["marker"] = markers
|
||
|
elif hue is not None:
|
||
|
plot_kws["style"] = data[hue]
|
||
|
plot_kws["markers"] = markers
|
||
|
|
||
|
# Draw the marginal plots on the diagonal
|
||
|
diag_kws = diag_kws.copy()
|
||
|
diag_kws.setdefault("legend", False)
|
||
|
if diag_kind == "hist":
|
||
|
grid.map_diag(histplot, **diag_kws)
|
||
|
elif diag_kind == "kde":
|
||
|
diag_kws.setdefault("fill", True)
|
||
|
diag_kws.setdefault("warn_singular", False)
|
||
|
grid.map_diag(kdeplot, **diag_kws)
|
||
|
|
||
|
# Maybe plot on the off-diagonals
|
||
|
if diag_kind is not None:
|
||
|
plotter = grid.map_offdiag
|
||
|
else:
|
||
|
plotter = grid.map
|
||
|
|
||
|
if kind == "scatter":
|
||
|
from .relational import scatterplot # Avoid circular import
|
||
|
plotter(scatterplot, **plot_kws)
|
||
|
elif kind == "reg":
|
||
|
from .regression import regplot # Avoid circular import
|
||
|
plotter(regplot, **plot_kws)
|
||
|
elif kind == "kde":
|
||
|
from .distributions import kdeplot # Avoid circular import
|
||
|
plot_kws.setdefault("warn_singular", False)
|
||
|
plotter(kdeplot, **plot_kws)
|
||
|
elif kind == "hist":
|
||
|
from .distributions import histplot # Avoid circular import
|
||
|
plotter(histplot, **plot_kws)
|
||
|
|
||
|
# Add a legend
|
||
|
if hue is not None:
|
||
|
grid.add_legend()
|
||
|
|
||
|
grid.tight_layout()
|
||
|
|
||
|
return grid
|
||
|
|
||
|
|
||
|
def jointplot(
|
||
|
data=None, *, x=None, y=None, hue=None, kind="scatter",
|
||
|
height=6, ratio=5, space=.2, dropna=False, xlim=None, ylim=None,
|
||
|
color=None, palette=None, hue_order=None, hue_norm=None, marginal_ticks=False,
|
||
|
joint_kws=None, marginal_kws=None,
|
||
|
**kwargs
|
||
|
):
|
||
|
# Avoid circular imports
|
||
|
from .relational import scatterplot
|
||
|
from .regression import regplot, residplot
|
||
|
from .distributions import histplot, kdeplot, _freedman_diaconis_bins
|
||
|
|
||
|
if kwargs.pop("ax", None) is not None:
|
||
|
msg = "Ignoring `ax`; jointplot is a figure-level function."
|
||
|
warnings.warn(msg, UserWarning, stacklevel=2)
|
||
|
|
||
|
# Set up empty default kwarg dicts
|
||
|
joint_kws = {} if joint_kws is None else joint_kws.copy()
|
||
|
joint_kws.update(kwargs)
|
||
|
marginal_kws = {} if marginal_kws is None else marginal_kws.copy()
|
||
|
|
||
|
# Handle deprecations of distplot-specific kwargs
|
||
|
distplot_keys = [
|
||
|
"rug", "fit", "hist_kws", "norm_hist" "hist_kws", "rug_kws",
|
||
|
]
|
||
|
unused_keys = []
|
||
|
for key in distplot_keys:
|
||
|
if key in marginal_kws:
|
||
|
unused_keys.append(key)
|
||
|
marginal_kws.pop(key)
|
||
|
if unused_keys and kind != "kde":
|
||
|
msg = (
|
||
|
"The marginal plotting function has changed to `histplot`,"
|
||
|
" which does not accept the following argument(s): {}."
|
||
|
).format(", ".join(unused_keys))
|
||
|
warnings.warn(msg, UserWarning)
|
||
|
|
||
|
# Validate the plot kind
|
||
|
plot_kinds = ["scatter", "hist", "hex", "kde", "reg", "resid"]
|
||
|
_check_argument("kind", plot_kinds, kind)
|
||
|
|
||
|
# Raise early if using `hue` with a kind that does not support it
|
||
|
if hue is not None and kind in ["hex", "reg", "resid"]:
|
||
|
msg = f"Use of `hue` with `kind='{kind}'` is not currently supported."
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
# Make a colormap based off the plot color
|
||
|
# (Currently used only for kind="hex")
|
||
|
if color is None:
|
||
|
color = "C0"
|
||
|
color_rgb = mpl.colors.colorConverter.to_rgb(color)
|
||
|
colors = [set_hls_values(color_rgb, l=val) for val in np.linspace(1, 0, 12)]
|
||
|
cmap = blend_palette(colors, as_cmap=True)
|
||
|
|
||
|
# Matplotlib's hexbin plot is not na-robust
|
||
|
if kind == "hex":
|
||
|
dropna = True
|
||
|
|
||
|
# Initialize the JointGrid object
|
||
|
grid = JointGrid(
|
||
|
data=data, x=x, y=y, hue=hue,
|
||
|
palette=palette, hue_order=hue_order, hue_norm=hue_norm,
|
||
|
dropna=dropna, height=height, ratio=ratio, space=space,
|
||
|
xlim=xlim, ylim=ylim, marginal_ticks=marginal_ticks,
|
||
|
)
|
||
|
|
||
|
if grid.hue is not None:
|
||
|
marginal_kws.setdefault("legend", False)
|
||
|
|
||
|
# Plot the data using the grid
|
||
|
if kind.startswith("scatter"):
|
||
|
|
||
|
joint_kws.setdefault("color", color)
|
||
|
grid.plot_joint(scatterplot, **joint_kws)
|
||
|
|
||
|
if grid.hue is None:
|
||
|
marg_func = histplot
|
||
|
else:
|
||
|
marg_func = kdeplot
|
||
|
marginal_kws.setdefault("warn_singular", False)
|
||
|
marginal_kws.setdefault("fill", True)
|
||
|
|
||
|
marginal_kws.setdefault("color", color)
|
||
|
grid.plot_marginals(marg_func, **marginal_kws)
|
||
|
|
||
|
elif kind.startswith("hist"):
|
||
|
|
||
|
# TODO process pair parameters for bins, etc. and pass
|
||
|
# to both joint and marginal plots
|
||
|
|
||
|
joint_kws.setdefault("color", color)
|
||
|
grid.plot_joint(histplot, **joint_kws)
|
||
|
|
||
|
marginal_kws.setdefault("kde", False)
|
||
|
marginal_kws.setdefault("color", color)
|
||
|
|
||
|
marg_x_kws = marginal_kws.copy()
|
||
|
marg_y_kws = marginal_kws.copy()
|
||
|
|
||
|
pair_keys = "bins", "binwidth", "binrange"
|
||
|
for key in pair_keys:
|
||
|
if isinstance(joint_kws.get(key), tuple):
|
||
|
x_val, y_val = joint_kws[key]
|
||
|
marg_x_kws.setdefault(key, x_val)
|
||
|
marg_y_kws.setdefault(key, y_val)
|
||
|
|
||
|
histplot(data=data, x=x, hue=hue, **marg_x_kws, ax=grid.ax_marg_x)
|
||
|
histplot(data=data, y=y, hue=hue, **marg_y_kws, ax=grid.ax_marg_y)
|
||
|
|
||
|
elif kind.startswith("kde"):
|
||
|
|
||
|
joint_kws.setdefault("color", color)
|
||
|
joint_kws.setdefault("warn_singular", False)
|
||
|
grid.plot_joint(kdeplot, **joint_kws)
|
||
|
|
||
|
marginal_kws.setdefault("color", color)
|
||
|
if "fill" in joint_kws:
|
||
|
marginal_kws.setdefault("fill", joint_kws["fill"])
|
||
|
|
||
|
grid.plot_marginals(kdeplot, **marginal_kws)
|
||
|
|
||
|
elif kind.startswith("hex"):
|
||
|
|
||
|
x_bins = min(_freedman_diaconis_bins(grid.x), 50)
|
||
|
y_bins = min(_freedman_diaconis_bins(grid.y), 50)
|
||
|
gridsize = int(np.mean([x_bins, y_bins]))
|
||
|
|
||
|
joint_kws.setdefault("gridsize", gridsize)
|
||
|
joint_kws.setdefault("cmap", cmap)
|
||
|
grid.plot_joint(plt.hexbin, **joint_kws)
|
||
|
|
||
|
marginal_kws.setdefault("kde", False)
|
||
|
marginal_kws.setdefault("color", color)
|
||
|
grid.plot_marginals(histplot, **marginal_kws)
|
||
|
|
||
|
elif kind.startswith("reg"):
|
||
|
|
||
|
marginal_kws.setdefault("color", color)
|
||
|
marginal_kws.setdefault("kde", True)
|
||
|
grid.plot_marginals(histplot, **marginal_kws)
|
||
|
|
||
|
joint_kws.setdefault("color", color)
|
||
|
grid.plot_joint(regplot, **joint_kws)
|
||
|
|
||
|
elif kind.startswith("resid"):
|
||
|
|
||
|
joint_kws.setdefault("color", color)
|
||
|
grid.plot_joint(residplot, **joint_kws)
|
||
|
|
||
|
x, y = grid.ax_joint.collections[0].get_offsets().T
|
||
|
marginal_kws.setdefault("color", color)
|
||
|
histplot(x=x, hue=hue, ax=grid.ax_marg_x, **marginal_kws)
|
||
|
histplot(y=y, hue=hue, ax=grid.ax_marg_y, **marginal_kws)
|
||
|
|
||
|
# Make the main axes active in the matplotlib state machine
|
||
|
plt.sca(grid.ax_joint)
|
||
|
|
||
|
return grid
|
||
|
|
||
|
|
||
|
jointplot.__doc__ = """\
|
||
|
Draw a plot of two variables with bivariate and univariate graphs.
|
||
|
|
||
|
This function provides a convenient interface to the :class:`JointGrid`
|
||
|
class, with several canned plot kinds. This is intended to be a fairly
|
||
|
lightweight wrapper; if you need more flexibility, you should use
|
||
|
:class:`JointGrid` directly.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{params.core.data}
|
||
|
{params.core.xy}
|
||
|
{params.core.hue}
|
||
|
kind : {{ "scatter" | "kde" | "hist" | "hex" | "reg" | "resid" }}
|
||
|
Kind of plot to draw. See the examples for references to the underlying functions.
|
||
|
height : numeric
|
||
|
Size of the figure (it will be square).
|
||
|
ratio : numeric
|
||
|
Ratio of joint axes height to marginal axes height.
|
||
|
space : numeric
|
||
|
Space between the joint and marginal axes
|
||
|
dropna : bool
|
||
|
If True, remove observations that are missing from ``x`` and ``y``.
|
||
|
{{x, y}}lim : pairs of numbers
|
||
|
Axis limits to set before plotting.
|
||
|
{params.core.color}
|
||
|
{params.core.palette}
|
||
|
{params.core.hue_order}
|
||
|
{params.core.hue_norm}
|
||
|
marginal_ticks : bool
|
||
|
If False, suppress ticks on the count/density axis of the marginal plots.
|
||
|
{{joint, marginal}}_kws : dicts
|
||
|
Additional keyword arguments for the plot components.
|
||
|
kwargs
|
||
|
Additional keyword arguments are passed to the function used to
|
||
|
draw the plot on the joint Axes, superseding items in the
|
||
|
``joint_kws`` dictionary.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
{returns.jointgrid}
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
{seealso.jointgrid}
|
||
|
{seealso.pairgrid}
|
||
|
{seealso.pairplot}
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
.. include:: ../docstrings/jointplot.rst
|
||
|
|
||
|
""".format(
|
||
|
params=_param_docs,
|
||
|
returns=_core_docs["returns"],
|
||
|
seealso=_core_docs["seealso"],
|
||
|
)
|