4998 lines
186 KiB
Python
4998 lines
186 KiB
Python
|
from __future__ import annotations
|
||
|
import math
|
||
|
import warnings
|
||
|
from collections import namedtuple
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy import (isscalar, r_, log, around, unique, asarray, zeros,
|
||
|
arange, sort, amin, amax, sqrt, array,
|
||
|
pi, exp, ravel, count_nonzero)
|
||
|
|
||
|
from scipy import optimize, special, interpolate, stats
|
||
|
from scipy._lib._bunch import _make_tuple_bunch
|
||
|
from scipy._lib._util import _rename_parameter, _contains_nan, _get_nan
|
||
|
from scipy._lib._array_api import (array_namespace, xp_minimum, size as xp_size,
|
||
|
xp_moveaxis_to_end)
|
||
|
|
||
|
from ._ansari_swilk_statistics import gscale, swilk
|
||
|
from . import _stats_py, _wilcoxon
|
||
|
from ._fit import FitResult
|
||
|
from ._stats_py import (find_repeats, _get_pvalue, SignificanceResult, # noqa:F401
|
||
|
_SimpleNormal, _SimpleChi2)
|
||
|
from .contingency import chi2_contingency
|
||
|
from . import distributions
|
||
|
from ._distn_infrastructure import rv_generic
|
||
|
from ._axis_nan_policy import _axis_nan_policy_factory, _broadcast_arrays
|
||
|
|
||
|
|
||
|
__all__ = ['mvsdist',
|
||
|
'bayes_mvs', 'kstat', 'kstatvar', 'probplot', 'ppcc_max', 'ppcc_plot',
|
||
|
'boxcox_llf', 'boxcox', 'boxcox_normmax', 'boxcox_normplot',
|
||
|
'shapiro', 'anderson', 'ansari', 'bartlett', 'levene',
|
||
|
'fligner', 'mood', 'wilcoxon', 'median_test',
|
||
|
'circmean', 'circvar', 'circstd', 'anderson_ksamp',
|
||
|
'yeojohnson_llf', 'yeojohnson', 'yeojohnson_normmax',
|
||
|
'yeojohnson_normplot', 'directional_stats',
|
||
|
'false_discovery_control'
|
||
|
]
|
||
|
|
||
|
|
||
|
Mean = namedtuple('Mean', ('statistic', 'minmax'))
|
||
|
Variance = namedtuple('Variance', ('statistic', 'minmax'))
|
||
|
Std_dev = namedtuple('Std_dev', ('statistic', 'minmax'))
|
||
|
|
||
|
|
||
|
def bayes_mvs(data, alpha=0.90):
|
||
|
r"""
|
||
|
Bayesian confidence intervals for the mean, var, and std.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : array_like
|
||
|
Input data, if multi-dimensional it is flattened to 1-D by `bayes_mvs`.
|
||
|
Requires 2 or more data points.
|
||
|
alpha : float, optional
|
||
|
Probability that the returned confidence interval contains
|
||
|
the true parameter.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mean_cntr, var_cntr, std_cntr : tuple
|
||
|
The three results are for the mean, variance and standard deviation,
|
||
|
respectively. Each result is a tuple of the form::
|
||
|
|
||
|
(center, (lower, upper))
|
||
|
|
||
|
with `center` the mean of the conditional pdf of the value given the
|
||
|
data, and `(lower, upper)` a confidence interval, centered on the
|
||
|
median, containing the estimate to a probability ``alpha``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
mvsdist
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Each tuple of mean, variance, and standard deviation estimates represent
|
||
|
the (center, (lower, upper)) with center the mean of the conditional pdf
|
||
|
of the value given the data and (lower, upper) is a confidence interval
|
||
|
centered on the median, containing the estimate to a probability
|
||
|
``alpha``.
|
||
|
|
||
|
Converts data to 1-D and assumes all data has the same mean and variance.
|
||
|
Uses Jeffrey's prior for variance and std.
|
||
|
|
||
|
Equivalent to ``tuple((x.mean(), x.interval(alpha)) for x in mvsdist(dat))``
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
T.E. Oliphant, "A Bayesian perspective on estimating mean, variance, and
|
||
|
standard-deviation from data", https://scholarsarchive.byu.edu/facpub/278,
|
||
|
2006.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
First a basic example to demonstrate the outputs:
|
||
|
|
||
|
>>> from scipy import stats
|
||
|
>>> data = [6, 9, 12, 7, 8, 8, 13]
|
||
|
>>> mean, var, std = stats.bayes_mvs(data)
|
||
|
>>> mean
|
||
|
Mean(statistic=9.0, minmax=(7.103650222612533, 10.896349777387467))
|
||
|
>>> var
|
||
|
Variance(statistic=10.0, minmax=(3.176724206, 24.45910382))
|
||
|
>>> std
|
||
|
Std_dev(statistic=2.9724954732045084,
|
||
|
minmax=(1.7823367265645143, 4.945614605014631))
|
||
|
|
||
|
Now we generate some normally distributed random data, and get estimates of
|
||
|
mean and standard deviation with 95% confidence intervals for those
|
||
|
estimates:
|
||
|
|
||
|
>>> n_samples = 100000
|
||
|
>>> data = stats.norm.rvs(size=n_samples)
|
||
|
>>> res_mean, res_var, res_std = stats.bayes_mvs(data, alpha=0.95)
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax = fig.add_subplot(111)
|
||
|
>>> ax.hist(data, bins=100, density=True, label='Histogram of data')
|
||
|
>>> ax.vlines(res_mean.statistic, 0, 0.5, colors='r', label='Estimated mean')
|
||
|
>>> ax.axvspan(res_mean.minmax[0],res_mean.minmax[1], facecolor='r',
|
||
|
... alpha=0.2, label=r'Estimated mean (95% limits)')
|
||
|
>>> ax.vlines(res_std.statistic, 0, 0.5, colors='g', label='Estimated scale')
|
||
|
>>> ax.axvspan(res_std.minmax[0],res_std.minmax[1], facecolor='g', alpha=0.2,
|
||
|
... label=r'Estimated scale (95% limits)')
|
||
|
|
||
|
>>> ax.legend(fontsize=10)
|
||
|
>>> ax.set_xlim([-4, 4])
|
||
|
>>> ax.set_ylim([0, 0.5])
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
m, v, s = mvsdist(data)
|
||
|
if alpha >= 1 or alpha <= 0:
|
||
|
raise ValueError(f"0 < alpha < 1 is required, but {alpha=} was given.")
|
||
|
|
||
|
m_res = Mean(m.mean(), m.interval(alpha))
|
||
|
v_res = Variance(v.mean(), v.interval(alpha))
|
||
|
s_res = Std_dev(s.mean(), s.interval(alpha))
|
||
|
|
||
|
return m_res, v_res, s_res
|
||
|
|
||
|
|
||
|
def mvsdist(data):
|
||
|
"""
|
||
|
'Frozen' distributions for mean, variance, and standard deviation of data.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : array_like
|
||
|
Input array. Converted to 1-D using ravel.
|
||
|
Requires 2 or more data-points.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mdist : "frozen" distribution object
|
||
|
Distribution object representing the mean of the data.
|
||
|
vdist : "frozen" distribution object
|
||
|
Distribution object representing the variance of the data.
|
||
|
sdist : "frozen" distribution object
|
||
|
Distribution object representing the standard deviation of the data.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bayes_mvs
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The return values from ``bayes_mvs(data)`` is equivalent to
|
||
|
``tuple((x.mean(), x.interval(0.90)) for x in mvsdist(data))``.
|
||
|
|
||
|
In other words, calling ``<dist>.mean()`` and ``<dist>.interval(0.90)``
|
||
|
on the three distribution objects returned from this function will give
|
||
|
the same results that are returned from `bayes_mvs`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
T.E. Oliphant, "A Bayesian perspective on estimating mean, variance, and
|
||
|
standard-deviation from data", https://scholarsarchive.byu.edu/facpub/278,
|
||
|
2006.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import stats
|
||
|
>>> data = [6, 9, 12, 7, 8, 8, 13]
|
||
|
>>> mean, var, std = stats.mvsdist(data)
|
||
|
|
||
|
We now have frozen distribution objects "mean", "var" and "std" that we can
|
||
|
examine:
|
||
|
|
||
|
>>> mean.mean()
|
||
|
9.0
|
||
|
>>> mean.interval(0.95)
|
||
|
(6.6120585482655692, 11.387941451734431)
|
||
|
>>> mean.std()
|
||
|
1.1952286093343936
|
||
|
|
||
|
"""
|
||
|
x = ravel(data)
|
||
|
n = len(x)
|
||
|
if n < 2:
|
||
|
raise ValueError("Need at least 2 data-points.")
|
||
|
xbar = x.mean()
|
||
|
C = x.var()
|
||
|
if n > 1000: # gaussian approximations for large n
|
||
|
mdist = distributions.norm(loc=xbar, scale=math.sqrt(C / n))
|
||
|
sdist = distributions.norm(loc=math.sqrt(C), scale=math.sqrt(C / (2. * n)))
|
||
|
vdist = distributions.norm(loc=C, scale=math.sqrt(2.0 / n) * C)
|
||
|
else:
|
||
|
nm1 = n - 1
|
||
|
fac = n * C / 2.
|
||
|
val = nm1 / 2.
|
||
|
mdist = distributions.t(nm1, loc=xbar, scale=math.sqrt(C / nm1))
|
||
|
sdist = distributions.gengamma(val, -2, scale=math.sqrt(fac))
|
||
|
vdist = distributions.invgamma(val, scale=fac)
|
||
|
return mdist, vdist, sdist
|
||
|
|
||
|
|
||
|
@_axis_nan_policy_factory(
|
||
|
lambda x: x, result_to_tuple=lambda x: (x,), n_outputs=1, default_axis=None
|
||
|
)
|
||
|
def kstat(data, n=2, *, axis=None):
|
||
|
r"""
|
||
|
Return the `n` th k-statistic ( ``1<=n<=4`` so far).
|
||
|
|
||
|
The `n` th k-statistic ``k_n`` is the unique symmetric unbiased estimator of the
|
||
|
`n` th cumulant :math:`\kappa_n` [1]_ [2]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : array_like
|
||
|
Input array.
|
||
|
n : int, {1, 2, 3, 4}, optional
|
||
|
Default is equal to 2.
|
||
|
axis : int or None, default: None
|
||
|
If an int, the axis of the input along which to compute the statistic.
|
||
|
The statistic of each axis-slice (e.g. row) of the input will appear
|
||
|
in a corresponding element of the output. If ``None``, the input will
|
||
|
be raveled before computing the statistic.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
kstat : float
|
||
|
The `n` th k-statistic.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kstatvar : Returns an unbiased estimator of the variance of the k-statistic
|
||
|
moment : Returns the n-th central moment about the mean for a sample.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For a sample size :math:`n`, the first few k-statistics are given by
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
k_1 &= \frac{S_1}{n}, \\
|
||
|
k_2 &= \frac{nS_2 - S_1^2}{n(n-1)}, \\
|
||
|
k_3 &= \frac{2S_1^3 - 3nS_1S_2 + n^2S_3}{n(n-1)(n-2)}, \\
|
||
|
k_4 &= \frac{-6S_1^4 + 12nS_1^2S_2 - 3n(n-1)S_2^2 - 4n(n+1)S_1S_3
|
||
|
+ n^2(n+1)S_4}{n (n-1)(n-2)(n-3)},
|
||
|
|
||
|
where
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
S_r \equiv \sum_{i=1}^n X_i^r,
|
||
|
|
||
|
and :math:`X_i` is the :math:`i` th data point.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] http://mathworld.wolfram.com/k-Statistic.html
|
||
|
|
||
|
.. [2] http://mathworld.wolfram.com/Cumulant.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import stats
|
||
|
>>> from numpy.random import default_rng
|
||
|
>>> rng = default_rng()
|
||
|
|
||
|
As sample size increases, `n`-th moment and `n`-th k-statistic converge to the
|
||
|
same number (although they aren't identical). In the case of the normal
|
||
|
distribution, they converge to zero.
|
||
|
|
||
|
>>> for i in range(2,8):
|
||
|
... x = rng.normal(size=10**i)
|
||
|
... m, k = stats.moment(x, 3), stats.kstat(x, 3)
|
||
|
... print(f"{i=}: {m=:.3g}, {k=:.3g}, {(m-k)=:.3g}")
|
||
|
i=2: m=-0.631, k=-0.651, (m-k)=0.0194 # random
|
||
|
i=3: m=0.0282, k=0.0283, (m-k)=-8.49e-05
|
||
|
i=4: m=-0.0454, k=-0.0454, (m-k)=1.36e-05
|
||
|
i=6: m=7.53e-05, k=7.53e-05, (m-k)=-2.26e-09
|
||
|
i=7: m=0.00166, k=0.00166, (m-k)=-4.99e-09
|
||
|
i=8: m=-2.88e-06 k=-2.88e-06, (m-k)=8.63e-13
|
||
|
"""
|
||
|
xp = array_namespace(data)
|
||
|
data = xp.asarray(data)
|
||
|
if n > 4 or n < 1:
|
||
|
raise ValueError("k-statistics only supported for 1<=n<=4")
|
||
|
n = int(n)
|
||
|
if axis is None:
|
||
|
data = xp.reshape(data, (-1,))
|
||
|
axis = 0
|
||
|
|
||
|
N = data.shape[axis]
|
||
|
|
||
|
S = [None] + [xp.sum(data**k, axis=axis) for k in range(1, n + 1)]
|
||
|
if n == 1:
|
||
|
return S[1] * 1.0/N
|
||
|
elif n == 2:
|
||
|
return (N*S[2] - S[1]**2.0) / (N*(N - 1.0))
|
||
|
elif n == 3:
|
||
|
return (2*S[1]**3 - 3*N*S[1]*S[2] + N*N*S[3]) / (N*(N - 1.0)*(N - 2.0))
|
||
|
elif n == 4:
|
||
|
return ((-6*S[1]**4 + 12*N*S[1]**2 * S[2] - 3*N*(N-1.0)*S[2]**2 -
|
||
|
4*N*(N+1)*S[1]*S[3] + N*N*(N+1)*S[4]) /
|
||
|
(N*(N-1.0)*(N-2.0)*(N-3.0)))
|
||
|
else:
|
||
|
raise ValueError("Should not be here.")
|
||
|
|
||
|
|
||
|
@_axis_nan_policy_factory(
|
||
|
lambda x: x, result_to_tuple=lambda x: (x,), n_outputs=1, default_axis=None
|
||
|
)
|
||
|
def kstatvar(data, n=2, *, axis=None):
|
||
|
r"""Return an unbiased estimator of the variance of the k-statistic.
|
||
|
|
||
|
See `kstat` and [1]_ for more details about the k-statistic.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : array_like
|
||
|
Input array.
|
||
|
n : int, {1, 2}, optional
|
||
|
Default is equal to 2.
|
||
|
axis : int or None, default: None
|
||
|
If an int, the axis of the input along which to compute the statistic.
|
||
|
The statistic of each axis-slice (e.g. row) of the input will appear
|
||
|
in a corresponding element of the output. If ``None``, the input will
|
||
|
be raveled before computing the statistic.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
kstatvar : float
|
||
|
The `n` th k-statistic variance.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kstat : Returns the n-th k-statistic.
|
||
|
moment : Returns the n-th central moment about the mean for a sample.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Unbiased estimators of the variances of the first two k-statistics are given by
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\mathrm{var}(k_1) &= \frac{k_2}{n}, \\
|
||
|
\mathrm{var}(k_2) &= \frac{2k_2^2n + (n-1)k_4}{n(n - 1)}.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] http://mathworld.wolfram.com/k-Statistic.html
|
||
|
|
||
|
""" # noqa: E501
|
||
|
xp = array_namespace(data)
|
||
|
data = xp.asarray(data)
|
||
|
if axis is None:
|
||
|
data = xp.reshape(data, (-1,))
|
||
|
axis = 0
|
||
|
N = data.shape[axis]
|
||
|
|
||
|
if n == 1:
|
||
|
return kstat(data, n=2, axis=axis, _no_deco=True) * 1.0/N
|
||
|
elif n == 2:
|
||
|
k2 = kstat(data, n=2, axis=axis, _no_deco=True)
|
||
|
k4 = kstat(data, n=4, axis=axis, _no_deco=True)
|
||
|
return (2*N*k2**2 + (N-1)*k4) / (N*(N+1))
|
||
|
else:
|
||
|
raise ValueError("Only n=1 or n=2 supported.")
|
||
|
|
||
|
|
||
|
def _calc_uniform_order_statistic_medians(n):
|
||
|
"""Approximations of uniform order statistic medians.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Sample size.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
v : 1d float array
|
||
|
Approximations of the order statistic medians.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] James J. Filliben, "The Probability Plot Correlation Coefficient
|
||
|
Test for Normality", Technometrics, Vol. 17, pp. 111-117, 1975.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Order statistics of the uniform distribution on the unit interval
|
||
|
are marginally distributed according to beta distributions.
|
||
|
The expectations of these order statistic are evenly spaced across
|
||
|
the interval, but the distributions are skewed in a way that
|
||
|
pushes the medians slightly towards the endpoints of the unit interval:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> n = 4
|
||
|
>>> k = np.arange(1, n+1)
|
||
|
>>> from scipy.stats import beta
|
||
|
>>> a = k
|
||
|
>>> b = n-k+1
|
||
|
>>> beta.mean(a, b)
|
||
|
array([0.2, 0.4, 0.6, 0.8])
|
||
|
>>> beta.median(a, b)
|
||
|
array([0.15910358, 0.38572757, 0.61427243, 0.84089642])
|
||
|
|
||
|
The Filliben approximation uses the exact medians of the smallest
|
||
|
and greatest order statistics, and the remaining medians are approximated
|
||
|
by points spread evenly across a sub-interval of the unit interval:
|
||
|
|
||
|
>>> from scipy.stats._morestats import _calc_uniform_order_statistic_medians
|
||
|
>>> _calc_uniform_order_statistic_medians(n)
|
||
|
array([0.15910358, 0.38545246, 0.61454754, 0.84089642])
|
||
|
|
||
|
This plot shows the skewed distributions of the order statistics
|
||
|
of a sample of size four from a uniform distribution on the unit interval:
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(0.0, 1.0, num=50, endpoint=True)
|
||
|
>>> pdfs = [beta.pdf(x, a[i], b[i]) for i in range(n)]
|
||
|
>>> plt.figure()
|
||
|
>>> plt.plot(x, pdfs[0], x, pdfs[1], x, pdfs[2], x, pdfs[3])
|
||
|
|
||
|
"""
|
||
|
v = np.empty(n, dtype=np.float64)
|
||
|
v[-1] = 0.5**(1.0 / n)
|
||
|
v[0] = 1 - v[-1]
|
||
|
i = np.arange(2, n)
|
||
|
v[1:-1] = (i - 0.3175) / (n + 0.365)
|
||
|
return v
|
||
|
|
||
|
|
||
|
def _parse_dist_kw(dist, enforce_subclass=True):
|
||
|
"""Parse `dist` keyword.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dist : str or stats.distributions instance.
|
||
|
Several functions take `dist` as a keyword, hence this utility
|
||
|
function.
|
||
|
enforce_subclass : bool, optional
|
||
|
If True (default), `dist` needs to be a
|
||
|
`_distn_infrastructure.rv_generic` instance.
|
||
|
It can sometimes be useful to set this keyword to False, if a function
|
||
|
wants to accept objects that just look somewhat like such an instance
|
||
|
(for example, they have a ``ppf`` method).
|
||
|
|
||
|
"""
|
||
|
if isinstance(dist, rv_generic):
|
||
|
pass
|
||
|
elif isinstance(dist, str):
|
||
|
try:
|
||
|
dist = getattr(distributions, dist)
|
||
|
except AttributeError as e:
|
||
|
raise ValueError(f"{dist} is not a valid distribution name") from e
|
||
|
elif enforce_subclass:
|
||
|
msg = ("`dist` should be a stats.distributions instance or a string "
|
||
|
"with the name of such a distribution.")
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
return dist
|
||
|
|
||
|
|
||
|
def _add_axis_labels_title(plot, xlabel, ylabel, title):
|
||
|
"""Helper function to add axes labels and a title to stats plots."""
|
||
|
try:
|
||
|
if hasattr(plot, 'set_title'):
|
||
|
# Matplotlib Axes instance or something that looks like it
|
||
|
plot.set_title(title)
|
||
|
plot.set_xlabel(xlabel)
|
||
|
plot.set_ylabel(ylabel)
|
||
|
else:
|
||
|
# matplotlib.pyplot module
|
||
|
plot.title(title)
|
||
|
plot.xlabel(xlabel)
|
||
|
plot.ylabel(ylabel)
|
||
|
except Exception:
|
||
|
# Not an MPL object or something that looks (enough) like it.
|
||
|
# Don't crash on adding labels or title
|
||
|
pass
|
||
|
|
||
|
|
||
|
def probplot(x, sparams=(), dist='norm', fit=True, plot=None, rvalue=False):
|
||
|
"""
|
||
|
Calculate quantiles for a probability plot, and optionally show the plot.
|
||
|
|
||
|
Generates a probability plot of sample data against the quantiles of a
|
||
|
specified theoretical distribution (the normal distribution by default).
|
||
|
`probplot` optionally calculates a best-fit line for the data and plots the
|
||
|
results using Matplotlib or a given plot function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Sample/response data from which `probplot` creates the plot.
|
||
|
sparams : tuple, optional
|
||
|
Distribution-specific shape parameters (shape parameters plus location
|
||
|
and scale).
|
||
|
dist : str or stats.distributions instance, optional
|
||
|
Distribution or distribution function name. The default is 'norm' for a
|
||
|
normal probability plot. Objects that look enough like a
|
||
|
stats.distributions instance (i.e. they have a ``ppf`` method) are also
|
||
|
accepted.
|
||
|
fit : bool, optional
|
||
|
Fit a least-squares regression (best-fit) line to the sample data if
|
||
|
True (default).
|
||
|
plot : object, optional
|
||
|
If given, plots the quantiles.
|
||
|
If given and `fit` is True, also plots the least squares fit.
|
||
|
`plot` is an object that has to have methods "plot" and "text".
|
||
|
The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
|
||
|
or a custom object with the same methods.
|
||
|
Default is None, which means that no plot is created.
|
||
|
rvalue : bool, optional
|
||
|
If `plot` is provided and `fit` is True, setting `rvalue` to True
|
||
|
includes the coefficient of determination on the plot.
|
||
|
Default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
(osm, osr) : tuple of ndarrays
|
||
|
Tuple of theoretical quantiles (osm, or order statistic medians) and
|
||
|
ordered responses (osr). `osr` is simply sorted input `x`.
|
||
|
For details on how `osm` is calculated see the Notes section.
|
||
|
(slope, intercept, r) : tuple of floats, optional
|
||
|
Tuple containing the result of the least-squares fit, if that is
|
||
|
performed by `probplot`. `r` is the square root of the coefficient of
|
||
|
determination. If ``fit=False`` and ``plot=None``, this tuple is not
|
||
|
returned.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Even if `plot` is given, the figure is not shown or saved by `probplot`;
|
||
|
``plt.show()`` or ``plt.savefig('figname.png')`` should be used after
|
||
|
calling `probplot`.
|
||
|
|
||
|
`probplot` generates a probability plot, which should not be confused with
|
||
|
a Q-Q or a P-P plot. Statsmodels has more extensive functionality of this
|
||
|
type, see ``statsmodels.api.ProbPlot``.
|
||
|
|
||
|
The formula used for the theoretical quantiles (horizontal axis of the
|
||
|
probability plot) is Filliben's estimate::
|
||
|
|
||
|
quantiles = dist.ppf(val), for
|
||
|
|
||
|
0.5**(1/n), for i = n
|
||
|
val = (i - 0.3175) / (n + 0.365), for i = 2, ..., n-1
|
||
|
1 - 0.5**(1/n), for i = 1
|
||
|
|
||
|
where ``i`` indicates the i-th ordered value and ``n`` is the total number
|
||
|
of values.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import stats
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> nsample = 100
|
||
|
>>> rng = np.random.default_rng()
|
||
|
|
||
|
A t distribution with small degrees of freedom:
|
||
|
|
||
|
>>> ax1 = plt.subplot(221)
|
||
|
>>> x = stats.t.rvs(3, size=nsample, random_state=rng)
|
||
|
>>> res = stats.probplot(x, plot=plt)
|
||
|
|
||
|
A t distribution with larger degrees of freedom:
|
||
|
|
||
|
>>> ax2 = plt.subplot(222)
|
||
|
>>> x = stats.t.rvs(25, size=nsample, random_state=rng)
|
||
|
>>> res = stats.probplot(x, plot=plt)
|
||
|
|
||
|
A mixture of two normal distributions with broadcasting:
|
||
|
|
||
|
>>> ax3 = plt.subplot(223)
|
||
|
>>> x = stats.norm.rvs(loc=[0,5], scale=[1,1.5],
|
||
|
... size=(nsample//2,2), random_state=rng).ravel()
|
||
|
>>> res = stats.probplot(x, plot=plt)
|
||
|
|
||
|
A standard normal distribution:
|
||
|
|
||
|
>>> ax4 = plt.subplot(224)
|
||
|
>>> x = stats.norm.rvs(loc=0, scale=1, size=nsample, random_state=rng)
|
||
|
>>> res = stats.probplot(x, plot=plt)
|
||
|
|
||
|
Produce a new figure with a loggamma distribution, using the ``dist`` and
|
||
|
``sparams`` keywords:
|
||
|
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax = fig.add_subplot(111)
|
||
|
>>> x = stats.loggamma.rvs(c=2.5, size=500, random_state=rng)
|
||
|
>>> res = stats.probplot(x, dist=stats.loggamma, sparams=(2.5,), plot=ax)
|
||
|
>>> ax.set_title("Probplot for loggamma dist with shape parameter 2.5")
|
||
|
|
||
|
Show the results with Matplotlib:
|
||
|
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
x = np.asarray(x)
|
||
|
if x.size == 0:
|
||
|
if fit:
|
||
|
return (x, x), (np.nan, np.nan, 0.0)
|
||
|
else:
|
||
|
return x, x
|
||
|
|
||
|
osm_uniform = _calc_uniform_order_statistic_medians(len(x))
|
||
|
dist = _parse_dist_kw(dist, enforce_subclass=False)
|
||
|
if sparams is None:
|
||
|
sparams = ()
|
||
|
if isscalar(sparams):
|
||
|
sparams = (sparams,)
|
||
|
if not isinstance(sparams, tuple):
|
||
|
sparams = tuple(sparams)
|
||
|
|
||
|
osm = dist.ppf(osm_uniform, *sparams)
|
||
|
osr = sort(x)
|
||
|
if fit:
|
||
|
# perform a linear least squares fit.
|
||
|
slope, intercept, r, prob, _ = _stats_py.linregress(osm, osr)
|
||
|
|
||
|
if plot is not None:
|
||
|
plot.plot(osm, osr, 'bo')
|
||
|
if fit:
|
||
|
plot.plot(osm, slope*osm + intercept, 'r-')
|
||
|
_add_axis_labels_title(plot, xlabel='Theoretical quantiles',
|
||
|
ylabel='Ordered Values',
|
||
|
title='Probability Plot')
|
||
|
|
||
|
# Add R^2 value to the plot as text
|
||
|
if fit and rvalue:
|
||
|
xmin = amin(osm)
|
||
|
xmax = amax(osm)
|
||
|
ymin = amin(x)
|
||
|
ymax = amax(x)
|
||
|
posx = xmin + 0.70 * (xmax - xmin)
|
||
|
posy = ymin + 0.01 * (ymax - ymin)
|
||
|
plot.text(posx, posy, "$R^2=%1.4f$" % r**2)
|
||
|
|
||
|
if fit:
|
||
|
return (osm, osr), (slope, intercept, r)
|
||
|
else:
|
||
|
return osm, osr
|
||
|
|
||
|
|
||
|
def ppcc_max(x, brack=(0.0, 1.0), dist='tukeylambda'):
|
||
|
"""Calculate the shape parameter that maximizes the PPCC.
|
||
|
|
||
|
The probability plot correlation coefficient (PPCC) plot can be used
|
||
|
to determine the optimal shape parameter for a one-parameter family
|
||
|
of distributions. ``ppcc_max`` returns the shape parameter that would
|
||
|
maximize the probability plot correlation coefficient for the given
|
||
|
data to a one-parameter family of distributions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Input array.
|
||
|
brack : tuple, optional
|
||
|
Triple (a,b,c) where (a<b<c). If bracket consists of two numbers (a, c)
|
||
|
then they are assumed to be a starting interval for a downhill bracket
|
||
|
search (see `scipy.optimize.brent`).
|
||
|
dist : str or stats.distributions instance, optional
|
||
|
Distribution or distribution function name. Objects that look enough
|
||
|
like a stats.distributions instance (i.e. they have a ``ppf`` method)
|
||
|
are also accepted. The default is ``'tukeylambda'``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
shape_value : float
|
||
|
The shape parameter at which the probability plot correlation
|
||
|
coefficient reaches its max value.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ppcc_plot, probplot, boxcox
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The brack keyword serves as a starting point which is useful in corner
|
||
|
cases. One can use a plot to obtain a rough visual estimate of the location
|
||
|
for the maximum to start the search near it.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] J.J. Filliben, "The Probability Plot Correlation Coefficient Test
|
||
|
for Normality", Technometrics, Vol. 17, pp. 111-117, 1975.
|
||
|
.. [2] Engineering Statistics Handbook, NIST/SEMATEC,
|
||
|
https://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
First we generate some random data from a Weibull distribution
|
||
|
with shape parameter 2.5:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import stats
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> c = 2.5
|
||
|
>>> x = stats.weibull_min.rvs(c, scale=4, size=2000, random_state=rng)
|
||
|
|
||
|
Generate the PPCC plot for this data with the Weibull distribution.
|
||
|
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 6))
|
||
|
>>> res = stats.ppcc_plot(x, c/2, 2*c, dist='weibull_min', plot=ax)
|
||
|
|
||
|
We calculate the value where the shape should reach its maximum and a
|
||
|
red line is drawn there. The line should coincide with the highest
|
||
|
point in the PPCC graph.
|
||
|
|
||
|
>>> cmax = stats.ppcc_max(x, brack=(c/2, 2*c), dist='weibull_min')
|
||
|
>>> ax.axvline(cmax, color='r')
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
dist = _parse_dist_kw(dist)
|
||
|
osm_uniform = _calc_uniform_order_statistic_medians(len(x))
|
||
|
osr = sort(x)
|
||
|
|
||
|
# this function computes the x-axis values of the probability plot
|
||
|
# and computes a linear regression (including the correlation)
|
||
|
# and returns 1-r so that a minimization function maximizes the
|
||
|
# correlation
|
||
|
def tempfunc(shape, mi, yvals, func):
|
||
|
xvals = func(mi, shape)
|
||
|
r, prob = _stats_py.pearsonr(xvals, yvals)
|
||
|
return 1 - r
|
||
|
|
||
|
return optimize.brent(tempfunc, brack=brack,
|
||
|
args=(osm_uniform, osr, dist.ppf))
|
||
|
|
||
|
|
||
|
def ppcc_plot(x, a, b, dist='tukeylambda', plot=None, N=80):
|
||
|
"""Calculate and optionally plot probability plot correlation coefficient.
|
||
|
|
||
|
The probability plot correlation coefficient (PPCC) plot can be used to
|
||
|
determine the optimal shape parameter for a one-parameter family of
|
||
|
distributions. It cannot be used for distributions without shape
|
||
|
parameters
|
||
|
(like the normal distribution) or with multiple shape parameters.
|
||
|
|
||
|
By default a Tukey-Lambda distribution (`stats.tukeylambda`) is used. A
|
||
|
Tukey-Lambda PPCC plot interpolates from long-tailed to short-tailed
|
||
|
distributions via an approximately normal one, and is therefore
|
||
|
particularly useful in practice.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Input array.
|
||
|
a, b : scalar
|
||
|
Lower and upper bounds of the shape parameter to use.
|
||
|
dist : str or stats.distributions instance, optional
|
||
|
Distribution or distribution function name. Objects that look enough
|
||
|
like a stats.distributions instance (i.e. they have a ``ppf`` method)
|
||
|
are also accepted. The default is ``'tukeylambda'``.
|
||
|
plot : object, optional
|
||
|
If given, plots PPCC against the shape parameter.
|
||
|
`plot` is an object that has to have methods "plot" and "text".
|
||
|
The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
|
||
|
or a custom object with the same methods.
|
||
|
Default is None, which means that no plot is created.
|
||
|
N : int, optional
|
||
|
Number of points on the horizontal axis (equally distributed from
|
||
|
`a` to `b`).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
svals : ndarray
|
||
|
The shape values for which `ppcc` was calculated.
|
||
|
ppcc : ndarray
|
||
|
The calculated probability plot correlation coefficient values.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ppcc_max, probplot, boxcox_normplot, tukeylambda
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
J.J. Filliben, "The Probability Plot Correlation Coefficient Test for
|
||
|
Normality", Technometrics, Vol. 17, pp. 111-117, 1975.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
First we generate some random data from a Weibull distribution
|
||
|
with shape parameter 2.5, and plot the histogram of the data:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import stats
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> c = 2.5
|
||
|
>>> x = stats.weibull_min.rvs(c, scale=4, size=2000, random_state=rng)
|
||
|
|
||
|
Take a look at the histogram of the data.
|
||
|
|
||
|
>>> fig1, ax = plt.subplots(figsize=(9, 4))
|
||
|
>>> ax.hist(x, bins=50)
|
||
|
>>> ax.set_title('Histogram of x')
|
||
|
>>> plt.show()
|
||
|
|
||
|
Now we explore this data with a PPCC plot as well as the related
|
||
|
probability plot and Box-Cox normplot. A red line is drawn where we
|
||
|
expect the PPCC value to be maximal (at the shape parameter ``c``
|
||
|
used above):
|
||
|
|
||
|
>>> fig2 = plt.figure(figsize=(12, 4))
|
||
|
>>> ax1 = fig2.add_subplot(1, 3, 1)
|
||
|
>>> ax2 = fig2.add_subplot(1, 3, 2)
|
||
|
>>> ax3 = fig2.add_subplot(1, 3, 3)
|
||
|
>>> res = stats.probplot(x, plot=ax1)
|
||
|
>>> res = stats.boxcox_normplot(x, -4, 4, plot=ax2)
|
||
|
>>> res = stats.ppcc_plot(x, c/2, 2*c, dist='weibull_min', plot=ax3)
|
||
|
>>> ax3.axvline(c, color='r')
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
if b <= a:
|
||
|
raise ValueError("`b` has to be larger than `a`.")
|
||
|
|
||
|
svals = np.linspace(a, b, num=N)
|
||
|
ppcc = np.empty_like(svals)
|
||
|
for k, sval in enumerate(svals):
|
||
|
_, r2 = probplot(x, sval, dist=dist, fit=True)
|
||
|
ppcc[k] = r2[-1]
|
||
|
|
||
|
if plot is not None:
|
||
|
plot.plot(svals, ppcc, 'x')
|
||
|
_add_axis_labels_title(plot, xlabel='Shape Values',
|
||
|
ylabel='Prob Plot Corr. Coef.',
|
||
|
title=f'({dist}) PPCC Plot')
|
||
|
|
||
|
return svals, ppcc
|
||
|
|
||
|
|
||
|
def _log_mean(logx):
|
||
|
# compute log of mean of x from log(x)
|
||
|
return special.logsumexp(logx, axis=0) - np.log(len(logx))
|
||
|
|
||
|
|
||
|
def _log_var(logx):
|
||
|
# compute log of variance of x from log(x)
|
||
|
logmean = _log_mean(logx)
|
||
|
pij = np.full_like(logx, np.pi * 1j, dtype=np.complex128)
|
||
|
logxmu = special.logsumexp([logx, logmean + pij], axis=0)
|
||
|
return np.real(special.logsumexp(2 * logxmu, axis=0)) - np.log(len(logx))
|
||
|
|
||
|
|
||
|
def boxcox_llf(lmb, data):
|
||
|
r"""The boxcox log-likelihood function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
lmb : scalar
|
||
|
Parameter for Box-Cox transformation. See `boxcox` for details.
|
||
|
data : array_like
|
||
|
Data to calculate Box-Cox log-likelihood for. If `data` is
|
||
|
multi-dimensional, the log-likelihood is calculated along the first
|
||
|
axis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
llf : float or ndarray
|
||
|
Box-Cox log-likelihood of `data` given `lmb`. A float for 1-D `data`,
|
||
|
an array otherwise.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
boxcox, probplot, boxcox_normplot, boxcox_normmax
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Box-Cox log-likelihood function is defined here as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
llf = (\lambda - 1) \sum_i(\log(x_i)) -
|
||
|
N/2 \log(\sum_i (y_i - \bar{y})^2 / N),
|
||
|
|
||
|
where ``y`` is the Box-Cox transformed input data ``x``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import stats
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes
|
||
|
|
||
|
Generate some random variates and calculate Box-Cox log-likelihood values
|
||
|
for them for a range of ``lmbda`` values:
|
||
|
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> x = stats.loggamma.rvs(5, loc=10, size=1000, random_state=rng)
|
||
|
>>> lmbdas = np.linspace(-2, 10)
|
||
|
>>> llf = np.zeros(lmbdas.shape, dtype=float)
|
||
|
>>> for ii, lmbda in enumerate(lmbdas):
|
||
|
... llf[ii] = stats.boxcox_llf(lmbda, x)
|
||
|
|
||
|
Also find the optimal lmbda value with `boxcox`:
|
||
|
|
||
|
>>> x_most_normal, lmbda_optimal = stats.boxcox(x)
|
||
|
|
||
|
Plot the log-likelihood as function of lmbda. Add the optimal lmbda as a
|
||
|
horizontal line to check that that's really the optimum:
|
||
|
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax = fig.add_subplot(111)
|
||
|
>>> ax.plot(lmbdas, llf, 'b.-')
|
||
|
>>> ax.axhline(stats.boxcox_llf(lmbda_optimal, x), color='r')
|
||
|
>>> ax.set_xlabel('lmbda parameter')
|
||
|
>>> ax.set_ylabel('Box-Cox log-likelihood')
|
||
|
|
||
|
Now add some probability plots to show that where the log-likelihood is
|
||
|
maximized the data transformed with `boxcox` looks closest to normal:
|
||
|
|
||
|
>>> locs = [3, 10, 4] # 'lower left', 'center', 'lower right'
|
||
|
>>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
|
||
|
... xt = stats.boxcox(x, lmbda=lmbda)
|
||
|
... (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
|
||
|
... ax_inset = inset_axes(ax, width="20%", height="20%", loc=loc)
|
||
|
... ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
|
||
|
... ax_inset.set_xticklabels([])
|
||
|
... ax_inset.set_yticklabels([])
|
||
|
... ax_inset.set_title(r'$\lambda=%1.2f$' % lmbda)
|
||
|
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
data = np.asarray(data)
|
||
|
N = data.shape[0]
|
||
|
if N == 0:
|
||
|
return np.nan
|
||
|
|
||
|
logdata = np.log(data)
|
||
|
|
||
|
# Compute the variance of the transformed data.
|
||
|
if lmb == 0:
|
||
|
logvar = np.log(np.var(logdata, axis=0))
|
||
|
else:
|
||
|
# Transform without the constant offset 1/lmb. The offset does
|
||
|
# not affect the variance, and the subtraction of the offset can
|
||
|
# lead to loss of precision.
|
||
|
# Division by lmb can be factored out to enhance numerical stability.
|
||
|
logx = lmb * logdata
|
||
|
logvar = _log_var(logx) - 2 * np.log(abs(lmb))
|
||
|
|
||
|
return (lmb - 1) * np.sum(logdata, axis=0) - N/2 * logvar
|
||
|
|
||
|
|
||
|
def _boxcox_conf_interval(x, lmax, alpha):
|
||
|
# Need to find the lambda for which
|
||
|
# f(x,lmbda) >= f(x,lmax) - 0.5*chi^2_alpha;1
|
||
|
fac = 0.5 * distributions.chi2.ppf(1 - alpha, 1)
|
||
|
target = boxcox_llf(lmax, x) - fac
|
||
|
|
||
|
def rootfunc(lmbda, data, target):
|
||
|
return boxcox_llf(lmbda, data) - target
|
||
|
|
||
|
# Find positive endpoint of interval in which answer is to be found
|
||
|
newlm = lmax + 0.5
|
||
|
N = 0
|
||
|
while (rootfunc(newlm, x, target) > 0.0) and (N < 500):
|
||
|
newlm += 0.1
|
||
|
N += 1
|
||
|
|
||
|
if N == 500:
|
||
|
raise RuntimeError("Could not find endpoint.")
|
||
|
|
||
|
lmplus = optimize.brentq(rootfunc, lmax, newlm, args=(x, target))
|
||
|
|
||
|
# Now find negative interval in the same way
|
||
|
newlm = lmax - 0.5
|
||
|
N = 0
|
||
|
while (rootfunc(newlm, x, target) > 0.0) and (N < 500):
|
||
|
newlm -= 0.1
|
||
|
N += 1
|
||
|
|
||
|
if N == 500:
|
||
|
raise RuntimeError("Could not find endpoint.")
|
||
|
|
||
|
lmminus = optimize.brentq(rootfunc, newlm, lmax, args=(x, target))
|
||
|
return lmminus, lmplus
|
||
|
|
||
|
|
||
|
def boxcox(x, lmbda=None, alpha=None, optimizer=None):
|
||
|
r"""Return a dataset transformed by a Box-Cox power transformation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : ndarray
|
||
|
Input array to be transformed.
|
||
|
|
||
|
If `lmbda` is not None, this is an alias of
|
||
|
`scipy.special.boxcox`.
|
||
|
Returns nan if ``x < 0``; returns -inf if ``x == 0 and lmbda < 0``.
|
||
|
|
||
|
If `lmbda` is None, array must be positive, 1-dimensional, and
|
||
|
non-constant.
|
||
|
|
||
|
lmbda : scalar, optional
|
||
|
If `lmbda` is None (default), find the value of `lmbda` that maximizes
|
||
|
the log-likelihood function and return it as the second output
|
||
|
argument.
|
||
|
|
||
|
If `lmbda` is not None, do the transformation for that value.
|
||
|
|
||
|
alpha : float, optional
|
||
|
If `lmbda` is None and `alpha` is not None (default), return the
|
||
|
``100 * (1-alpha)%`` confidence interval for `lmbda` as the third
|
||
|
output argument. Must be between 0.0 and 1.0.
|
||
|
|
||
|
If `lmbda` is not None, `alpha` is ignored.
|
||
|
optimizer : callable, optional
|
||
|
If `lmbda` is None, `optimizer` is the scalar optimizer used to find
|
||
|
the value of `lmbda` that minimizes the negative log-likelihood
|
||
|
function. `optimizer` is a callable that accepts one argument:
|
||
|
|
||
|
fun : callable
|
||
|
The objective function, which evaluates the negative
|
||
|
log-likelihood function at a provided value of `lmbda`
|
||
|
|
||
|
and returns an object, such as an instance of
|
||
|
`scipy.optimize.OptimizeResult`, which holds the optimal value of
|
||
|
`lmbda` in an attribute `x`.
|
||
|
|
||
|
See the example in `boxcox_normmax` or the documentation of
|
||
|
`scipy.optimize.minimize_scalar` for more information.
|
||
|
|
||
|
If `lmbda` is not None, `optimizer` is ignored.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
boxcox : ndarray
|
||
|
Box-Cox power transformed array.
|
||
|
maxlog : float, optional
|
||
|
If the `lmbda` parameter is None, the second returned argument is
|
||
|
the `lmbda` that maximizes the log-likelihood function.
|
||
|
(min_ci, max_ci) : tuple of float, optional
|
||
|
If `lmbda` parameter is None and `alpha` is not None, this returned
|
||
|
tuple of floats represents the minimum and maximum confidence limits
|
||
|
given `alpha`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
probplot, boxcox_normplot, boxcox_normmax, boxcox_llf
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Box-Cox transform is given by::
|
||
|
|
||
|
y = (x**lmbda - 1) / lmbda, for lmbda != 0
|
||
|
log(x), for lmbda = 0
|
||
|
|
||
|
`boxcox` requires the input data to be positive. Sometimes a Box-Cox
|
||
|
transformation provides a shift parameter to achieve this; `boxcox` does
|
||
|
not. Such a shift parameter is equivalent to adding a positive constant to
|
||
|
`x` before calling `boxcox`.
|
||
|
|
||
|
The confidence limits returned when `alpha` is provided give the interval
|
||
|
where:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
llf(\hat{\lambda}) - llf(\lambda) < \frac{1}{2}\chi^2(1 - \alpha, 1),
|
||
|
|
||
|
with ``llf`` the log-likelihood function and :math:`\chi^2` the chi-squared
|
||
|
function.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
G.E.P. Box and D.R. Cox, "An Analysis of Transformations", Journal of the
|
||
|
Royal Statistical Society B, 26, 211-252 (1964).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import stats
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
We generate some random variates from a non-normal distribution and make a
|
||
|
probability plot for it, to show it is non-normal in the tails:
|
||
|
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax1 = fig.add_subplot(211)
|
||
|
>>> x = stats.loggamma.rvs(5, size=500) + 5
|
||
|
>>> prob = stats.probplot(x, dist=stats.norm, plot=ax1)
|
||
|
>>> ax1.set_xlabel('')
|
||
|
>>> ax1.set_title('Probplot against normal distribution')
|
||
|
|
||
|
We now use `boxcox` to transform the data so it's closest to normal:
|
||
|
|
||
|
>>> ax2 = fig.add_subplot(212)
|
||
|
>>> xt, _ = stats.boxcox(x)
|
||
|
>>> prob = stats.probplot(xt, dist=stats.norm, plot=ax2)
|
||
|
>>> ax2.set_title('Probplot after Box-Cox transformation')
|
||
|
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
x = np.asarray(x)
|
||
|
|
||
|
if lmbda is not None: # single transformation
|
||
|
return special.boxcox(x, lmbda)
|
||
|
|
||
|
if x.ndim != 1:
|
||
|
raise ValueError("Data must be 1-dimensional.")
|
||
|
|
||
|
if x.size == 0:
|
||
|
return x
|
||
|
|
||
|
if np.all(x == x[0]):
|
||
|
raise ValueError("Data must not be constant.")
|
||
|
|
||
|
if np.any(x <= 0):
|
||
|
raise ValueError("Data must be positive.")
|
||
|
|
||
|
# If lmbda=None, find the lmbda that maximizes the log-likelihood function.
|
||
|
lmax = boxcox_normmax(x, method='mle', optimizer=optimizer)
|
||
|
y = boxcox(x, lmax)
|
||
|
|
||
|
if alpha is None:
|
||
|
return y, lmax
|
||
|
else:
|
||
|
# Find confidence interval
|
||
|
interval = _boxcox_conf_interval(x, lmax, alpha)
|
||
|
return y, lmax, interval
|
||
|
|
||
|
|
||
|
def _boxcox_inv_lmbda(x, y):
|
||
|
# compute lmbda given x and y for Box-Cox transformation
|
||
|
num = special.lambertw(-(x ** (-1 / y)) * np.log(x) / y, k=-1)
|
||
|
return np.real(-num / np.log(x) - 1 / y)
|
||
|
|
||
|
|
||
|
class _BigFloat:
|
||
|
def __repr__(self):
|
||
|
return "BIG_FLOAT"
|
||
|
|
||
|
|
||
|
def boxcox_normmax(
|
||
|
x, brack=None, method='pearsonr', optimizer=None, *, ymax=_BigFloat()
|
||
|
):
|
||
|
"""Compute optimal Box-Cox transform parameter for input data.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Input array. All entries must be positive, finite, real numbers.
|
||
|
brack : 2-tuple, optional, default (-2.0, 2.0)
|
||
|
The starting interval for a downhill bracket search for the default
|
||
|
`optimize.brent` solver. Note that this is in most cases not
|
||
|
critical; the final result is allowed to be outside this bracket.
|
||
|
If `optimizer` is passed, `brack` must be None.
|
||
|
method : str, optional
|
||
|
The method to determine the optimal transform parameter (`boxcox`
|
||
|
``lmbda`` parameter). Options are:
|
||
|
|
||
|
'pearsonr' (default)
|
||
|
Maximizes the Pearson correlation coefficient between
|
||
|
``y = boxcox(x)`` and the expected values for ``y`` if `x` would be
|
||
|
normally-distributed.
|
||
|
|
||
|
'mle'
|
||
|
Maximizes the log-likelihood `boxcox_llf`. This is the method used
|
||
|
in `boxcox`.
|
||
|
|
||
|
'all'
|
||
|
Use all optimization methods available, and return all results.
|
||
|
Useful to compare different methods.
|
||
|
optimizer : callable, optional
|
||
|
`optimizer` is a callable that accepts one argument:
|
||
|
|
||
|
fun : callable
|
||
|
The objective function to be minimized. `fun` accepts one argument,
|
||
|
the Box-Cox transform parameter `lmbda`, and returns the value of
|
||
|
the function (e.g., the negative log-likelihood) at the provided
|
||
|
argument. The job of `optimizer` is to find the value of `lmbda`
|
||
|
that *minimizes* `fun`.
|
||
|
|
||
|
and returns an object, such as an instance of
|
||
|
`scipy.optimize.OptimizeResult`, which holds the optimal value of
|
||
|
`lmbda` in an attribute `x`.
|
||
|
|
||
|
See the example below or the documentation of
|
||
|
`scipy.optimize.minimize_scalar` for more information.
|
||
|
ymax : float, optional
|
||
|
The unconstrained optimal transform parameter may cause Box-Cox
|
||
|
transformed data to have extreme magnitude or even overflow.
|
||
|
This parameter constrains MLE optimization such that the magnitude
|
||
|
of the transformed `x` does not exceed `ymax`. The default is
|
||
|
the maximum value of the input dtype. If set to infinity,
|
||
|
`boxcox_normmax` returns the unconstrained optimal lambda.
|
||
|
Ignored when ``method='pearsonr'``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
maxlog : float or ndarray
|
||
|
The optimal transform parameter found. An array instead of a scalar
|
||
|
for ``method='all'``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
boxcox, boxcox_llf, boxcox_normplot, scipy.optimize.minimize_scalar
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import stats
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
We can generate some data and determine the optimal ``lmbda`` in various
|
||
|
ways:
|
||
|
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> x = stats.loggamma.rvs(5, size=30, random_state=rng) + 5
|
||
|
>>> y, lmax_mle = stats.boxcox(x)
|
||
|
>>> lmax_pearsonr = stats.boxcox_normmax(x)
|
||
|
|
||
|
>>> lmax_mle
|
||
|
2.217563431465757
|
||
|
>>> lmax_pearsonr
|
||
|
2.238318660200961
|
||
|
>>> stats.boxcox_normmax(x, method='all')
|
||
|
array([2.23831866, 2.21756343])
|
||
|
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax = fig.add_subplot(111)
|
||
|
>>> prob = stats.boxcox_normplot(x, -10, 10, plot=ax)
|
||
|
>>> ax.axvline(lmax_mle, color='r')
|
||
|
>>> ax.axvline(lmax_pearsonr, color='g', ls='--')
|
||
|
|
||
|
>>> plt.show()
|
||
|
|
||
|
Alternatively, we can define our own `optimizer` function. Suppose we
|
||
|
are only interested in values of `lmbda` on the interval [6, 7], we
|
||
|
want to use `scipy.optimize.minimize_scalar` with ``method='bounded'``,
|
||
|
and we want to use tighter tolerances when optimizing the log-likelihood
|
||
|
function. To do this, we define a function that accepts positional argument
|
||
|
`fun` and uses `scipy.optimize.minimize_scalar` to minimize `fun` subject
|
||
|
to the provided bounds and tolerances:
|
||
|
|
||
|
>>> from scipy import optimize
|
||
|
>>> options = {'xatol': 1e-12} # absolute tolerance on `x`
|
||
|
>>> def optimizer(fun):
|
||
|
... return optimize.minimize_scalar(fun, bounds=(6, 7),
|
||
|
... method="bounded", options=options)
|
||
|
>>> stats.boxcox_normmax(x, optimizer=optimizer)
|
||
|
6.000000000
|
||
|
"""
|
||
|
x = np.asarray(x)
|
||
|
|
||
|
if not np.all(np.isfinite(x) & (x >= 0)):
|
||
|
message = ("The `x` argument of `boxcox_normmax` must contain "
|
||
|
"only positive, finite, real numbers.")
|
||
|
raise ValueError(message)
|
||
|
|
||
|
end_msg = "exceed specified `ymax`."
|
||
|
if isinstance(ymax, _BigFloat):
|
||
|
dtype = x.dtype if np.issubdtype(x.dtype, np.floating) else np.float64
|
||
|
# 10000 is a safety factor because `special.boxcox` overflows prematurely.
|
||
|
ymax = np.finfo(dtype).max / 10000
|
||
|
end_msg = f"overflow in {dtype}."
|
||
|
elif ymax <= 0:
|
||
|
raise ValueError("`ymax` must be strictly positive")
|
||
|
|
||
|
# If optimizer is not given, define default 'brent' optimizer.
|
||
|
if optimizer is None:
|
||
|
|
||
|
# Set default value for `brack`.
|
||
|
if brack is None:
|
||
|
brack = (-2.0, 2.0)
|
||
|
|
||
|
def _optimizer(func, args):
|
||
|
return optimize.brent(func, args=args, brack=brack)
|
||
|
|
||
|
# Otherwise check optimizer.
|
||
|
else:
|
||
|
if not callable(optimizer):
|
||
|
raise ValueError("`optimizer` must be a callable")
|
||
|
|
||
|
if brack is not None:
|
||
|
raise ValueError("`brack` must be None if `optimizer` is given")
|
||
|
|
||
|
# `optimizer` is expected to return a `OptimizeResult` object, we here
|
||
|
# get the solution to the optimization problem.
|
||
|
def _optimizer(func, args):
|
||
|
def func_wrapped(x):
|
||
|
return func(x, *args)
|
||
|
return getattr(optimizer(func_wrapped), 'x', None)
|
||
|
|
||
|
def _pearsonr(x):
|
||
|
osm_uniform = _calc_uniform_order_statistic_medians(len(x))
|
||
|
xvals = distributions.norm.ppf(osm_uniform)
|
||
|
|
||
|
def _eval_pearsonr(lmbda, xvals, samps):
|
||
|
# This function computes the x-axis values of the probability plot
|
||
|
# and computes a linear regression (including the correlation) and
|
||
|
# returns ``1 - r`` so that a minimization function maximizes the
|
||
|
# correlation.
|
||
|
y = boxcox(samps, lmbda)
|
||
|
yvals = np.sort(y)
|
||
|
r, prob = _stats_py.pearsonr(xvals, yvals)
|
||
|
return 1 - r
|
||
|
|
||
|
return _optimizer(_eval_pearsonr, args=(xvals, x))
|
||
|
|
||
|
def _mle(x):
|
||
|
def _eval_mle(lmb, data):
|
||
|
# function to minimize
|
||
|
return -boxcox_llf(lmb, data)
|
||
|
|
||
|
return _optimizer(_eval_mle, args=(x,))
|
||
|
|
||
|
def _all(x):
|
||
|
maxlog = np.empty(2, dtype=float)
|
||
|
maxlog[0] = _pearsonr(x)
|
||
|
maxlog[1] = _mle(x)
|
||
|
return maxlog
|
||
|
|
||
|
methods = {'pearsonr': _pearsonr,
|
||
|
'mle': _mle,
|
||
|
'all': _all}
|
||
|
if method not in methods.keys():
|
||
|
raise ValueError(f"Method {method} not recognized.")
|
||
|
|
||
|
optimfunc = methods[method]
|
||
|
|
||
|
res = optimfunc(x)
|
||
|
|
||
|
if res is None:
|
||
|
message = ("The `optimizer` argument of `boxcox_normmax` must return "
|
||
|
"an object containing the optimal `lmbda` in attribute `x`.")
|
||
|
raise ValueError(message)
|
||
|
elif not np.isinf(ymax): # adjust the final lambda
|
||
|
# x > 1, boxcox(x) > 0; x < 1, boxcox(x) < 0
|
||
|
xmax, xmin = np.max(x), np.min(x)
|
||
|
if xmin >= 1:
|
||
|
x_treme = xmax
|
||
|
elif xmax <= 1:
|
||
|
x_treme = xmin
|
||
|
else: # xmin < 1 < xmax
|
||
|
indicator = special.boxcox(xmax, res) > abs(special.boxcox(xmin, res))
|
||
|
if isinstance(res, np.ndarray):
|
||
|
indicator = indicator[1] # select corresponds with 'mle'
|
||
|
x_treme = xmax if indicator else xmin
|
||
|
|
||
|
mask = abs(special.boxcox(x_treme, res)) > ymax
|
||
|
if np.any(mask):
|
||
|
message = (
|
||
|
f"The optimal lambda is {res}, but the returned lambda is the "
|
||
|
f"constrained optimum to ensure that the maximum or the minimum "
|
||
|
f"of the transformed data does not " + end_msg
|
||
|
)
|
||
|
warnings.warn(message, stacklevel=2)
|
||
|
|
||
|
# Return the constrained lambda to ensure the transformation
|
||
|
# does not cause overflow or exceed specified `ymax`
|
||
|
constrained_res = _boxcox_inv_lmbda(x_treme, ymax * np.sign(x_treme - 1))
|
||
|
|
||
|
if isinstance(res, np.ndarray):
|
||
|
res[mask] = constrained_res
|
||
|
else:
|
||
|
res = constrained_res
|
||
|
return res
|
||
|
|
||
|
|
||
|
def _normplot(method, x, la, lb, plot=None, N=80):
|
||
|
"""Compute parameters for a Box-Cox or Yeo-Johnson normality plot,
|
||
|
optionally show it.
|
||
|
|
||
|
See `boxcox_normplot` or `yeojohnson_normplot` for details.
|
||
|
"""
|
||
|
|
||
|
if method == 'boxcox':
|
||
|
title = 'Box-Cox Normality Plot'
|
||
|
transform_func = boxcox
|
||
|
else:
|
||
|
title = 'Yeo-Johnson Normality Plot'
|
||
|
transform_func = yeojohnson
|
||
|
|
||
|
x = np.asarray(x)
|
||
|
if x.size == 0:
|
||
|
return x
|
||
|
|
||
|
if lb <= la:
|
||
|
raise ValueError("`lb` has to be larger than `la`.")
|
||
|
|
||
|
if method == 'boxcox' and np.any(x <= 0):
|
||
|
raise ValueError("Data must be positive.")
|
||
|
|
||
|
lmbdas = np.linspace(la, lb, num=N)
|
||
|
ppcc = lmbdas * 0.0
|
||
|
for i, val in enumerate(lmbdas):
|
||
|
# Determine for each lmbda the square root of correlation coefficient
|
||
|
# of transformed x
|
||
|
z = transform_func(x, lmbda=val)
|
||
|
_, (_, _, r) = probplot(z, dist='norm', fit=True)
|
||
|
ppcc[i] = r
|
||
|
|
||
|
if plot is not None:
|
||
|
plot.plot(lmbdas, ppcc, 'x')
|
||
|
_add_axis_labels_title(plot, xlabel='$\\lambda$',
|
||
|
ylabel='Prob Plot Corr. Coef.',
|
||
|
title=title)
|
||
|
|
||
|
return lmbdas, ppcc
|
||
|
|
||
|
|
||
|
def boxcox_normplot(x, la, lb, plot=None, N=80):
|
||
|
"""Compute parameters for a Box-Cox normality plot, optionally show it.
|
||
|
|
||
|
A Box-Cox normality plot shows graphically what the best transformation
|
||
|
parameter is to use in `boxcox` to obtain a distribution that is close
|
||
|
to normal.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Input array.
|
||
|
la, lb : scalar
|
||
|
The lower and upper bounds for the ``lmbda`` values to pass to `boxcox`
|
||
|
for Box-Cox transformations. These are also the limits of the
|
||
|
horizontal axis of the plot if that is generated.
|
||
|
plot : object, optional
|
||
|
If given, plots the quantiles and least squares fit.
|
||
|
`plot` is an object that has to have methods "plot" and "text".
|
||
|
The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
|
||
|
or a custom object with the same methods.
|
||
|
Default is None, which means that no plot is created.
|
||
|
N : int, optional
|
||
|
Number of points on the horizontal axis (equally distributed from
|
||
|
`la` to `lb`).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lmbdas : ndarray
|
||
|
The ``lmbda`` values for which a Box-Cox transform was done.
|
||
|
ppcc : ndarray
|
||
|
Probability Plot Correlelation Coefficient, as obtained from `probplot`
|
||
|
when fitting the Box-Cox transformed input `x` against a normal
|
||
|
distribution.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
probplot, boxcox, boxcox_normmax, boxcox_llf, ppcc_max
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Even if `plot` is given, the figure is not shown or saved by
|
||
|
`boxcox_normplot`; ``plt.show()`` or ``plt.savefig('figname.png')``
|
||
|
should be used after calling `probplot`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import stats
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
Generate some non-normally distributed data, and create a Box-Cox plot:
|
||
|
|
||
|
>>> x = stats.loggamma.rvs(5, size=500) + 5
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax = fig.add_subplot(111)
|
||
|
>>> prob = stats.boxcox_normplot(x, -20, 20, plot=ax)
|
||
|
|
||
|
Determine and plot the optimal ``lmbda`` to transform ``x`` and plot it in
|
||
|
the same plot:
|
||
|
|
||
|
>>> _, maxlog = stats.boxcox(x)
|
||
|
>>> ax.axvline(maxlog, color='r')
|
||
|
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
return _normplot('boxcox', x, la, lb, plot, N)
|
||
|
|
||
|
|
||
|
def yeojohnson(x, lmbda=None):
|
||
|
r"""Return a dataset transformed by a Yeo-Johnson power transformation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : ndarray
|
||
|
Input array. Should be 1-dimensional.
|
||
|
lmbda : float, optional
|
||
|
If ``lmbda`` is ``None``, find the lambda that maximizes the
|
||
|
log-likelihood function and return it as the second output argument.
|
||
|
Otherwise the transformation is done for the given value.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
yeojohnson: ndarray
|
||
|
Yeo-Johnson power transformed array.
|
||
|
maxlog : float, optional
|
||
|
If the `lmbda` parameter is None, the second returned argument is
|
||
|
the lambda that maximizes the log-likelihood function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
probplot, yeojohnson_normplot, yeojohnson_normmax, yeojohnson_llf, boxcox
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Yeo-Johnson transform is given by::
|
||
|
|
||
|
y = ((x + 1)**lmbda - 1) / lmbda, for x >= 0, lmbda != 0
|
||
|
log(x + 1), for x >= 0, lmbda = 0
|
||
|
-((-x + 1)**(2 - lmbda) - 1) / (2 - lmbda), for x < 0, lmbda != 2
|
||
|
-log(-x + 1), for x < 0, lmbda = 2
|
||
|
|
||
|
Unlike `boxcox`, `yeojohnson` does not require the input data to be
|
||
|
positive.
|
||
|
|
||
|
.. versionadded:: 1.2.0
|
||
|
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
I. Yeo and R.A. Johnson, "A New Family of Power Transformations to
|
||
|
Improve Normality or Symmetry", Biometrika 87.4 (2000):
|
||
|
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import stats
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
We generate some random variates from a non-normal distribution and make a
|
||
|
probability plot for it, to show it is non-normal in the tails:
|
||
|
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax1 = fig.add_subplot(211)
|
||
|
>>> x = stats.loggamma.rvs(5, size=500) + 5
|
||
|
>>> prob = stats.probplot(x, dist=stats.norm, plot=ax1)
|
||
|
>>> ax1.set_xlabel('')
|
||
|
>>> ax1.set_title('Probplot against normal distribution')
|
||
|
|
||
|
We now use `yeojohnson` to transform the data so it's closest to normal:
|
||
|
|
||
|
>>> ax2 = fig.add_subplot(212)
|
||
|
>>> xt, lmbda = stats.yeojohnson(x)
|
||
|
>>> prob = stats.probplot(xt, dist=stats.norm, plot=ax2)
|
||
|
>>> ax2.set_title('Probplot after Yeo-Johnson transformation')
|
||
|
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
x = np.asarray(x)
|
||
|
if x.size == 0:
|
||
|
return x
|
||
|
|
||
|
if np.issubdtype(x.dtype, np.complexfloating):
|
||
|
raise ValueError('Yeo-Johnson transformation is not defined for '
|
||
|
'complex numbers.')
|
||
|
|
||
|
if np.issubdtype(x.dtype, np.integer):
|
||
|
x = x.astype(np.float64, copy=False)
|
||
|
|
||
|
if lmbda is not None:
|
||
|
return _yeojohnson_transform(x, lmbda)
|
||
|
|
||
|
# if lmbda=None, find the lmbda that maximizes the log-likelihood function.
|
||
|
lmax = yeojohnson_normmax(x)
|
||
|
y = _yeojohnson_transform(x, lmax)
|
||
|
|
||
|
return y, lmax
|
||
|
|
||
|
|
||
|
def _yeojohnson_transform(x, lmbda):
|
||
|
"""Returns `x` transformed by the Yeo-Johnson power transform with given
|
||
|
parameter `lmbda`.
|
||
|
"""
|
||
|
dtype = x.dtype if np.issubdtype(x.dtype, np.floating) else np.float64
|
||
|
out = np.zeros_like(x, dtype=dtype)
|
||
|
pos = x >= 0 # binary mask
|
||
|
|
||
|
# when x >= 0
|
||
|
if abs(lmbda) < np.spacing(1.):
|
||
|
out[pos] = np.log1p(x[pos])
|
||
|
else: # lmbda != 0
|
||
|
# more stable version of: ((x + 1) ** lmbda - 1) / lmbda
|
||
|
out[pos] = np.expm1(lmbda * np.log1p(x[pos])) / lmbda
|
||
|
|
||
|
# when x < 0
|
||
|
if abs(lmbda - 2) > np.spacing(1.):
|
||
|
out[~pos] = -np.expm1((2 - lmbda) * np.log1p(-x[~pos])) / (2 - lmbda)
|
||
|
else: # lmbda == 2
|
||
|
out[~pos] = -np.log1p(-x[~pos])
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
def yeojohnson_llf(lmb, data):
|
||
|
r"""The yeojohnson log-likelihood function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
lmb : scalar
|
||
|
Parameter for Yeo-Johnson transformation. See `yeojohnson` for
|
||
|
details.
|
||
|
data : array_like
|
||
|
Data to calculate Yeo-Johnson log-likelihood for. If `data` is
|
||
|
multi-dimensional, the log-likelihood is calculated along the first
|
||
|
axis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
llf : float
|
||
|
Yeo-Johnson log-likelihood of `data` given `lmb`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
yeojohnson, probplot, yeojohnson_normplot, yeojohnson_normmax
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Yeo-Johnson log-likelihood function is defined here as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
llf = -N/2 \log(\hat{\sigma}^2) + (\lambda - 1)
|
||
|
\sum_i \text{ sign }(x_i)\log(|x_i| + 1)
|
||
|
|
||
|
where :math:`\hat{\sigma}^2` is estimated variance of the Yeo-Johnson
|
||
|
transformed input data ``x``.
|
||
|
|
||
|
.. versionadded:: 1.2.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import stats
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes
|
||
|
|
||
|
Generate some random variates and calculate Yeo-Johnson log-likelihood
|
||
|
values for them for a range of ``lmbda`` values:
|
||
|
|
||
|
>>> x = stats.loggamma.rvs(5, loc=10, size=1000)
|
||
|
>>> lmbdas = np.linspace(-2, 10)
|
||
|
>>> llf = np.zeros(lmbdas.shape, dtype=float)
|
||
|
>>> for ii, lmbda in enumerate(lmbdas):
|
||
|
... llf[ii] = stats.yeojohnson_llf(lmbda, x)
|
||
|
|
||
|
Also find the optimal lmbda value with `yeojohnson`:
|
||
|
|
||
|
>>> x_most_normal, lmbda_optimal = stats.yeojohnson(x)
|
||
|
|
||
|
Plot the log-likelihood as function of lmbda. Add the optimal lmbda as a
|
||
|
horizontal line to check that that's really the optimum:
|
||
|
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax = fig.add_subplot(111)
|
||
|
>>> ax.plot(lmbdas, llf, 'b.-')
|
||
|
>>> ax.axhline(stats.yeojohnson_llf(lmbda_optimal, x), color='r')
|
||
|
>>> ax.set_xlabel('lmbda parameter')
|
||
|
>>> ax.set_ylabel('Yeo-Johnson log-likelihood')
|
||
|
|
||
|
Now add some probability plots to show that where the log-likelihood is
|
||
|
maximized the data transformed with `yeojohnson` looks closest to normal:
|
||
|
|
||
|
>>> locs = [3, 10, 4] # 'lower left', 'center', 'lower right'
|
||
|
>>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
|
||
|
... xt = stats.yeojohnson(x, lmbda=lmbda)
|
||
|
... (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
|
||
|
... ax_inset = inset_axes(ax, width="20%", height="20%", loc=loc)
|
||
|
... ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
|
||
|
... ax_inset.set_xticklabels([])
|
||
|
... ax_inset.set_yticklabels([])
|
||
|
... ax_inset.set_title(r'$\lambda=%1.2f$' % lmbda)
|
||
|
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
data = np.asarray(data)
|
||
|
n_samples = data.shape[0]
|
||
|
|
||
|
if n_samples == 0:
|
||
|
return np.nan
|
||
|
|
||
|
trans = _yeojohnson_transform(data, lmb)
|
||
|
trans_var = trans.var(axis=0)
|
||
|
loglike = np.empty_like(trans_var)
|
||
|
|
||
|
# Avoid RuntimeWarning raised by np.log when the variance is too low
|
||
|
tiny_variance = trans_var < np.finfo(trans_var.dtype).tiny
|
||
|
loglike[tiny_variance] = np.inf
|
||
|
|
||
|
loglike[~tiny_variance] = (
|
||
|
-n_samples / 2 * np.log(trans_var[~tiny_variance]))
|
||
|
loglike[~tiny_variance] += (
|
||
|
(lmb - 1) * (np.sign(data) * np.log1p(np.abs(data))).sum(axis=0))
|
||
|
return loglike
|
||
|
|
||
|
|
||
|
def yeojohnson_normmax(x, brack=None):
|
||
|
"""Compute optimal Yeo-Johnson transform parameter.
|
||
|
|
||
|
Compute optimal Yeo-Johnson transform parameter for input data, using
|
||
|
maximum likelihood estimation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Input array.
|
||
|
brack : 2-tuple, optional
|
||
|
The starting interval for a downhill bracket search with
|
||
|
`optimize.brent`. Note that this is in most cases not critical; the
|
||
|
final result is allowed to be outside this bracket. If None,
|
||
|
`optimize.fminbound` is used with bounds that avoid overflow.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
maxlog : float
|
||
|
The optimal transform parameter found.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
yeojohnson, yeojohnson_llf, yeojohnson_normplot
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 1.2.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import stats
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
Generate some data and determine optimal ``lmbda``
|
||
|
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> x = stats.loggamma.rvs(5, size=30, random_state=rng) + 5
|
||
|
>>> lmax = stats.yeojohnson_normmax(x)
|
||
|
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax = fig.add_subplot(111)
|
||
|
>>> prob = stats.yeojohnson_normplot(x, -10, 10, plot=ax)
|
||
|
>>> ax.axvline(lmax, color='r')
|
||
|
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
def _neg_llf(lmbda, data):
|
||
|
llf = yeojohnson_llf(lmbda, data)
|
||
|
# reject likelihoods that are inf which are likely due to small
|
||
|
# variance in the transformed space
|
||
|
llf[np.isinf(llf)] = -np.inf
|
||
|
return -llf
|
||
|
|
||
|
with np.errstate(invalid='ignore'):
|
||
|
if not np.all(np.isfinite(x)):
|
||
|
raise ValueError('Yeo-Johnson input must be finite.')
|
||
|
if np.all(x == 0):
|
||
|
return 1.0
|
||
|
if brack is not None:
|
||
|
return optimize.brent(_neg_llf, brack=brack, args=(x,))
|
||
|
x = np.asarray(x)
|
||
|
dtype = x.dtype if np.issubdtype(x.dtype, np.floating) else np.float64
|
||
|
# Allow values up to 20 times the maximum observed value to be safely
|
||
|
# transformed without over- or underflow.
|
||
|
log1p_max_x = np.log1p(20 * np.max(np.abs(x)))
|
||
|
# Use half of floating point's exponent range to allow safe computation
|
||
|
# of the variance of the transformed data.
|
||
|
log_eps = np.log(np.finfo(dtype).eps)
|
||
|
log_tiny_float = (np.log(np.finfo(dtype).tiny) - log_eps) / 2
|
||
|
log_max_float = (np.log(np.finfo(dtype).max) + log_eps) / 2
|
||
|
# Compute the bounds by approximating the inverse of the Yeo-Johnson
|
||
|
# transform on the smallest and largest floating point exponents, given
|
||
|
# the largest data we expect to observe. See [1] for further details.
|
||
|
# [1] https://github.com/scipy/scipy/pull/18852#issuecomment-1630286174
|
||
|
lb = log_tiny_float / log1p_max_x
|
||
|
ub = log_max_float / log1p_max_x
|
||
|
# Convert the bounds if all or some of the data is negative.
|
||
|
if np.all(x < 0):
|
||
|
lb, ub = 2 - ub, 2 - lb
|
||
|
elif np.any(x < 0):
|
||
|
lb, ub = max(2 - ub, lb), min(2 - lb, ub)
|
||
|
# Match `optimize.brent`'s tolerance.
|
||
|
tol_brent = 1.48e-08
|
||
|
return optimize.fminbound(_neg_llf, lb, ub, args=(x,), xtol=tol_brent)
|
||
|
|
||
|
|
||
|
def yeojohnson_normplot(x, la, lb, plot=None, N=80):
|
||
|
"""Compute parameters for a Yeo-Johnson normality plot, optionally show it.
|
||
|
|
||
|
A Yeo-Johnson normality plot shows graphically what the best
|
||
|
transformation parameter is to use in `yeojohnson` to obtain a
|
||
|
distribution that is close to normal.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Input array.
|
||
|
la, lb : scalar
|
||
|
The lower and upper bounds for the ``lmbda`` values to pass to
|
||
|
`yeojohnson` for Yeo-Johnson transformations. These are also the
|
||
|
limits of the horizontal axis of the plot if that is generated.
|
||
|
plot : object, optional
|
||
|
If given, plots the quantiles and least squares fit.
|
||
|
`plot` is an object that has to have methods "plot" and "text".
|
||
|
The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
|
||
|
or a custom object with the same methods.
|
||
|
Default is None, which means that no plot is created.
|
||
|
N : int, optional
|
||
|
Number of points on the horizontal axis (equally distributed from
|
||
|
`la` to `lb`).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lmbdas : ndarray
|
||
|
The ``lmbda`` values for which a Yeo-Johnson transform was done.
|
||
|
ppcc : ndarray
|
||
|
Probability Plot Correlelation Coefficient, as obtained from `probplot`
|
||
|
when fitting the Box-Cox transformed input `x` against a normal
|
||
|
distribution.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
probplot, yeojohnson, yeojohnson_normmax, yeojohnson_llf, ppcc_max
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Even if `plot` is given, the figure is not shown or saved by
|
||
|
`boxcox_normplot`; ``plt.show()`` or ``plt.savefig('figname.png')``
|
||
|
should be used after calling `probplot`.
|
||
|
|
||
|
.. versionadded:: 1.2.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import stats
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
Generate some non-normally distributed data, and create a Yeo-Johnson plot:
|
||
|
|
||
|
>>> x = stats.loggamma.rvs(5, size=500) + 5
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax = fig.add_subplot(111)
|
||
|
>>> prob = stats.yeojohnson_normplot(x, -20, 20, plot=ax)
|
||
|
|
||
|
Determine and plot the optimal ``lmbda`` to transform ``x`` and plot it in
|
||
|
the same plot:
|
||
|
|
||
|
>>> _, maxlog = stats.yeojohnson(x)
|
||
|
>>> ax.axvline(maxlog, color='r')
|
||
|
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
return _normplot('yeojohnson', x, la, lb, plot, N)
|
||
|
|
||
|
|
||
|
ShapiroResult = namedtuple('ShapiroResult', ('statistic', 'pvalue'))
|
||
|
|
||
|
|
||
|
@_axis_nan_policy_factory(ShapiroResult, n_samples=1, too_small=2, default_axis=None)
|
||
|
def shapiro(x):
|
||
|
r"""Perform the Shapiro-Wilk test for normality.
|
||
|
|
||
|
The Shapiro-Wilk test tests the null hypothesis that the
|
||
|
data was drawn from a normal distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Array of sample data. Must contain at least three observations.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
statistic : float
|
||
|
The test statistic.
|
||
|
p-value : float
|
||
|
The p-value for the hypothesis test.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
anderson : The Anderson-Darling test for normality
|
||
|
kstest : The Kolmogorov-Smirnov test for goodness of fit.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The algorithm used is described in [4]_ but censoring parameters as
|
||
|
described are not implemented. For N > 5000 the W test statistic is
|
||
|
accurate, but the p-value may not be.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
|
||
|
:doi:`10.18434/M32189`
|
||
|
.. [2] Shapiro, S. S. & Wilk, M.B, "An analysis of variance test for
|
||
|
normality (complete samples)", Biometrika, 1965, Vol. 52,
|
||
|
pp. 591-611, :doi:`10.2307/2333709`
|
||
|
.. [3] Razali, N. M. & Wah, Y. B., "Power comparisons of Shapiro-Wilk,
|
||
|
Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests", Journal
|
||
|
of Statistical Modeling and Analytics, 2011, Vol. 2, pp. 21-33.
|
||
|
.. [4] Royston P., "Remark AS R94: A Remark on Algorithm AS 181: The
|
||
|
W-test for Normality", 1995, Applied Statistics, Vol. 44,
|
||
|
:doi:`10.2307/2986146`
|
||
|
.. [5] Phipson B., and Smyth, G. K., "Permutation P-values Should Never Be
|
||
|
Zero: Calculating Exact P-values When Permutations Are Randomly
|
||
|
Drawn", Statistical Applications in Genetics and Molecular Biology,
|
||
|
2010, Vol.9, :doi:`10.2202/1544-6115.1585`
|
||
|
.. [6] Panagiotakos, D. B., "The value of p-value in biomedical
|
||
|
research", The Open Cardiovascular Medicine Journal, 2008, Vol.2,
|
||
|
pp. 97-99, :doi:`10.2174/1874192400802010097`
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Suppose we wish to infer from measurements whether the weights of adult
|
||
|
human males in a medical study are not normally distributed [2]_.
|
||
|
The weights (lbs) are recorded in the array ``x`` below.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> x = np.array([148, 154, 158, 160, 161, 162, 166, 170, 182, 195, 236])
|
||
|
|
||
|
The normality test of [1]_ and [2]_ begins by computing a statistic based
|
||
|
on the relationship between the observations and the expected order
|
||
|
statistics of a normal distribution.
|
||
|
|
||
|
>>> from scipy import stats
|
||
|
>>> res = stats.shapiro(x)
|
||
|
>>> res.statistic
|
||
|
0.7888147830963135
|
||
|
|
||
|
The value of this statistic tends to be high (close to 1) for samples drawn
|
||
|
from a normal distribution.
|
||
|
|
||
|
The test is performed by comparing the observed value of the statistic
|
||
|
against the null distribution: the distribution of statistic values formed
|
||
|
under the null hypothesis that the weights were drawn from a normal
|
||
|
distribution. For this normality test, the null distribution is not easy to
|
||
|
calculate exactly, so it is usually approximated by Monte Carlo methods,
|
||
|
that is, drawing many samples of the same size as ``x`` from a normal
|
||
|
distribution and computing the values of the statistic for each.
|
||
|
|
||
|
>>> def statistic(x):
|
||
|
... # Get only the `shapiro` statistic; ignore its p-value
|
||
|
... return stats.shapiro(x).statistic
|
||
|
>>> ref = stats.monte_carlo_test(x, stats.norm.rvs, statistic,
|
||
|
... alternative='less')
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 5))
|
||
|
>>> bins = np.linspace(0.65, 1, 50)
|
||
|
>>> def plot(ax): # we'll reuse this
|
||
|
... ax.hist(ref.null_distribution, density=True, bins=bins)
|
||
|
... ax.set_title("Shapiro-Wilk Test Null Distribution \n"
|
||
|
... "(Monte Carlo Approximation, 11 Observations)")
|
||
|
... ax.set_xlabel("statistic")
|
||
|
... ax.set_ylabel("probability density")
|
||
|
>>> plot(ax)
|
||
|
>>> plt.show()
|
||
|
|
||
|
The comparison is quantified by the p-value: the proportion of values in
|
||
|
the null distribution less than or equal to the observed value of the
|
||
|
statistic.
|
||
|
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 5))
|
||
|
>>> plot(ax)
|
||
|
>>> annotation = (f'p-value={res.pvalue:.6f}\n(highlighted area)')
|
||
|
>>> props = dict(facecolor='black', width=1, headwidth=5, headlength=8)
|
||
|
>>> _ = ax.annotate(annotation, (0.75, 0.1), (0.68, 0.7), arrowprops=props)
|
||
|
>>> i_extreme = np.where(bins <= res.statistic)[0]
|
||
|
>>> for i in i_extreme:
|
||
|
... ax.patches[i].set_color('C1')
|
||
|
>>> plt.xlim(0.65, 0.9)
|
||
|
>>> plt.ylim(0, 4)
|
||
|
>>> plt.show
|
||
|
>>> res.pvalue
|
||
|
0.006703833118081093
|
||
|
|
||
|
If the p-value is "small" - that is, if there is a low probability of
|
||
|
sampling data from a normally distributed population that produces such an
|
||
|
extreme value of the statistic - this may be taken as evidence against
|
||
|
the null hypothesis in favor of the alternative: the weights were not
|
||
|
drawn from a normal distribution. Note that:
|
||
|
|
||
|
- The inverse is not true; that is, the test is not used to provide
|
||
|
evidence *for* the null hypothesis.
|
||
|
- The threshold for values that will be considered "small" is a choice that
|
||
|
should be made before the data is analyzed [5]_ with consideration of the
|
||
|
risks of both false positives (incorrectly rejecting the null hypothesis)
|
||
|
and false negatives (failure to reject a false null hypothesis).
|
||
|
|
||
|
"""
|
||
|
x = np.ravel(x).astype(np.float64)
|
||
|
|
||
|
N = len(x)
|
||
|
if N < 3:
|
||
|
raise ValueError("Data must be at least length 3.")
|
||
|
|
||
|
a = zeros(N//2, dtype=np.float64)
|
||
|
init = 0
|
||
|
|
||
|
y = sort(x)
|
||
|
y -= x[N//2] # subtract the median (or a nearby value); see gh-15777
|
||
|
|
||
|
w, pw, ifault = swilk(y, a, init)
|
||
|
if ifault not in [0, 2]:
|
||
|
warnings.warn("scipy.stats.shapiro: Input data has range zero. The"
|
||
|
" results may not be accurate.", stacklevel=2)
|
||
|
if N > 5000:
|
||
|
warnings.warn("scipy.stats.shapiro: For N > 5000, computed p-value "
|
||
|
f"may not be accurate. Current N is {N}.",
|
||
|
stacklevel=2)
|
||
|
|
||
|
# `w` and `pw` are always Python floats, which are double precision.
|
||
|
# We want to ensure that they are NumPy floats, so until dtypes are
|
||
|
# respected, we can explicitly convert each to float64 (faster than
|
||
|
# `np.array([w, pw])`).
|
||
|
return ShapiroResult(np.float64(w), np.float64(pw))
|
||
|
|
||
|
|
||
|
# Values from Stephens, M A, "EDF Statistics for Goodness of Fit and
|
||
|
# Some Comparisons", Journal of the American Statistical
|
||
|
# Association, Vol. 69, Issue 347, Sept. 1974, pp 730-737
|
||
|
_Avals_norm = array([0.576, 0.656, 0.787, 0.918, 1.092])
|
||
|
_Avals_expon = array([0.922, 1.078, 1.341, 1.606, 1.957])
|
||
|
# From Stephens, M A, "Goodness of Fit for the Extreme Value Distribution",
|
||
|
# Biometrika, Vol. 64, Issue 3, Dec. 1977, pp 583-588.
|
||
|
_Avals_gumbel = array([0.474, 0.637, 0.757, 0.877, 1.038])
|
||
|
# From Stephens, M A, "Tests of Fit for the Logistic Distribution Based
|
||
|
# on the Empirical Distribution Function.", Biometrika,
|
||
|
# Vol. 66, Issue 3, Dec. 1979, pp 591-595.
|
||
|
_Avals_logistic = array([0.426, 0.563, 0.660, 0.769, 0.906, 1.010])
|
||
|
# From Richard A. Lockhart and Michael A. Stephens "Estimation and Tests of
|
||
|
# Fit for the Three-Parameter Weibull Distribution"
|
||
|
# Journal of the Royal Statistical Society.Series B(Methodological)
|
||
|
# Vol. 56, No. 3 (1994), pp. 491-500, table 1. Keys are c*100
|
||
|
_Avals_weibull = [[0.292, 0.395, 0.467, 0.522, 0.617, 0.711, 0.836, 0.931],
|
||
|
[0.295, 0.399, 0.471, 0.527, 0.623, 0.719, 0.845, 0.941],
|
||
|
[0.298, 0.403, 0.476, 0.534, 0.631, 0.728, 0.856, 0.954],
|
||
|
[0.301, 0.408, 0.483, 0.541, 0.640, 0.738, 0.869, 0.969],
|
||
|
[0.305, 0.414, 0.490, 0.549, 0.650, 0.751, 0.885, 0.986],
|
||
|
[0.309, 0.421, 0.498, 0.559, 0.662, 0.765, 0.902, 1.007],
|
||
|
[0.314, 0.429, 0.508, 0.570, 0.676, 0.782, 0.923, 1.030],
|
||
|
[0.320, 0.438, 0.519, 0.583, 0.692, 0.802, 0.947, 1.057],
|
||
|
[0.327, 0.448, 0.532, 0.598, 0.711, 0.824, 0.974, 1.089],
|
||
|
[0.334, 0.469, 0.547, 0.615, 0.732, 0.850, 1.006, 1.125],
|
||
|
[0.342, 0.472, 0.563, 0.636, 0.757, 0.879, 1.043, 1.167]]
|
||
|
_Avals_weibull = np.array(_Avals_weibull)
|
||
|
_cvals_weibull = np.linspace(0, 0.5, 11)
|
||
|
_get_As_weibull = interpolate.interp1d(_cvals_weibull, _Avals_weibull.T,
|
||
|
kind='linear', bounds_error=False,
|
||
|
fill_value=_Avals_weibull[-1])
|
||
|
|
||
|
|
||
|
def _weibull_fit_check(params, x):
|
||
|
# Refine the fit returned by `weibull_min.fit` to ensure that the first
|
||
|
# order necessary conditions are satisfied. If not, raise an error.
|
||
|
# Here, use `m` for the shape parameter to be consistent with [7]
|
||
|
# and avoid confusion with `c` as defined in [7].
|
||
|
n = len(x)
|
||
|
m, u, s = params
|
||
|
|
||
|
def dnllf_dm(m, u):
|
||
|
# Partial w.r.t. shape w/ optimal scale. See [7] Equation 5.
|
||
|
xu = x-u
|
||
|
return (1/m - (xu**m*np.log(xu)).sum()/(xu**m).sum()
|
||
|
+ np.log(xu).sum()/n)
|
||
|
|
||
|
def dnllf_du(m, u):
|
||
|
# Partial w.r.t. loc w/ optimal scale. See [7] Equation 6.
|
||
|
xu = x-u
|
||
|
return (m-1)/m*(xu**-1).sum() - n*(xu**(m-1)).sum()/(xu**m).sum()
|
||
|
|
||
|
def get_scale(m, u):
|
||
|
# Partial w.r.t. scale solved in terms of shape and location.
|
||
|
# See [7] Equation 7.
|
||
|
return ((x-u)**m/n).sum()**(1/m)
|
||
|
|
||
|
def dnllf(params):
|
||
|
# Partial derivatives of the NLLF w.r.t. parameters, i.e.
|
||
|
# first order necessary conditions for MLE fit.
|
||
|
return [dnllf_dm(*params), dnllf_du(*params)]
|
||
|
|
||
|
suggestion = ("Maximum likelihood estimation is known to be challenging "
|
||
|
"for the three-parameter Weibull distribution. Consider "
|
||
|
"performing a custom goodness-of-fit test using "
|
||
|
"`scipy.stats.monte_carlo_test`.")
|
||
|
|
||
|
if np.allclose(u, np.min(x)) or m < 1:
|
||
|
# The critical values provided by [7] don't seem to control the
|
||
|
# Type I error rate in this case. Error out.
|
||
|
message = ("Maximum likelihood estimation has converged to "
|
||
|
"a solution in which the location is equal to the minimum "
|
||
|
"of the data, the shape parameter is less than 2, or both. "
|
||
|
"The table of critical values in [7] does not "
|
||
|
"include this case. " + suggestion)
|
||
|
raise ValueError(message)
|
||
|
|
||
|
try:
|
||
|
# Refine the MLE / verify that first-order necessary conditions are
|
||
|
# satisfied. If so, the critical values provided in [7] seem reliable.
|
||
|
with np.errstate(over='raise', invalid='raise'):
|
||
|
res = optimize.root(dnllf, params[:-1])
|
||
|
|
||
|
message = ("Solution of MLE first-order conditions failed: "
|
||
|
f"{res.message}. `anderson` cannot continue. " + suggestion)
|
||
|
if not res.success:
|
||
|
raise ValueError(message)
|
||
|
|
||
|
except (FloatingPointError, ValueError) as e:
|
||
|
message = ("An error occurred while fitting the Weibull distribution "
|
||
|
"to the data, so `anderson` cannot continue. " + suggestion)
|
||
|
raise ValueError(message) from e
|
||
|
|
||
|
m, u = res.x
|
||
|
s = get_scale(m, u)
|
||
|
return m, u, s
|
||
|
|
||
|
|
||
|
AndersonResult = _make_tuple_bunch('AndersonResult',
|
||
|
['statistic', 'critical_values',
|
||
|
'significance_level'], ['fit_result'])
|
||
|
|
||
|
|
||
|
def anderson(x, dist='norm'):
|
||
|
"""Anderson-Darling test for data coming from a particular distribution.
|
||
|
|
||
|
The Anderson-Darling test tests the null hypothesis that a sample is
|
||
|
drawn from a population that follows a particular distribution.
|
||
|
For the Anderson-Darling test, the critical values depend on
|
||
|
which distribution is being tested against. This function works
|
||
|
for normal, exponential, logistic, weibull_min, or Gumbel (Extreme Value
|
||
|
Type I) distributions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Array of sample data.
|
||
|
dist : {'norm', 'expon', 'logistic', 'gumbel', 'gumbel_l', 'gumbel_r', 'extreme1', 'weibull_min'}, optional
|
||
|
The type of distribution to test against. The default is 'norm'.
|
||
|
The names 'extreme1', 'gumbel_l' and 'gumbel' are synonyms for the
|
||
|
same distribution.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : AndersonResult
|
||
|
An object with the following attributes:
|
||
|
|
||
|
statistic : float
|
||
|
The Anderson-Darling test statistic.
|
||
|
critical_values : list
|
||
|
The critical values for this distribution.
|
||
|
significance_level : list
|
||
|
The significance levels for the corresponding critical values
|
||
|
in percents. The function returns critical values for a
|
||
|
differing set of significance levels depending on the
|
||
|
distribution that is being tested against.
|
||
|
fit_result : `~scipy.stats._result_classes.FitResult`
|
||
|
An object containing the results of fitting the distribution to
|
||
|
the data.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kstest : The Kolmogorov-Smirnov test for goodness-of-fit.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Critical values provided are for the following significance levels:
|
||
|
|
||
|
normal/exponential
|
||
|
15%, 10%, 5%, 2.5%, 1%
|
||
|
logistic
|
||
|
25%, 10%, 5%, 2.5%, 1%, 0.5%
|
||
|
gumbel_l / gumbel_r
|
||
|
25%, 10%, 5%, 2.5%, 1%
|
||
|
weibull_min
|
||
|
50%, 25%, 15%, 10%, 5%, 2.5%, 1%, 0.5%
|
||
|
|
||
|
If the returned statistic is larger than these critical values then
|
||
|
for the corresponding significance level, the null hypothesis that
|
||
|
the data come from the chosen distribution can be rejected.
|
||
|
The returned statistic is referred to as 'A2' in the references.
|
||
|
|
||
|
For `weibull_min`, maximum likelihood estimation is known to be
|
||
|
challenging. If the test returns successfully, then the first order
|
||
|
conditions for a maximum likehood estimate have been verified and
|
||
|
the critical values correspond relatively well to the significance levels,
|
||
|
provided that the sample is sufficiently large (>10 observations [7]).
|
||
|
However, for some data - especially data with no left tail - `anderson`
|
||
|
is likely to result in an error message. In this case, consider
|
||
|
performing a custom goodness of fit test using
|
||
|
`scipy.stats.monte_carlo_test`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
|
||
|
.. [2] Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and
|
||
|
Some Comparisons, Journal of the American Statistical Association,
|
||
|
Vol. 69, pp. 730-737.
|
||
|
.. [3] Stephens, M. A. (1976). Asymptotic Results for Goodness-of-Fit
|
||
|
Statistics with Unknown Parameters, Annals of Statistics, Vol. 4,
|
||
|
pp. 357-369.
|
||
|
.. [4] Stephens, M. A. (1977). Goodness of Fit for the Extreme Value
|
||
|
Distribution, Biometrika, Vol. 64, pp. 583-588.
|
||
|
.. [5] Stephens, M. A. (1977). Goodness of Fit with Special Reference
|
||
|
to Tests for Exponentiality , Technical Report No. 262,
|
||
|
Department of Statistics, Stanford University, Stanford, CA.
|
||
|
.. [6] Stephens, M. A. (1979). Tests of Fit for the Logistic Distribution
|
||
|
Based on the Empirical Distribution Function, Biometrika, Vol. 66,
|
||
|
pp. 591-595.
|
||
|
.. [7] Richard A. Lockhart and Michael A. Stephens "Estimation and Tests of
|
||
|
Fit for the Three-Parameter Weibull Distribution"
|
||
|
Journal of the Royal Statistical Society.Series B(Methodological)
|
||
|
Vol. 56, No. 3 (1994), pp. 491-500, Table 0.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Test the null hypothesis that a random sample was drawn from a normal
|
||
|
distribution (with unspecified mean and standard deviation).
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.stats import anderson
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> data = rng.random(size=35)
|
||
|
>>> res = anderson(data)
|
||
|
>>> res.statistic
|
||
|
0.8398018749744764
|
||
|
>>> res.critical_values
|
||
|
array([0.527, 0.6 , 0.719, 0.839, 0.998])
|
||
|
>>> res.significance_level
|
||
|
array([15. , 10. , 5. , 2.5, 1. ])
|
||
|
|
||
|
The value of the statistic (barely) exceeds the critical value associated
|
||
|
with a significance level of 2.5%, so the null hypothesis may be rejected
|
||
|
at a significance level of 2.5%, but not at a significance level of 1%.
|
||
|
|
||
|
""" # numpy/numpydoc#87 # noqa: E501
|
||
|
dist = dist.lower()
|
||
|
if dist in {'extreme1', 'gumbel'}:
|
||
|
dist = 'gumbel_l'
|
||
|
dists = {'norm', 'expon', 'gumbel_l',
|
||
|
'gumbel_r', 'logistic', 'weibull_min'}
|
||
|
|
||
|
if dist not in dists:
|
||
|
raise ValueError(f"Invalid distribution; dist must be in {dists}.")
|
||
|
y = sort(x)
|
||
|
xbar = np.mean(x, axis=0)
|
||
|
N = len(y)
|
||
|
if dist == 'norm':
|
||
|
s = np.std(x, ddof=1, axis=0)
|
||
|
w = (y - xbar) / s
|
||
|
fit_params = xbar, s
|
||
|
logcdf = distributions.norm.logcdf(w)
|
||
|
logsf = distributions.norm.logsf(w)
|
||
|
sig = array([15, 10, 5, 2.5, 1])
|
||
|
critical = around(_Avals_norm / (1.0 + 4.0/N - 25.0/N/N), 3)
|
||
|
elif dist == 'expon':
|
||
|
w = y / xbar
|
||
|
fit_params = 0, xbar
|
||
|
logcdf = distributions.expon.logcdf(w)
|
||
|
logsf = distributions.expon.logsf(w)
|
||
|
sig = array([15, 10, 5, 2.5, 1])
|
||
|
critical = around(_Avals_expon / (1.0 + 0.6/N), 3)
|
||
|
elif dist == 'logistic':
|
||
|
def rootfunc(ab, xj, N):
|
||
|
a, b = ab
|
||
|
tmp = (xj - a) / b
|
||
|
tmp2 = exp(tmp)
|
||
|
val = [np.sum(1.0/(1+tmp2), axis=0) - 0.5*N,
|
||
|
np.sum(tmp*(1.0-tmp2)/(1+tmp2), axis=0) + N]
|
||
|
return array(val)
|
||
|
|
||
|
sol0 = array([xbar, np.std(x, ddof=1, axis=0)])
|
||
|
sol = optimize.fsolve(rootfunc, sol0, args=(x, N), xtol=1e-5)
|
||
|
w = (y - sol[0]) / sol[1]
|
||
|
fit_params = sol
|
||
|
logcdf = distributions.logistic.logcdf(w)
|
||
|
logsf = distributions.logistic.logsf(w)
|
||
|
sig = array([25, 10, 5, 2.5, 1, 0.5])
|
||
|
critical = around(_Avals_logistic / (1.0 + 0.25/N), 3)
|
||
|
elif dist == 'gumbel_r':
|
||
|
xbar, s = distributions.gumbel_r.fit(x)
|
||
|
w = (y - xbar) / s
|
||
|
fit_params = xbar, s
|
||
|
logcdf = distributions.gumbel_r.logcdf(w)
|
||
|
logsf = distributions.gumbel_r.logsf(w)
|
||
|
sig = array([25, 10, 5, 2.5, 1])
|
||
|
critical = around(_Avals_gumbel / (1.0 + 0.2/sqrt(N)), 3)
|
||
|
elif dist == 'gumbel_l':
|
||
|
xbar, s = distributions.gumbel_l.fit(x)
|
||
|
w = (y - xbar) / s
|
||
|
fit_params = xbar, s
|
||
|
logcdf = distributions.gumbel_l.logcdf(w)
|
||
|
logsf = distributions.gumbel_l.logsf(w)
|
||
|
sig = array([25, 10, 5, 2.5, 1])
|
||
|
critical = around(_Avals_gumbel / (1.0 + 0.2/sqrt(N)), 3)
|
||
|
elif dist == 'weibull_min':
|
||
|
message = ("Critical values of the test statistic are given for the "
|
||
|
"asymptotic distribution. These may not be accurate for "
|
||
|
"samples with fewer than 10 observations. Consider using "
|
||
|
"`scipy.stats.monte_carlo_test`.")
|
||
|
if N < 10:
|
||
|
warnings.warn(message, stacklevel=2)
|
||
|
# [7] writes our 'c' as 'm', and they write `c = 1/m`. Use their names.
|
||
|
m, loc, scale = distributions.weibull_min.fit(y)
|
||
|
m, loc, scale = _weibull_fit_check((m, loc, scale), y)
|
||
|
fit_params = m, loc, scale
|
||
|
logcdf = stats.weibull_min(*fit_params).logcdf(y)
|
||
|
logsf = stats.weibull_min(*fit_params).logsf(y)
|
||
|
c = 1 / m # m and c are as used in [7]
|
||
|
sig = array([0.5, 0.75, 0.85, 0.9, 0.95, 0.975, 0.99, 0.995])
|
||
|
critical = _get_As_weibull(c)
|
||
|
# Goodness-of-fit tests should only be used to provide evidence
|
||
|
# _against_ the null hypothesis. Be conservative and round up.
|
||
|
critical = np.round(critical + 0.0005, decimals=3)
|
||
|
|
||
|
i = arange(1, N + 1)
|
||
|
A2 = -N - np.sum((2*i - 1.0) / N * (logcdf + logsf[::-1]), axis=0)
|
||
|
|
||
|
# FitResult initializer expects an optimize result, so let's work with it
|
||
|
message = '`anderson` successfully fit the distribution to the data.'
|
||
|
res = optimize.OptimizeResult(success=True, message=message)
|
||
|
res.x = np.array(fit_params)
|
||
|
fit_result = FitResult(getattr(distributions, dist), y,
|
||
|
discrete=False, res=res)
|
||
|
|
||
|
return AndersonResult(A2, critical, sig, fit_result=fit_result)
|
||
|
|
||
|
|
||
|
def _anderson_ksamp_midrank(samples, Z, Zstar, k, n, N):
|
||
|
"""Compute A2akN equation 7 of Scholz and Stephens.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
samples : sequence of 1-D array_like
|
||
|
Array of sample arrays.
|
||
|
Z : array_like
|
||
|
Sorted array of all observations.
|
||
|
Zstar : array_like
|
||
|
Sorted array of unique observations.
|
||
|
k : int
|
||
|
Number of samples.
|
||
|
n : array_like
|
||
|
Number of observations in each sample.
|
||
|
N : int
|
||
|
Total number of observations.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
A2aKN : float
|
||
|
The A2aKN statistics of Scholz and Stephens 1987.
|
||
|
|
||
|
"""
|
||
|
A2akN = 0.
|
||
|
Z_ssorted_left = Z.searchsorted(Zstar, 'left')
|
||
|
if N == Zstar.size:
|
||
|
lj = 1.
|
||
|
else:
|
||
|
lj = Z.searchsorted(Zstar, 'right') - Z_ssorted_left
|
||
|
Bj = Z_ssorted_left + lj / 2.
|
||
|
for i in arange(0, k):
|
||
|
s = np.sort(samples[i])
|
||
|
s_ssorted_right = s.searchsorted(Zstar, side='right')
|
||
|
Mij = s_ssorted_right.astype(float)
|
||
|
fij = s_ssorted_right - s.searchsorted(Zstar, 'left')
|
||
|
Mij -= fij / 2.
|
||
|
inner = lj / float(N) * (N*Mij - Bj*n[i])**2 / (Bj*(N - Bj) - N*lj/4.)
|
||
|
A2akN += inner.sum() / n[i]
|
||
|
A2akN *= (N - 1.) / N
|
||
|
return A2akN
|
||
|
|
||
|
|
||
|
def _anderson_ksamp_right(samples, Z, Zstar, k, n, N):
|
||
|
"""Compute A2akN equation 6 of Scholz & Stephens.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
samples : sequence of 1-D array_like
|
||
|
Array of sample arrays.
|
||
|
Z : array_like
|
||
|
Sorted array of all observations.
|
||
|
Zstar : array_like
|
||
|
Sorted array of unique observations.
|
||
|
k : int
|
||
|
Number of samples.
|
||
|
n : array_like
|
||
|
Number of observations in each sample.
|
||
|
N : int
|
||
|
Total number of observations.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
A2KN : float
|
||
|
The A2KN statistics of Scholz and Stephens 1987.
|
||
|
|
||
|
"""
|
||
|
A2kN = 0.
|
||
|
lj = Z.searchsorted(Zstar[:-1], 'right') - Z.searchsorted(Zstar[:-1],
|
||
|
'left')
|
||
|
Bj = lj.cumsum()
|
||
|
for i in arange(0, k):
|
||
|
s = np.sort(samples[i])
|
||
|
Mij = s.searchsorted(Zstar[:-1], side='right')
|
||
|
inner = lj / float(N) * (N * Mij - Bj * n[i])**2 / (Bj * (N - Bj))
|
||
|
A2kN += inner.sum() / n[i]
|
||
|
return A2kN
|
||
|
|
||
|
|
||
|
Anderson_ksampResult = _make_tuple_bunch(
|
||
|
'Anderson_ksampResult',
|
||
|
['statistic', 'critical_values', 'pvalue'], []
|
||
|
)
|
||
|
|
||
|
|
||
|
def anderson_ksamp(samples, midrank=True, *, method=None):
|
||
|
"""The Anderson-Darling test for k-samples.
|
||
|
|
||
|
The k-sample Anderson-Darling test is a modification of the
|
||
|
one-sample Anderson-Darling test. It tests the null hypothesis
|
||
|
that k-samples are drawn from the same population without having
|
||
|
to specify the distribution function of that population. The
|
||
|
critical values depend on the number of samples.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
samples : sequence of 1-D array_like
|
||
|
Array of sample data in arrays.
|
||
|
midrank : bool, optional
|
||
|
Type of Anderson-Darling test which is computed. Default
|
||
|
(True) is the midrank test applicable to continuous and
|
||
|
discrete populations. If False, the right side empirical
|
||
|
distribution is used.
|
||
|
method : PermutationMethod, optional
|
||
|
Defines the method used to compute the p-value. If `method` is an
|
||
|
instance of `PermutationMethod`, the p-value is computed using
|
||
|
`scipy.stats.permutation_test` with the provided configuration options
|
||
|
and other appropriate settings. Otherwise, the p-value is interpolated
|
||
|
from tabulated values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : Anderson_ksampResult
|
||
|
An object containing attributes:
|
||
|
|
||
|
statistic : float
|
||
|
Normalized k-sample Anderson-Darling test statistic.
|
||
|
critical_values : array
|
||
|
The critical values for significance levels 25%, 10%, 5%, 2.5%, 1%,
|
||
|
0.5%, 0.1%.
|
||
|
pvalue : float
|
||
|
The approximate p-value of the test. If `method` is not
|
||
|
provided, the value is floored / capped at 0.1% / 25%.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If fewer than 2 samples are provided, a sample is empty, or no
|
||
|
distinct observations are in the samples.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ks_2samp : 2 sample Kolmogorov-Smirnov test
|
||
|
anderson : 1 sample Anderson-Darling test
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
[1]_ defines three versions of the k-sample Anderson-Darling test:
|
||
|
one for continuous distributions and two for discrete
|
||
|
distributions, in which ties between samples may occur. The
|
||
|
default of this routine is to compute the version based on the
|
||
|
midrank empirical distribution function. This test is applicable
|
||
|
to continuous and discrete data. If midrank is set to False, the
|
||
|
right side empirical distribution is used for a test for discrete
|
||
|
data. According to [1]_, the two discrete test statistics differ
|
||
|
only slightly if a few collisions due to round-off errors occur in
|
||
|
the test not adjusted for ties between samples.
|
||
|
|
||
|
The critical values corresponding to the significance levels from 0.01
|
||
|
to 0.25 are taken from [1]_. p-values are floored / capped
|
||
|
at 0.1% / 25%. Since the range of critical values might be extended in
|
||
|
future releases, it is recommended not to test ``p == 0.25``, but rather
|
||
|
``p >= 0.25`` (analogously for the lower bound).
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Scholz, F. W and Stephens, M. A. (1987), K-Sample
|
||
|
Anderson-Darling Tests, Journal of the American Statistical
|
||
|
Association, Vol. 82, pp. 918-924.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import stats
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> res = stats.anderson_ksamp([rng.normal(size=50),
|
||
|
... rng.normal(loc=0.5, size=30)])
|
||
|
>>> res.statistic, res.pvalue
|
||
|
(1.974403288713695, 0.04991293614572478)
|
||
|
>>> res.critical_values
|
||
|
array([0.325, 1.226, 1.961, 2.718, 3.752, 4.592, 6.546])
|
||
|
|
||
|
The null hypothesis that the two random samples come from the same
|
||
|
distribution can be rejected at the 5% level because the returned
|
||
|
test value is greater than the critical value for 5% (1.961) but
|
||
|
not at the 2.5% level. The interpolation gives an approximate
|
||
|
p-value of 4.99%.
|
||
|
|
||
|
>>> samples = [rng.normal(size=50), rng.normal(size=30),
|
||
|
... rng.normal(size=20)]
|
||
|
>>> res = stats.anderson_ksamp(samples)
|
||
|
>>> res.statistic, res.pvalue
|
||
|
(-0.29103725200789504, 0.25)
|
||
|
>>> res.critical_values
|
||
|
array([ 0.44925884, 1.3052767 , 1.9434184 , 2.57696569, 3.41634856,
|
||
|
4.07210043, 5.56419101])
|
||
|
|
||
|
The null hypothesis cannot be rejected for three samples from an
|
||
|
identical distribution. The reported p-value (25%) has been capped and
|
||
|
may not be very accurate (since it corresponds to the value 0.449
|
||
|
whereas the statistic is -0.291).
|
||
|
|
||
|
In such cases where the p-value is capped or when sample sizes are
|
||
|
small, a permutation test may be more accurate.
|
||
|
|
||
|
>>> method = stats.PermutationMethod(n_resamples=9999, random_state=rng)
|
||
|
>>> res = stats.anderson_ksamp(samples, method=method)
|
||
|
>>> res.pvalue
|
||
|
0.5254
|
||
|
|
||
|
"""
|
||
|
k = len(samples)
|
||
|
if (k < 2):
|
||
|
raise ValueError("anderson_ksamp needs at least two samples")
|
||
|
|
||
|
samples = list(map(np.asarray, samples))
|
||
|
Z = np.sort(np.hstack(samples))
|
||
|
N = Z.size
|
||
|
Zstar = np.unique(Z)
|
||
|
if Zstar.size < 2:
|
||
|
raise ValueError("anderson_ksamp needs more than one distinct "
|
||
|
"observation")
|
||
|
|
||
|
n = np.array([sample.size for sample in samples])
|
||
|
if np.any(n == 0):
|
||
|
raise ValueError("anderson_ksamp encountered sample without "
|
||
|
"observations")
|
||
|
|
||
|
if midrank:
|
||
|
A2kN_fun = _anderson_ksamp_midrank
|
||
|
else:
|
||
|
A2kN_fun = _anderson_ksamp_right
|
||
|
A2kN = A2kN_fun(samples, Z, Zstar, k, n, N)
|
||
|
|
||
|
def statistic(*samples):
|
||
|
return A2kN_fun(samples, Z, Zstar, k, n, N)
|
||
|
|
||
|
if method is not None:
|
||
|
res = stats.permutation_test(samples, statistic, **method._asdict(),
|
||
|
alternative='greater')
|
||
|
|
||
|
H = (1. / n).sum()
|
||
|
hs_cs = (1. / arange(N - 1, 1, -1)).cumsum()
|
||
|
h = hs_cs[-1] + 1
|
||
|
g = (hs_cs / arange(2, N)).sum()
|
||
|
|
||
|
a = (4*g - 6) * (k - 1) + (10 - 6*g)*H
|
||
|
b = (2*g - 4)*k**2 + 8*h*k + (2*g - 14*h - 4)*H - 8*h + 4*g - 6
|
||
|
c = (6*h + 2*g - 2)*k**2 + (4*h - 4*g + 6)*k + (2*h - 6)*H + 4*h
|
||
|
d = (2*h + 6)*k**2 - 4*h*k
|
||
|
sigmasq = (a*N**3 + b*N**2 + c*N + d) / ((N - 1.) * (N - 2.) * (N - 3.))
|
||
|
m = k - 1
|
||
|
A2 = (A2kN - m) / math.sqrt(sigmasq)
|
||
|
|
||
|
# The b_i values are the interpolation coefficients from Table 2
|
||
|
# of Scholz and Stephens 1987
|
||
|
b0 = np.array([0.675, 1.281, 1.645, 1.96, 2.326, 2.573, 3.085])
|
||
|
b1 = np.array([-0.245, 0.25, 0.678, 1.149, 1.822, 2.364, 3.615])
|
||
|
b2 = np.array([-0.105, -0.305, -0.362, -0.391, -0.396, -0.345, -0.154])
|
||
|
critical = b0 + b1 / math.sqrt(m) + b2 / m
|
||
|
|
||
|
sig = np.array([0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.001])
|
||
|
|
||
|
if A2 < critical.min() and method is None:
|
||
|
p = sig.max()
|
||
|
msg = (f"p-value capped: true value larger than {p}. Consider "
|
||
|
"specifying `method` "
|
||
|
"(e.g. `method=stats.PermutationMethod()`.)")
|
||
|
warnings.warn(msg, stacklevel=2)
|
||
|
elif A2 > critical.max() and method is None:
|
||
|
p = sig.min()
|
||
|
msg = (f"p-value floored: true value smaller than {p}. Consider "
|
||
|
"specifying `method` "
|
||
|
"(e.g. `method=stats.PermutationMethod()`.)")
|
||
|
warnings.warn(msg, stacklevel=2)
|
||
|
elif method is None:
|
||
|
# interpolation of probit of significance level
|
||
|
pf = np.polyfit(critical, log(sig), 2)
|
||
|
p = math.exp(np.polyval(pf, A2))
|
||
|
else:
|
||
|
p = res.pvalue if method is not None else p
|
||
|
|
||
|
# create result object with alias for backward compatibility
|
||
|
res = Anderson_ksampResult(A2, critical, p)
|
||
|
res.significance_level = p
|
||
|
return res
|
||
|
|
||
|
|
||
|
AnsariResult = namedtuple('AnsariResult', ('statistic', 'pvalue'))
|
||
|
|
||
|
|
||
|
class _ABW:
|
||
|
"""Distribution of Ansari-Bradley W-statistic under the null hypothesis."""
|
||
|
# TODO: calculate exact distribution considering ties
|
||
|
# We could avoid summing over more than half the frequencies,
|
||
|
# but initially it doesn't seem worth the extra complexity
|
||
|
|
||
|
def __init__(self):
|
||
|
"""Minimal initializer."""
|
||
|
self.m = None
|
||
|
self.n = None
|
||
|
self.astart = None
|
||
|
self.total = None
|
||
|
self.freqs = None
|
||
|
|
||
|
def _recalc(self, n, m):
|
||
|
"""When necessary, recalculate exact distribution."""
|
||
|
if n != self.n or m != self.m:
|
||
|
self.n, self.m = n, m
|
||
|
# distribution is NOT symmetric when m + n is odd
|
||
|
# n is len(x), m is len(y), and ratio of scales is defined x/y
|
||
|
astart, a1, _ = gscale(n, m)
|
||
|
self.astart = astart # minimum value of statistic
|
||
|
# Exact distribution of test statistic under null hypothesis
|
||
|
# expressed as frequencies/counts/integers to maintain precision.
|
||
|
# Stored as floats to avoid overflow of sums.
|
||
|
self.freqs = a1.astype(np.float64)
|
||
|
self.total = self.freqs.sum() # could calculate from m and n
|
||
|
# probability mass is self.freqs / self.total;
|
||
|
|
||
|
def pmf(self, k, n, m):
|
||
|
"""Probability mass function."""
|
||
|
self._recalc(n, m)
|
||
|
# The convention here is that PMF at k = 12.5 is the same as at k = 12,
|
||
|
# -> use `floor` in case of ties.
|
||
|
ind = np.floor(k - self.astart).astype(int)
|
||
|
return self.freqs[ind] / self.total
|
||
|
|
||
|
def cdf(self, k, n, m):
|
||
|
"""Cumulative distribution function."""
|
||
|
self._recalc(n, m)
|
||
|
# Null distribution derived without considering ties is
|
||
|
# approximate. Round down to avoid Type I error.
|
||
|
ind = np.ceil(k - self.astart).astype(int)
|
||
|
return self.freqs[:ind+1].sum() / self.total
|
||
|
|
||
|
def sf(self, k, n, m):
|
||
|
"""Survival function."""
|
||
|
self._recalc(n, m)
|
||
|
# Null distribution derived without considering ties is
|
||
|
# approximate. Round down to avoid Type I error.
|
||
|
ind = np.floor(k - self.astart).astype(int)
|
||
|
return self.freqs[ind:].sum() / self.total
|
||
|
|
||
|
|
||
|
# Maintain state for faster repeat calls to ansari w/ method='exact'
|
||
|
_abw_state = _ABW()
|
||
|
|
||
|
|
||
|
@_axis_nan_policy_factory(AnsariResult, n_samples=2)
|
||
|
def ansari(x, y, alternative='two-sided'):
|
||
|
"""Perform the Ansari-Bradley test for equal scale parameters.
|
||
|
|
||
|
The Ansari-Bradley test ([1]_, [2]_) is a non-parametric test
|
||
|
for the equality of the scale parameter of the distributions
|
||
|
from which two samples were drawn. The null hypothesis states that
|
||
|
the ratio of the scale of the distribution underlying `x` to the scale
|
||
|
of the distribution underlying `y` is 1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array_like
|
||
|
Arrays of sample data.
|
||
|
alternative : {'two-sided', 'less', 'greater'}, optional
|
||
|
Defines the alternative hypothesis. Default is 'two-sided'.
|
||
|
The following options are available:
|
||
|
|
||
|
* 'two-sided': the ratio of scales is not equal to 1.
|
||
|
* 'less': the ratio of scales is less than 1.
|
||
|
* 'greater': the ratio of scales is greater than 1.
|
||
|
|
||
|
.. versionadded:: 1.7.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
statistic : float
|
||
|
The Ansari-Bradley test statistic.
|
||
|
pvalue : float
|
||
|
The p-value of the hypothesis test.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fligner : A non-parametric test for the equality of k variances
|
||
|
mood : A non-parametric test for the equality of two scale parameters
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The p-value given is exact when the sample sizes are both less than
|
||
|
55 and there are no ties, otherwise a normal approximation for the
|
||
|
p-value is used.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Ansari, A. R. and Bradley, R. A. (1960) Rank-sum tests for
|
||
|
dispersions, Annals of Mathematical Statistics, 31, 1174-1189.
|
||
|
.. [2] Sprent, Peter and N.C. Smeeton. Applied nonparametric
|
||
|
statistical methods. 3rd ed. Chapman and Hall/CRC. 2001.
|
||
|
Section 5.8.2.
|
||
|
.. [3] Nathaniel E. Helwig "Nonparametric Dispersion and Equality
|
||
|
Tests" at http://users.stat.umn.edu/~helwig/notes/npde-Notes.pdf
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.stats import ansari
|
||
|
>>> rng = np.random.default_rng()
|
||
|
|
||
|
For these examples, we'll create three random data sets. The first
|
||
|
two, with sizes 35 and 25, are drawn from a normal distribution with
|
||
|
mean 0 and standard deviation 2. The third data set has size 25 and
|
||
|
is drawn from a normal distribution with standard deviation 1.25.
|
||
|
|
||
|
>>> x1 = rng.normal(loc=0, scale=2, size=35)
|
||
|
>>> x2 = rng.normal(loc=0, scale=2, size=25)
|
||
|
>>> x3 = rng.normal(loc=0, scale=1.25, size=25)
|
||
|
|
||
|
First we apply `ansari` to `x1` and `x2`. These samples are drawn
|
||
|
from the same distribution, so we expect the Ansari-Bradley test
|
||
|
should not lead us to conclude that the scales of the distributions
|
||
|
are different.
|
||
|
|
||
|
>>> ansari(x1, x2)
|
||
|
AnsariResult(statistic=541.0, pvalue=0.9762532927399098)
|
||
|
|
||
|
With a p-value close to 1, we cannot conclude that there is a
|
||
|
significant difference in the scales (as expected).
|
||
|
|
||
|
Now apply the test to `x1` and `x3`:
|
||
|
|
||
|
>>> ansari(x1, x3)
|
||
|
AnsariResult(statistic=425.0, pvalue=0.0003087020407974518)
|
||
|
|
||
|
The probability of observing such an extreme value of the statistic
|
||
|
under the null hypothesis of equal scales is only 0.03087%. We take this
|
||
|
as evidence against the null hypothesis in favor of the alternative:
|
||
|
the scales of the distributions from which the samples were drawn
|
||
|
are not equal.
|
||
|
|
||
|
We can use the `alternative` parameter to perform a one-tailed test.
|
||
|
In the above example, the scale of `x1` is greater than `x3` and so
|
||
|
the ratio of scales of `x1` and `x3` is greater than 1. This means
|
||
|
that the p-value when ``alternative='greater'`` should be near 0 and
|
||
|
hence we should be able to reject the null hypothesis:
|
||
|
|
||
|
>>> ansari(x1, x3, alternative='greater')
|
||
|
AnsariResult(statistic=425.0, pvalue=0.0001543510203987259)
|
||
|
|
||
|
As we can see, the p-value is indeed quite low. Use of
|
||
|
``alternative='less'`` should thus yield a large p-value:
|
||
|
|
||
|
>>> ansari(x1, x3, alternative='less')
|
||
|
AnsariResult(statistic=425.0, pvalue=0.9998643258449039)
|
||
|
|
||
|
"""
|
||
|
if alternative not in {'two-sided', 'greater', 'less'}:
|
||
|
raise ValueError("'alternative' must be 'two-sided',"
|
||
|
" 'greater', or 'less'.")
|
||
|
x, y = asarray(x), asarray(y)
|
||
|
n = len(x)
|
||
|
m = len(y)
|
||
|
if m < 1:
|
||
|
raise ValueError("Not enough other observations.")
|
||
|
if n < 1:
|
||
|
raise ValueError("Not enough test observations.")
|
||
|
|
||
|
N = m + n
|
||
|
xy = r_[x, y] # combine
|
||
|
rank = _stats_py.rankdata(xy)
|
||
|
symrank = amin(array((rank, N - rank + 1)), 0)
|
||
|
AB = np.sum(symrank[:n], axis=0)
|
||
|
uxy = unique(xy)
|
||
|
repeats = (len(uxy) != len(xy))
|
||
|
exact = ((m < 55) and (n < 55) and not repeats)
|
||
|
if repeats and (m < 55 or n < 55):
|
||
|
warnings.warn("Ties preclude use of exact statistic.", stacklevel=2)
|
||
|
if exact:
|
||
|
if alternative == 'two-sided':
|
||
|
pval = 2.0 * np.minimum(_abw_state.cdf(AB, n, m),
|
||
|
_abw_state.sf(AB, n, m))
|
||
|
elif alternative == 'greater':
|
||
|
# AB statistic is _smaller_ when ratio of scales is larger,
|
||
|
# so this is the opposite of the usual calculation
|
||
|
pval = _abw_state.cdf(AB, n, m)
|
||
|
else:
|
||
|
pval = _abw_state.sf(AB, n, m)
|
||
|
return AnsariResult(AB, min(1.0, pval))
|
||
|
|
||
|
# otherwise compute normal approximation
|
||
|
if N % 2: # N odd
|
||
|
mnAB = n * (N+1.0)**2 / 4.0 / N
|
||
|
varAB = n * m * (N+1.0) * (3+N**2) / (48.0 * N**2)
|
||
|
else:
|
||
|
mnAB = n * (N+2.0) / 4.0
|
||
|
varAB = m * n * (N+2) * (N-2.0) / 48 / (N-1.0)
|
||
|
if repeats: # adjust variance estimates
|
||
|
# compute np.sum(tj * rj**2,axis=0)
|
||
|
fac = np.sum(symrank**2, axis=0)
|
||
|
if N % 2: # N odd
|
||
|
varAB = m * n * (16*N*fac - (N+1)**4) / (16.0 * N**2 * (N-1))
|
||
|
else: # N even
|
||
|
varAB = m * n * (16*fac - N*(N+2)**2) / (16.0 * N * (N-1))
|
||
|
|
||
|
# Small values of AB indicate larger dispersion for the x sample.
|
||
|
# Large values of AB indicate larger dispersion for the y sample.
|
||
|
# This is opposite to the way we define the ratio of scales. see [1]_.
|
||
|
z = (mnAB - AB) / sqrt(varAB)
|
||
|
pvalue = _get_pvalue(z, _SimpleNormal(), alternative, xp=np)
|
||
|
return AnsariResult(AB[()], pvalue[()])
|
||
|
|
||
|
|
||
|
BartlettResult = namedtuple('BartlettResult', ('statistic', 'pvalue'))
|
||
|
|
||
|
|
||
|
@_axis_nan_policy_factory(BartlettResult, n_samples=None)
|
||
|
def bartlett(*samples, axis=0):
|
||
|
r"""Perform Bartlett's test for equal variances.
|
||
|
|
||
|
Bartlett's test tests the null hypothesis that all input samples
|
||
|
are from populations with equal variances. For samples
|
||
|
from significantly non-normal populations, Levene's test
|
||
|
`levene` is more robust.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sample1, sample2, ... : array_like
|
||
|
arrays of sample data. Only 1d arrays are accepted, they may have
|
||
|
different lengths.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
statistic : float
|
||
|
The test statistic.
|
||
|
pvalue : float
|
||
|
The p-value of the test.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fligner : A non-parametric test for the equality of k variances
|
||
|
levene : A robust parametric test for equality of k variances
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Conover et al. (1981) examine many of the existing parametric and
|
||
|
nonparametric tests by extensive simulations and they conclude that the
|
||
|
tests proposed by Fligner and Killeen (1976) and Levene (1960) appear to be
|
||
|
superior in terms of robustness of departures from normality and power
|
||
|
([3]_).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm
|
||
|
.. [2] Snedecor, George W. and Cochran, William G. (1989), Statistical
|
||
|
Methods, Eighth Edition, Iowa State University Press.
|
||
|
.. [3] Park, C. and Lindsay, B. G. (1999). Robust Scale Estimation and
|
||
|
Hypothesis Testing based on Quadratic Inference Function. Technical
|
||
|
Report #99-03, Center for Likelihood Studies, Pennsylvania State
|
||
|
University.
|
||
|
.. [4] Bartlett, M. S. (1937). Properties of Sufficiency and Statistical
|
||
|
Tests. Proceedings of the Royal Society of London. Series A,
|
||
|
Mathematical and Physical Sciences, Vol. 160, No.901, pp. 268-282.
|
||
|
.. [5] C.I. BLISS (1952), The Statistics of Bioassay: With Special
|
||
|
Reference to the Vitamins, pp 499-503,
|
||
|
:doi:`10.1016/C2013-0-12584-6`.
|
||
|
.. [6] B. Phipson and G. K. Smyth. "Permutation P-values Should Never Be
|
||
|
Zero: Calculating Exact P-values When Permutations Are Randomly
|
||
|
Drawn." Statistical Applications in Genetics and Molecular Biology
|
||
|
9.1 (2010).
|
||
|
.. [7] Ludbrook, J., & Dudley, H. (1998). Why permutation tests are
|
||
|
superior to t and F tests in biomedical research. The American
|
||
|
Statistician, 52(2), 127-132.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
In [5]_, the influence of vitamin C on the tooth growth of guinea pigs
|
||
|
was investigated. In a control study, 60 subjects were divided into
|
||
|
small dose, medium dose, and large dose groups that received
|
||
|
daily doses of 0.5, 1.0 and 2.0 mg of vitamin C, respectively.
|
||
|
After 42 days, the tooth growth was measured.
|
||
|
|
||
|
The ``small_dose``, ``medium_dose``, and ``large_dose`` arrays below record
|
||
|
tooth growth measurements of the three groups in microns.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> small_dose = np.array([
|
||
|
... 4.2, 11.5, 7.3, 5.8, 6.4, 10, 11.2, 11.2, 5.2, 7,
|
||
|
... 15.2, 21.5, 17.6, 9.7, 14.5, 10, 8.2, 9.4, 16.5, 9.7
|
||
|
... ])
|
||
|
>>> medium_dose = np.array([
|
||
|
... 16.5, 16.5, 15.2, 17.3, 22.5, 17.3, 13.6, 14.5, 18.8, 15.5,
|
||
|
... 19.7, 23.3, 23.6, 26.4, 20, 25.2, 25.8, 21.2, 14.5, 27.3
|
||
|
... ])
|
||
|
>>> large_dose = np.array([
|
||
|
... 23.6, 18.5, 33.9, 25.5, 26.4, 32.5, 26.7, 21.5, 23.3, 29.5,
|
||
|
... 25.5, 26.4, 22.4, 24.5, 24.8, 30.9, 26.4, 27.3, 29.4, 23
|
||
|
... ])
|
||
|
|
||
|
The `bartlett` statistic is sensitive to differences in variances
|
||
|
between the samples.
|
||
|
|
||
|
>>> from scipy import stats
|
||
|
>>> res = stats.bartlett(small_dose, medium_dose, large_dose)
|
||
|
>>> res.statistic
|
||
|
0.6654670663030519
|
||
|
|
||
|
The value of the statistic tends to be high when there is a large
|
||
|
difference in variances.
|
||
|
|
||
|
We can test for inequality of variance among the groups by comparing the
|
||
|
observed value of the statistic against the null distribution: the
|
||
|
distribution of statistic values derived under the null hypothesis that
|
||
|
the population variances of the three groups are equal.
|
||
|
|
||
|
For this test, the null distribution follows the chi-square distribution
|
||
|
as shown below.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> k = 3 # number of samples
|
||
|
>>> dist = stats.chi2(df=k-1)
|
||
|
>>> val = np.linspace(0, 5, 100)
|
||
|
>>> pdf = dist.pdf(val)
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 5))
|
||
|
>>> def plot(ax): # we'll reuse this
|
||
|
... ax.plot(val, pdf, color='C0')
|
||
|
... ax.set_title("Bartlett Test Null Distribution")
|
||
|
... ax.set_xlabel("statistic")
|
||
|
... ax.set_ylabel("probability density")
|
||
|
... ax.set_xlim(0, 5)
|
||
|
... ax.set_ylim(0, 1)
|
||
|
>>> plot(ax)
|
||
|
>>> plt.show()
|
||
|
|
||
|
The comparison is quantified by the p-value: the proportion of values in
|
||
|
the null distribution greater than or equal to the observed value of the
|
||
|
statistic.
|
||
|
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 5))
|
||
|
>>> plot(ax)
|
||
|
>>> pvalue = dist.sf(res.statistic)
|
||
|
>>> annotation = (f'p-value={pvalue:.3f}\n(shaded area)')
|
||
|
>>> props = dict(facecolor='black', width=1, headwidth=5, headlength=8)
|
||
|
>>> _ = ax.annotate(annotation, (1.5, 0.22), (2.25, 0.3), arrowprops=props)
|
||
|
>>> i = val >= res.statistic
|
||
|
>>> ax.fill_between(val[i], y1=0, y2=pdf[i], color='C0')
|
||
|
>>> plt.show()
|
||
|
|
||
|
>>> res.pvalue
|
||
|
0.71696121509966
|
||
|
|
||
|
If the p-value is "small" - that is, if there is a low probability of
|
||
|
sampling data from distributions with identical variances that produces
|
||
|
such an extreme value of the statistic - this may be taken as evidence
|
||
|
against the null hypothesis in favor of the alternative: the variances of
|
||
|
the groups are not equal. Note that:
|
||
|
|
||
|
- The inverse is not true; that is, the test is not used to provide
|
||
|
evidence for the null hypothesis.
|
||
|
- The threshold for values that will be considered "small" is a choice that
|
||
|
should be made before the data is analyzed [6]_ with consideration of the
|
||
|
risks of both false positives (incorrectly rejecting the null hypothesis)
|
||
|
and false negatives (failure to reject a false null hypothesis).
|
||
|
- Small p-values are not evidence for a *large* effect; rather, they can
|
||
|
only provide evidence for a "significant" effect, meaning that they are
|
||
|
unlikely to have occurred under the null hypothesis.
|
||
|
|
||
|
Note that the chi-square distribution provides the null distribution
|
||
|
when the observations are normally distributed. For small samples
|
||
|
drawn from non-normal populations, it may be more appropriate to
|
||
|
perform a
|
||
|
permutation test: Under the null hypothesis that all three samples were
|
||
|
drawn from the same population, each of the measurements is equally likely
|
||
|
to have been observed in any of the three samples. Therefore, we can form
|
||
|
a randomized null distribution by calculating the statistic under many
|
||
|
randomly-generated partitionings of the observations into the three
|
||
|
samples.
|
||
|
|
||
|
>>> def statistic(*samples):
|
||
|
... return stats.bartlett(*samples).statistic
|
||
|
>>> ref = stats.permutation_test(
|
||
|
... (small_dose, medium_dose, large_dose), statistic,
|
||
|
... permutation_type='independent', alternative='greater'
|
||
|
... )
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 5))
|
||
|
>>> plot(ax)
|
||
|
>>> bins = np.linspace(0, 5, 25)
|
||
|
>>> ax.hist(
|
||
|
... ref.null_distribution, bins=bins, density=True, facecolor="C1"
|
||
|
... )
|
||
|
>>> ax.legend(['aymptotic approximation\n(many observations)',
|
||
|
... 'randomized null distribution'])
|
||
|
>>> plot(ax)
|
||
|
>>> plt.show()
|
||
|
|
||
|
>>> ref.pvalue # randomized test p-value
|
||
|
0.5387 # may vary
|
||
|
|
||
|
Note that there is significant disagreement between the p-value calculated
|
||
|
here and the asymptotic approximation returned by `bartlett` above.
|
||
|
The statistical inferences that can be drawn rigorously from a permutation
|
||
|
test are limited; nonetheless, they may be the preferred approach in many
|
||
|
circumstances [7]_.
|
||
|
|
||
|
Following is another generic example where the null hypothesis would be
|
||
|
rejected.
|
||
|
|
||
|
Test whether the lists `a`, `b` and `c` come from populations
|
||
|
with equal variances.
|
||
|
|
||
|
>>> a = [8.88, 9.12, 9.04, 8.98, 9.00, 9.08, 9.01, 8.85, 9.06, 8.99]
|
||
|
>>> b = [8.88, 8.95, 9.29, 9.44, 9.15, 9.58, 8.36, 9.18, 8.67, 9.05]
|
||
|
>>> c = [8.95, 9.12, 8.95, 8.85, 9.03, 8.84, 9.07, 8.98, 8.86, 8.98]
|
||
|
>>> stat, p = stats.bartlett(a, b, c)
|
||
|
>>> p
|
||
|
1.1254782518834628e-05
|
||
|
|
||
|
The very small p-value suggests that the populations do not have equal
|
||
|
variances.
|
||
|
|
||
|
This is not surprising, given that the sample variance of `b` is much
|
||
|
larger than that of `a` and `c`:
|
||
|
|
||
|
>>> [np.var(x, ddof=1) for x in [a, b, c]]
|
||
|
[0.007054444444444413, 0.13073888888888888, 0.008890000000000002]
|
||
|
|
||
|
"""
|
||
|
xp = array_namespace(*samples)
|
||
|
|
||
|
k = len(samples)
|
||
|
if k < 2:
|
||
|
raise ValueError("Must enter at least two input sample vectors.")
|
||
|
|
||
|
samples = _broadcast_arrays(samples, axis=axis, xp=xp)
|
||
|
samples = [xp_moveaxis_to_end(sample, axis, xp=xp) for sample in samples]
|
||
|
|
||
|
Ni = [xp.asarray(sample.shape[-1], dtype=sample.dtype) for sample in samples]
|
||
|
Ni = [xp.broadcast_to(N, samples[0].shape[:-1]) for N in Ni]
|
||
|
ssq = [xp.var(sample, correction=1, axis=-1) for sample in samples]
|
||
|
Ni = [arr[xp.newaxis, ...] for arr in Ni]
|
||
|
ssq = [arr[xp.newaxis, ...] for arr in ssq]
|
||
|
Ni = xp.concat(Ni, axis=0)
|
||
|
ssq = xp.concat(ssq, axis=0)
|
||
|
Ntot = xp.sum(Ni, axis=0)
|
||
|
spsq = xp.sum((Ni - 1)*ssq, axis=0) / (Ntot - k)
|
||
|
numer = (Ntot - k) * xp.log(spsq) - xp.sum((Ni - 1)*xp.log(ssq), axis=0)
|
||
|
denom = 1 + 1/(3*(k - 1)) * ((xp.sum(1/(Ni - 1), axis=0)) - 1/(Ntot - k))
|
||
|
T = numer / denom
|
||
|
|
||
|
chi2 = _SimpleChi2(xp.asarray(k-1))
|
||
|
pvalue = _get_pvalue(T, chi2, alternative='greater', symmetric=False, xp=xp)
|
||
|
|
||
|
T = T[()] if T.ndim == 0 else T
|
||
|
pvalue = pvalue[()] if pvalue.ndim == 0 else pvalue
|
||
|
|
||
|
return BartlettResult(T, pvalue)
|
||
|
|
||
|
|
||
|
LeveneResult = namedtuple('LeveneResult', ('statistic', 'pvalue'))
|
||
|
|
||
|
|
||
|
@_axis_nan_policy_factory(LeveneResult, n_samples=None)
|
||
|
def levene(*samples, center='median', proportiontocut=0.05):
|
||
|
r"""Perform Levene test for equal variances.
|
||
|
|
||
|
The Levene test tests the null hypothesis that all input samples
|
||
|
are from populations with equal variances. Levene's test is an
|
||
|
alternative to Bartlett's test `bartlett` in the case where
|
||
|
there are significant deviations from normality.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sample1, sample2, ... : array_like
|
||
|
The sample data, possibly with different lengths. Only one-dimensional
|
||
|
samples are accepted.
|
||
|
center : {'mean', 'median', 'trimmed'}, optional
|
||
|
Which function of the data to use in the test. The default
|
||
|
is 'median'.
|
||
|
proportiontocut : float, optional
|
||
|
When `center` is 'trimmed', this gives the proportion of data points
|
||
|
to cut from each end. (See `scipy.stats.trim_mean`.)
|
||
|
Default is 0.05.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
statistic : float
|
||
|
The test statistic.
|
||
|
pvalue : float
|
||
|
The p-value for the test.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fligner : A non-parametric test for the equality of k variances
|
||
|
bartlett : A parametric test for equality of k variances in normal samples
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Three variations of Levene's test are possible. The possibilities
|
||
|
and their recommended usages are:
|
||
|
|
||
|
* 'median' : Recommended for skewed (non-normal) distributions>
|
||
|
* 'mean' : Recommended for symmetric, moderate-tailed distributions.
|
||
|
* 'trimmed' : Recommended for heavy-tailed distributions.
|
||
|
|
||
|
The test version using the mean was proposed in the original article
|
||
|
of Levene ([2]_) while the median and trimmed mean have been studied by
|
||
|
Brown and Forsythe ([3]_), sometimes also referred to as Brown-Forsythe
|
||
|
test.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm
|
||
|
.. [2] Levene, H. (1960). In Contributions to Probability and Statistics:
|
||
|
Essays in Honor of Harold Hotelling, I. Olkin et al. eds.,
|
||
|
Stanford University Press, pp. 278-292.
|
||
|
.. [3] Brown, M. B. and Forsythe, A. B. (1974), Journal of the American
|
||
|
Statistical Association, 69, 364-367
|
||
|
.. [4] C.I. BLISS (1952), The Statistics of Bioassay: With Special
|
||
|
Reference to the Vitamins, pp 499-503,
|
||
|
:doi:`10.1016/C2013-0-12584-6`.
|
||
|
.. [5] B. Phipson and G. K. Smyth. "Permutation P-values Should Never Be
|
||
|
Zero: Calculating Exact P-values When Permutations Are Randomly
|
||
|
Drawn." Statistical Applications in Genetics and Molecular Biology
|
||
|
9.1 (2010).
|
||
|
.. [6] Ludbrook, J., & Dudley, H. (1998). Why permutation tests are
|
||
|
superior to t and F tests in biomedical research. The American
|
||
|
Statistician, 52(2), 127-132.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
In [4]_, the influence of vitamin C on the tooth growth of guinea pigs
|
||
|
was investigated. In a control study, 60 subjects were divided into
|
||
|
small dose, medium dose, and large dose groups that received
|
||
|
daily doses of 0.5, 1.0 and 2.0 mg of vitamin C, respectively.
|
||
|
After 42 days, the tooth growth was measured.
|
||
|
|
||
|
The ``small_dose``, ``medium_dose``, and ``large_dose`` arrays below record
|
||
|
tooth growth measurements of the three groups in microns.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> small_dose = np.array([
|
||
|
... 4.2, 11.5, 7.3, 5.8, 6.4, 10, 11.2, 11.2, 5.2, 7,
|
||
|
... 15.2, 21.5, 17.6, 9.7, 14.5, 10, 8.2, 9.4, 16.5, 9.7
|
||
|
... ])
|
||
|
>>> medium_dose = np.array([
|
||
|
... 16.5, 16.5, 15.2, 17.3, 22.5, 17.3, 13.6, 14.5, 18.8, 15.5,
|
||
|
... 19.7, 23.3, 23.6, 26.4, 20, 25.2, 25.8, 21.2, 14.5, 27.3
|
||
|
... ])
|
||
|
>>> large_dose = np.array([
|
||
|
... 23.6, 18.5, 33.9, 25.5, 26.4, 32.5, 26.7, 21.5, 23.3, 29.5,
|
||
|
... 25.5, 26.4, 22.4, 24.5, 24.8, 30.9, 26.4, 27.3, 29.4, 23
|
||
|
... ])
|
||
|
|
||
|
The `levene` statistic is sensitive to differences in variances
|
||
|
between the samples.
|
||
|
|
||
|
>>> from scipy import stats
|
||
|
>>> res = stats.levene(small_dose, medium_dose, large_dose)
|
||
|
>>> res.statistic
|
||
|
0.6457341109631506
|
||
|
|
||
|
The value of the statistic tends to be high when there is a large
|
||
|
difference in variances.
|
||
|
|
||
|
We can test for inequality of variance among the groups by comparing the
|
||
|
observed value of the statistic against the null distribution: the
|
||
|
distribution of statistic values derived under the null hypothesis that
|
||
|
the population variances of the three groups are equal.
|
||
|
|
||
|
For this test, the null distribution follows the F distribution as shown
|
||
|
below.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> k, n = 3, 60 # number of samples, total number of observations
|
||
|
>>> dist = stats.f(dfn=k-1, dfd=n-k)
|
||
|
>>> val = np.linspace(0, 5, 100)
|
||
|
>>> pdf = dist.pdf(val)
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 5))
|
||
|
>>> def plot(ax): # we'll reuse this
|
||
|
... ax.plot(val, pdf, color='C0')
|
||
|
... ax.set_title("Levene Test Null Distribution")
|
||
|
... ax.set_xlabel("statistic")
|
||
|
... ax.set_ylabel("probability density")
|
||
|
... ax.set_xlim(0, 5)
|
||
|
... ax.set_ylim(0, 1)
|
||
|
>>> plot(ax)
|
||
|
>>> plt.show()
|
||
|
|
||
|
The comparison is quantified by the p-value: the proportion of values in
|
||
|
the null distribution greater than or equal to the observed value of the
|
||
|
statistic.
|
||
|
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 5))
|
||
|
>>> plot(ax)
|
||
|
>>> pvalue = dist.sf(res.statistic)
|
||
|
>>> annotation = (f'p-value={pvalue:.3f}\n(shaded area)')
|
||
|
>>> props = dict(facecolor='black', width=1, headwidth=5, headlength=8)
|
||
|
>>> _ = ax.annotate(annotation, (1.5, 0.22), (2.25, 0.3), arrowprops=props)
|
||
|
>>> i = val >= res.statistic
|
||
|
>>> ax.fill_between(val[i], y1=0, y2=pdf[i], color='C0')
|
||
|
>>> plt.show()
|
||
|
|
||
|
>>> res.pvalue
|
||
|
0.5280694573759905
|
||
|
|
||
|
If the p-value is "small" - that is, if there is a low probability of
|
||
|
sampling data from distributions with identical variances that produces
|
||
|
such an extreme value of the statistic - this may be taken as evidence
|
||
|
against the null hypothesis in favor of the alternative: the variances of
|
||
|
the groups are not equal. Note that:
|
||
|
|
||
|
- The inverse is not true; that is, the test is not used to provide
|
||
|
evidence for the null hypothesis.
|
||
|
- The threshold for values that will be considered "small" is a choice that
|
||
|
should be made before the data is analyzed [5]_ with consideration of the
|
||
|
risks of both false positives (incorrectly rejecting the null hypothesis)
|
||
|
and false negatives (failure to reject a false null hypothesis).
|
||
|
- Small p-values are not evidence for a *large* effect; rather, they can
|
||
|
only provide evidence for a "significant" effect, meaning that they are
|
||
|
unlikely to have occurred under the null hypothesis.
|
||
|
|
||
|
Note that the F distribution provides an asymptotic approximation of the
|
||
|
null distribution.
|
||
|
For small samples, it may be more appropriate to perform a permutation
|
||
|
test: Under the null hypothesis that all three samples were drawn from
|
||
|
the same population, each of the measurements is equally likely to have
|
||
|
been observed in any of the three samples. Therefore, we can form a
|
||
|
randomized null distribution by calculating the statistic under many
|
||
|
randomly-generated partitionings of the observations into the three
|
||
|
samples.
|
||
|
|
||
|
>>> def statistic(*samples):
|
||
|
... return stats.levene(*samples).statistic
|
||
|
>>> ref = stats.permutation_test(
|
||
|
... (small_dose, medium_dose, large_dose), statistic,
|
||
|
... permutation_type='independent', alternative='greater'
|
||
|
... )
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 5))
|
||
|
>>> plot(ax)
|
||
|
>>> bins = np.linspace(0, 5, 25)
|
||
|
>>> ax.hist(
|
||
|
... ref.null_distribution, bins=bins, density=True, facecolor="C1"
|
||
|
... )
|
||
|
>>> ax.legend(['aymptotic approximation\n(many observations)',
|
||
|
... 'randomized null distribution'])
|
||
|
>>> plot(ax)
|
||
|
>>> plt.show()
|
||
|
|
||
|
>>> ref.pvalue # randomized test p-value
|
||
|
0.4559 # may vary
|
||
|
|
||
|
Note that there is significant disagreement between the p-value calculated
|
||
|
here and the asymptotic approximation returned by `levene` above.
|
||
|
The statistical inferences that can be drawn rigorously from a permutation
|
||
|
test are limited; nonetheless, they may be the preferred approach in many
|
||
|
circumstances [6]_.
|
||
|
|
||
|
Following is another generic example where the null hypothesis would be
|
||
|
rejected.
|
||
|
|
||
|
Test whether the lists `a`, `b` and `c` come from populations
|
||
|
with equal variances.
|
||
|
|
||
|
>>> a = [8.88, 9.12, 9.04, 8.98, 9.00, 9.08, 9.01, 8.85, 9.06, 8.99]
|
||
|
>>> b = [8.88, 8.95, 9.29, 9.44, 9.15, 9.58, 8.36, 9.18, 8.67, 9.05]
|
||
|
>>> c = [8.95, 9.12, 8.95, 8.85, 9.03, 8.84, 9.07, 8.98, 8.86, 8.98]
|
||
|
>>> stat, p = stats.levene(a, b, c)
|
||
|
>>> p
|
||
|
0.002431505967249681
|
||
|
|
||
|
The small p-value suggests that the populations do not have equal
|
||
|
variances.
|
||
|
|
||
|
This is not surprising, given that the sample variance of `b` is much
|
||
|
larger than that of `a` and `c`:
|
||
|
|
||
|
>>> [np.var(x, ddof=1) for x in [a, b, c]]
|
||
|
[0.007054444444444413, 0.13073888888888888, 0.008890000000000002]
|
||
|
|
||
|
"""
|
||
|
if center not in ['mean', 'median', 'trimmed']:
|
||
|
raise ValueError("center must be 'mean', 'median' or 'trimmed'.")
|
||
|
|
||
|
k = len(samples)
|
||
|
if k < 2:
|
||
|
raise ValueError("Must enter at least two input sample vectors.")
|
||
|
|
||
|
Ni = np.empty(k)
|
||
|
Yci = np.empty(k, 'd')
|
||
|
|
||
|
if center == 'median':
|
||
|
|
||
|
def func(x):
|
||
|
return np.median(x, axis=0)
|
||
|
|
||
|
elif center == 'mean':
|
||
|
|
||
|
def func(x):
|
||
|
return np.mean(x, axis=0)
|
||
|
|
||
|
else: # center == 'trimmed'
|
||
|
samples = tuple(_stats_py.trimboth(np.sort(sample), proportiontocut)
|
||
|
for sample in samples)
|
||
|
|
||
|
def func(x):
|
||
|
return np.mean(x, axis=0)
|
||
|
|
||
|
for j in range(k):
|
||
|
Ni[j] = len(samples[j])
|
||
|
Yci[j] = func(samples[j])
|
||
|
Ntot = np.sum(Ni, axis=0)
|
||
|
|
||
|
# compute Zij's
|
||
|
Zij = [None] * k
|
||
|
for i in range(k):
|
||
|
Zij[i] = abs(asarray(samples[i]) - Yci[i])
|
||
|
|
||
|
# compute Zbari
|
||
|
Zbari = np.empty(k, 'd')
|
||
|
Zbar = 0.0
|
||
|
for i in range(k):
|
||
|
Zbari[i] = np.mean(Zij[i], axis=0)
|
||
|
Zbar += Zbari[i] * Ni[i]
|
||
|
|
||
|
Zbar /= Ntot
|
||
|
numer = (Ntot - k) * np.sum(Ni * (Zbari - Zbar)**2, axis=0)
|
||
|
|
||
|
# compute denom_variance
|
||
|
dvar = 0.0
|
||
|
for i in range(k):
|
||
|
dvar += np.sum((Zij[i] - Zbari[i])**2, axis=0)
|
||
|
|
||
|
denom = (k - 1.0) * dvar
|
||
|
|
||
|
W = numer / denom
|
||
|
pval = distributions.f.sf(W, k-1, Ntot-k) # 1 - cdf
|
||
|
return LeveneResult(W, pval)
|
||
|
|
||
|
|
||
|
def _apply_func(x, g, func):
|
||
|
# g is list of indices into x
|
||
|
# separating x into different groups
|
||
|
# func should be applied over the groups
|
||
|
g = unique(r_[0, g, len(x)])
|
||
|
output = [func(x[g[k]:g[k+1]]) for k in range(len(g) - 1)]
|
||
|
|
||
|
return asarray(output)
|
||
|
|
||
|
|
||
|
FlignerResult = namedtuple('FlignerResult', ('statistic', 'pvalue'))
|
||
|
|
||
|
|
||
|
@_axis_nan_policy_factory(FlignerResult, n_samples=None)
|
||
|
def fligner(*samples, center='median', proportiontocut=0.05):
|
||
|
r"""Perform Fligner-Killeen test for equality of variance.
|
||
|
|
||
|
Fligner's test tests the null hypothesis that all input samples
|
||
|
are from populations with equal variances. Fligner-Killeen's test is
|
||
|
distribution free when populations are identical [2]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sample1, sample2, ... : array_like
|
||
|
Arrays of sample data. Need not be the same length.
|
||
|
center : {'mean', 'median', 'trimmed'}, optional
|
||
|
Keyword argument controlling which function of the data is used in
|
||
|
computing the test statistic. The default is 'median'.
|
||
|
proportiontocut : float, optional
|
||
|
When `center` is 'trimmed', this gives the proportion of data points
|
||
|
to cut from each end. (See `scipy.stats.trim_mean`.)
|
||
|
Default is 0.05.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
statistic : float
|
||
|
The test statistic.
|
||
|
pvalue : float
|
||
|
The p-value for the hypothesis test.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bartlett : A parametric test for equality of k variances in normal samples
|
||
|
levene : A robust parametric test for equality of k variances
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As with Levene's test there are three variants of Fligner's test that
|
||
|
differ by the measure of central tendency used in the test. See `levene`
|
||
|
for more information.
|
||
|
|
||
|
Conover et al. (1981) examine many of the existing parametric and
|
||
|
nonparametric tests by extensive simulations and they conclude that the
|
||
|
tests proposed by Fligner and Killeen (1976) and Levene (1960) appear to be
|
||
|
superior in terms of robustness of departures from normality and power
|
||
|
[3]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Park, C. and Lindsay, B. G. (1999). Robust Scale Estimation and
|
||
|
Hypothesis Testing based on Quadratic Inference Function. Technical
|
||
|
Report #99-03, Center for Likelihood Studies, Pennsylvania State
|
||
|
University.
|
||
|
https://cecas.clemson.edu/~cspark/cv/paper/qif/draftqif2.pdf
|
||
|
.. [2] Fligner, M.A. and Killeen, T.J. (1976). Distribution-free two-sample
|
||
|
tests for scale. 'Journal of the American Statistical Association.'
|
||
|
71(353), 210-213.
|
||
|
.. [3] Park, C. and Lindsay, B. G. (1999). Robust Scale Estimation and
|
||
|
Hypothesis Testing based on Quadratic Inference Function. Technical
|
||
|
Report #99-03, Center for Likelihood Studies, Pennsylvania State
|
||
|
University.
|
||
|
.. [4] Conover, W. J., Johnson, M. E. and Johnson M. M. (1981). A
|
||
|
comparative study of tests for homogeneity of variances, with
|
||
|
applications to the outer continental shelf bidding data.
|
||
|
Technometrics, 23(4), 351-361.
|
||
|
.. [5] C.I. BLISS (1952), The Statistics of Bioassay: With Special
|
||
|
Reference to the Vitamins, pp 499-503,
|
||
|
:doi:`10.1016/C2013-0-12584-6`.
|
||
|
.. [6] B. Phipson and G. K. Smyth. "Permutation P-values Should Never Be
|
||
|
Zero: Calculating Exact P-values When Permutations Are Randomly
|
||
|
Drawn." Statistical Applications in Genetics and Molecular Biology
|
||
|
9.1 (2010).
|
||
|
.. [7] Ludbrook, J., & Dudley, H. (1998). Why permutation tests are
|
||
|
superior to t and F tests in biomedical research. The American
|
||
|
Statistician, 52(2), 127-132.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
In [5]_, the influence of vitamin C on the tooth growth of guinea pigs
|
||
|
was investigated. In a control study, 60 subjects were divided into
|
||
|
small dose, medium dose, and large dose groups that received
|
||
|
daily doses of 0.5, 1.0 and 2.0 mg of vitamin C, respectively.
|
||
|
After 42 days, the tooth growth was measured.
|
||
|
|
||
|
The ``small_dose``, ``medium_dose``, and ``large_dose`` arrays below record
|
||
|
tooth growth measurements of the three groups in microns.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> small_dose = np.array([
|
||
|
... 4.2, 11.5, 7.3, 5.8, 6.4, 10, 11.2, 11.2, 5.2, 7,
|
||
|
... 15.2, 21.5, 17.6, 9.7, 14.5, 10, 8.2, 9.4, 16.5, 9.7
|
||
|
... ])
|
||
|
>>> medium_dose = np.array([
|
||
|
... 16.5, 16.5, 15.2, 17.3, 22.5, 17.3, 13.6, 14.5, 18.8, 15.5,
|
||
|
... 19.7, 23.3, 23.6, 26.4, 20, 25.2, 25.8, 21.2, 14.5, 27.3
|
||
|
... ])
|
||
|
>>> large_dose = np.array([
|
||
|
... 23.6, 18.5, 33.9, 25.5, 26.4, 32.5, 26.7, 21.5, 23.3, 29.5,
|
||
|
... 25.5, 26.4, 22.4, 24.5, 24.8, 30.9, 26.4, 27.3, 29.4, 23
|
||
|
... ])
|
||
|
|
||
|
The `fligner` statistic is sensitive to differences in variances
|
||
|
between the samples.
|
||
|
|
||
|
>>> from scipy import stats
|
||
|
>>> res = stats.fligner(small_dose, medium_dose, large_dose)
|
||
|
>>> res.statistic
|
||
|
1.3878943408857916
|
||
|
|
||
|
The value of the statistic tends to be high when there is a large
|
||
|
difference in variances.
|
||
|
|
||
|
We can test for inequality of variance among the groups by comparing the
|
||
|
observed value of the statistic against the null distribution: the
|
||
|
distribution of statistic values derived under the null hypothesis that
|
||
|
the population variances of the three groups are equal.
|
||
|
|
||
|
For this test, the null distribution follows the chi-square distribution
|
||
|
as shown below.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> k = 3 # number of samples
|
||
|
>>> dist = stats.chi2(df=k-1)
|
||
|
>>> val = np.linspace(0, 8, 100)
|
||
|
>>> pdf = dist.pdf(val)
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 5))
|
||
|
>>> def plot(ax): # we'll reuse this
|
||
|
... ax.plot(val, pdf, color='C0')
|
||
|
... ax.set_title("Fligner Test Null Distribution")
|
||
|
... ax.set_xlabel("statistic")
|
||
|
... ax.set_ylabel("probability density")
|
||
|
... ax.set_xlim(0, 8)
|
||
|
... ax.set_ylim(0, 0.5)
|
||
|
>>> plot(ax)
|
||
|
>>> plt.show()
|
||
|
|
||
|
The comparison is quantified by the p-value: the proportion of values in
|
||
|
the null distribution greater than or equal to the observed value of the
|
||
|
statistic.
|
||
|
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 5))
|
||
|
>>> plot(ax)
|
||
|
>>> pvalue = dist.sf(res.statistic)
|
||
|
>>> annotation = (f'p-value={pvalue:.4f}\n(shaded area)')
|
||
|
>>> props = dict(facecolor='black', width=1, headwidth=5, headlength=8)
|
||
|
>>> _ = ax.annotate(annotation, (1.5, 0.22), (2.25, 0.3), arrowprops=props)
|
||
|
>>> i = val >= res.statistic
|
||
|
>>> ax.fill_between(val[i], y1=0, y2=pdf[i], color='C0')
|
||
|
>>> plt.show()
|
||
|
|
||
|
>>> res.pvalue
|
||
|
0.49960016501182125
|
||
|
|
||
|
If the p-value is "small" - that is, if there is a low probability of
|
||
|
sampling data from distributions with identical variances that produces
|
||
|
such an extreme value of the statistic - this may be taken as evidence
|
||
|
against the null hypothesis in favor of the alternative: the variances of
|
||
|
the groups are not equal. Note that:
|
||
|
|
||
|
- The inverse is not true; that is, the test is not used to provide
|
||
|
evidence for the null hypothesis.
|
||
|
- The threshold for values that will be considered "small" is a choice that
|
||
|
should be made before the data is analyzed [6]_ with consideration of the
|
||
|
risks of both false positives (incorrectly rejecting the null hypothesis)
|
||
|
and false negatives (failure to reject a false null hypothesis).
|
||
|
- Small p-values are not evidence for a *large* effect; rather, they can
|
||
|
only provide evidence for a "significant" effect, meaning that they are
|
||
|
unlikely to have occurred under the null hypothesis.
|
||
|
|
||
|
Note that the chi-square distribution provides an asymptotic approximation
|
||
|
of the null distribution.
|
||
|
For small samples, it may be more appropriate to perform a
|
||
|
permutation test: Under the null hypothesis that all three samples were
|
||
|
drawn from the same population, each of the measurements is equally likely
|
||
|
to have been observed in any of the three samples. Therefore, we can form
|
||
|
a randomized null distribution by calculating the statistic under many
|
||
|
randomly-generated partitionings of the observations into the three
|
||
|
samples.
|
||
|
|
||
|
>>> def statistic(*samples):
|
||
|
... return stats.fligner(*samples).statistic
|
||
|
>>> ref = stats.permutation_test(
|
||
|
... (small_dose, medium_dose, large_dose), statistic,
|
||
|
... permutation_type='independent', alternative='greater'
|
||
|
... )
|
||
|
>>> fig, ax = plt.subplots(figsize=(8, 5))
|
||
|
>>> plot(ax)
|
||
|
>>> bins = np.linspace(0, 8, 25)
|
||
|
>>> ax.hist(
|
||
|
... ref.null_distribution, bins=bins, density=True, facecolor="C1"
|
||
|
... )
|
||
|
>>> ax.legend(['aymptotic approximation\n(many observations)',
|
||
|
... 'randomized null distribution'])
|
||
|
>>> plot(ax)
|
||
|
>>> plt.show()
|
||
|
|
||
|
>>> ref.pvalue # randomized test p-value
|
||
|
0.4332 # may vary
|
||
|
|
||
|
Note that there is significant disagreement between the p-value calculated
|
||
|
here and the asymptotic approximation returned by `fligner` above.
|
||
|
The statistical inferences that can be drawn rigorously from a permutation
|
||
|
test are limited; nonetheless, they may be the preferred approach in many
|
||
|
circumstances [7]_.
|
||
|
|
||
|
Following is another generic example where the null hypothesis would be
|
||
|
rejected.
|
||
|
|
||
|
Test whether the lists `a`, `b` and `c` come from populations
|
||
|
with equal variances.
|
||
|
|
||
|
>>> a = [8.88, 9.12, 9.04, 8.98, 9.00, 9.08, 9.01, 8.85, 9.06, 8.99]
|
||
|
>>> b = [8.88, 8.95, 9.29, 9.44, 9.15, 9.58, 8.36, 9.18, 8.67, 9.05]
|
||
|
>>> c = [8.95, 9.12, 8.95, 8.85, 9.03, 8.84, 9.07, 8.98, 8.86, 8.98]
|
||
|
>>> stat, p = stats.fligner(a, b, c)
|
||
|
>>> p
|
||
|
0.00450826080004775
|
||
|
|
||
|
The small p-value suggests that the populations do not have equal
|
||
|
variances.
|
||
|
|
||
|
This is not surprising, given that the sample variance of `b` is much
|
||
|
larger than that of `a` and `c`:
|
||
|
|
||
|
>>> [np.var(x, ddof=1) for x in [a, b, c]]
|
||
|
[0.007054444444444413, 0.13073888888888888, 0.008890000000000002]
|
||
|
|
||
|
"""
|
||
|
if center not in ['mean', 'median', 'trimmed']:
|
||
|
raise ValueError("center must be 'mean', 'median' or 'trimmed'.")
|
||
|
|
||
|
k = len(samples)
|
||
|
if k < 2:
|
||
|
raise ValueError("Must enter at least two input sample vectors.")
|
||
|
|
||
|
# Handle empty input
|
||
|
for sample in samples:
|
||
|
if sample.size == 0:
|
||
|
NaN = _get_nan(*samples)
|
||
|
return FlignerResult(NaN, NaN)
|
||
|
|
||
|
if center == 'median':
|
||
|
|
||
|
def func(x):
|
||
|
return np.median(x, axis=0)
|
||
|
|
||
|
elif center == 'mean':
|
||
|
|
||
|
def func(x):
|
||
|
return np.mean(x, axis=0)
|
||
|
|
||
|
else: # center == 'trimmed'
|
||
|
samples = tuple(_stats_py.trimboth(sample, proportiontocut)
|
||
|
for sample in samples)
|
||
|
|
||
|
def func(x):
|
||
|
return np.mean(x, axis=0)
|
||
|
|
||
|
Ni = asarray([len(samples[j]) for j in range(k)])
|
||
|
Yci = asarray([func(samples[j]) for j in range(k)])
|
||
|
Ntot = np.sum(Ni, axis=0)
|
||
|
# compute Zij's
|
||
|
Zij = [abs(asarray(samples[i]) - Yci[i]) for i in range(k)]
|
||
|
allZij = []
|
||
|
g = [0]
|
||
|
for i in range(k):
|
||
|
allZij.extend(list(Zij[i]))
|
||
|
g.append(len(allZij))
|
||
|
|
||
|
ranks = _stats_py.rankdata(allZij)
|
||
|
sample = distributions.norm.ppf(ranks / (2*(Ntot + 1.0)) + 0.5)
|
||
|
|
||
|
# compute Aibar
|
||
|
Aibar = _apply_func(sample, g, np.sum) / Ni
|
||
|
anbar = np.mean(sample, axis=0)
|
||
|
varsq = np.var(sample, axis=0, ddof=1)
|
||
|
statistic = np.sum(Ni * (asarray(Aibar) - anbar)**2.0, axis=0) / varsq
|
||
|
chi2 = _SimpleChi2(k-1)
|
||
|
pval = _get_pvalue(statistic, chi2, alternative='greater', symmetric=False, xp=np)
|
||
|
return FlignerResult(statistic, pval)
|
||
|
|
||
|
|
||
|
@_axis_nan_policy_factory(lambda x1: (x1,), n_samples=4, n_outputs=1)
|
||
|
def _mood_inner_lc(xy, x, diffs, sorted_xy, n, m, N) -> float:
|
||
|
# Obtain the unique values and their frequencies from the pooled samples.
|
||
|
# "a_j, + b_j, = t_j, for j = 1, ... k" where `k` is the number of unique
|
||
|
# classes, and "[t]he number of values associated with the x's and y's in
|
||
|
# the jth class will be denoted by a_j, and b_j respectively."
|
||
|
# (Mielke, 312)
|
||
|
# Reuse previously computed sorted array and `diff` arrays to obtain the
|
||
|
# unique values and counts. Prepend `diffs` with a non-zero to indicate
|
||
|
# that the first element should be marked as not matching what preceded it.
|
||
|
diffs_prep = np.concatenate(([1], diffs))
|
||
|
# Unique elements are where the was a difference between elements in the
|
||
|
# sorted array
|
||
|
uniques = sorted_xy[diffs_prep != 0]
|
||
|
# The count of each element is the bin size for each set of consecutive
|
||
|
# differences where the difference is zero. Replace nonzero differences
|
||
|
# with 1 and then use the cumulative sum to count the indices.
|
||
|
t = np.bincount(np.cumsum(np.asarray(diffs_prep != 0, dtype=int)))[1:]
|
||
|
k = len(uniques)
|
||
|
js = np.arange(1, k + 1, dtype=int)
|
||
|
# the `b` array mentioned in the paper is not used, outside of the
|
||
|
# calculation of `t`, so we do not need to calculate it separately. Here
|
||
|
# we calculate `a`. In plain language, `a[j]` is the number of values in
|
||
|
# `x` that equal `uniques[j]`.
|
||
|
sorted_xyx = np.sort(np.concatenate((xy, x)))
|
||
|
diffs = np.diff(sorted_xyx)
|
||
|
diffs_prep = np.concatenate(([1], diffs))
|
||
|
diff_is_zero = np.asarray(diffs_prep != 0, dtype=int)
|
||
|
xyx_counts = np.bincount(np.cumsum(diff_is_zero))[1:]
|
||
|
a = xyx_counts - t
|
||
|
# "Define .. a_0 = b_0 = t_0 = S_0 = 0" (Mielke 312) so we shift `a`
|
||
|
# and `t` arrays over 1 to allow a first element of 0 to accommodate this
|
||
|
# indexing.
|
||
|
t = np.concatenate(([0], t))
|
||
|
a = np.concatenate(([0], a))
|
||
|
# S is built from `t`, so it does not need a preceding zero added on.
|
||
|
S = np.cumsum(t)
|
||
|
# define a copy of `S` with a prepending zero for later use to avoid
|
||
|
# the need for indexing.
|
||
|
S_i_m1 = np.concatenate(([0], S[:-1]))
|
||
|
|
||
|
# Psi, as defined by the 6th unnumbered equation on page 313 (Mielke).
|
||
|
# Note that in the paper there is an error where the denominator `2` is
|
||
|
# squared when it should be the entire equation.
|
||
|
def psi(indicator):
|
||
|
return (indicator - (N + 1)/2)**2
|
||
|
|
||
|
# define summation range for use in calculation of phi, as seen in sum
|
||
|
# in the unnumbered equation on the bottom of page 312 (Mielke).
|
||
|
s_lower = S[js - 1] + 1
|
||
|
s_upper = S[js] + 1
|
||
|
phi_J = [np.arange(s_lower[idx], s_upper[idx]) for idx in range(k)]
|
||
|
|
||
|
# for every range in the above array, determine the sum of psi(I) for
|
||
|
# every element in the range. Divide all the sums by `t`. Following the
|
||
|
# last unnumbered equation on page 312.
|
||
|
phis = [np.sum(psi(I_j)) for I_j in phi_J] / t[js]
|
||
|
|
||
|
# `T` is equal to a[j] * phi[j], per the first unnumbered equation on
|
||
|
# page 312. `phis` is already in the order based on `js`, so we index
|
||
|
# into `a` with `js` as well.
|
||
|
T = sum(phis * a[js])
|
||
|
|
||
|
# The approximate statistic
|
||
|
E_0_T = n * (N * N - 1) / 12
|
||
|
|
||
|
varM = (m * n * (N + 1.0) * (N ** 2 - 4) / 180 -
|
||
|
m * n / (180 * N * (N - 1)) * np.sum(
|
||
|
t * (t**2 - 1) * (t**2 - 4 + (15 * (N - S - S_i_m1) ** 2))
|
||
|
))
|
||
|
|
||
|
return ((T - E_0_T) / np.sqrt(varM),)
|
||
|
|
||
|
|
||
|
def _mood_too_small(samples, kwargs, axis=-1):
|
||
|
x, y = samples
|
||
|
n = x.shape[axis]
|
||
|
m = y.shape[axis]
|
||
|
N = m + n
|
||
|
return N < 3
|
||
|
|
||
|
|
||
|
@_axis_nan_policy_factory(SignificanceResult, n_samples=2, too_small=_mood_too_small)
|
||
|
def mood(x, y, axis=0, alternative="two-sided"):
|
||
|
"""Perform Mood's test for equal scale parameters.
|
||
|
|
||
|
Mood's two-sample test for scale parameters is a non-parametric
|
||
|
test for the null hypothesis that two samples are drawn from the
|
||
|
same distribution with the same scale parameter.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array_like
|
||
|
Arrays of sample data. There must be at least three observations
|
||
|
total.
|
||
|
axis : int, optional
|
||
|
The axis along which the samples are tested. `x` and `y` can be of
|
||
|
different length along `axis`.
|
||
|
If `axis` is None, `x` and `y` are flattened and the test is done on
|
||
|
all values in the flattened arrays.
|
||
|
alternative : {'two-sided', 'less', 'greater'}, optional
|
||
|
Defines the alternative hypothesis. Default is 'two-sided'.
|
||
|
The following options are available:
|
||
|
|
||
|
* 'two-sided': the scales of the distributions underlying `x` and `y`
|
||
|
are different.
|
||
|
* 'less': the scale of the distribution underlying `x` is less than
|
||
|
the scale of the distribution underlying `y`.
|
||
|
* 'greater': the scale of the distribution underlying `x` is greater
|
||
|
than the scale of the distribution underlying `y`.
|
||
|
|
||
|
.. versionadded:: 1.7.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : SignificanceResult
|
||
|
An object containing attributes:
|
||
|
|
||
|
statistic : scalar or ndarray
|
||
|
The z-score for the hypothesis test. For 1-D inputs a scalar is
|
||
|
returned.
|
||
|
pvalue : scalar ndarray
|
||
|
The p-value for the hypothesis test.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fligner : A non-parametric test for the equality of k variances
|
||
|
ansari : A non-parametric test for the equality of 2 variances
|
||
|
bartlett : A parametric test for equality of k variances in normal samples
|
||
|
levene : A parametric test for equality of k variances
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The data are assumed to be drawn from probability distributions ``f(x)``
|
||
|
and ``f(x/s) / s`` respectively, for some probability density function f.
|
||
|
The null hypothesis is that ``s == 1``.
|
||
|
|
||
|
For multi-dimensional arrays, if the inputs are of shapes
|
||
|
``(n0, n1, n2, n3)`` and ``(n0, m1, n2, n3)``, then if ``axis=1``, the
|
||
|
resulting z and p values will have shape ``(n0, n2, n3)``. Note that
|
||
|
``n1`` and ``m1`` don't have to be equal, but the other dimensions do.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
[1] Mielke, Paul W. "Note on Some Squared Rank Tests with Existing Ties."
|
||
|
Technometrics, vol. 9, no. 2, 1967, pp. 312-14. JSTOR,
|
||
|
https://doi.org/10.2307/1266427. Accessed 18 May 2022.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import stats
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> x2 = rng.standard_normal((2, 45, 6, 7))
|
||
|
>>> x1 = rng.standard_normal((2, 30, 6, 7))
|
||
|
>>> res = stats.mood(x1, x2, axis=1)
|
||
|
>>> res.pvalue.shape
|
||
|
(2, 6, 7)
|
||
|
|
||
|
Find the number of points where the difference in scale is not significant:
|
||
|
|
||
|
>>> (res.pvalue > 0.1).sum()
|
||
|
78
|
||
|
|
||
|
Perform the test with different scales:
|
||
|
|
||
|
>>> x1 = rng.standard_normal((2, 30))
|
||
|
>>> x2 = rng.standard_normal((2, 35)) * 10.0
|
||
|
>>> stats.mood(x1, x2, axis=1)
|
||
|
SignificanceResult(statistic=array([-5.76174136, -6.12650783]),
|
||
|
pvalue=array([8.32505043e-09, 8.98287869e-10]))
|
||
|
|
||
|
"""
|
||
|
x = np.asarray(x, dtype=float)
|
||
|
y = np.asarray(y, dtype=float)
|
||
|
|
||
|
if axis < 0:
|
||
|
axis = x.ndim + axis
|
||
|
|
||
|
# Determine shape of the result arrays
|
||
|
res_shape = tuple([x.shape[ax] for ax in range(len(x.shape)) if ax != axis])
|
||
|
if not (res_shape == tuple([y.shape[ax] for ax in range(len(y.shape)) if
|
||
|
ax != axis])):
|
||
|
raise ValueError("Dimensions of x and y on all axes except `axis` "
|
||
|
"should match")
|
||
|
|
||
|
n = x.shape[axis]
|
||
|
m = y.shape[axis]
|
||
|
N = m + n
|
||
|
if N < 3:
|
||
|
raise ValueError("Not enough observations.")
|
||
|
|
||
|
xy = np.concatenate((x, y), axis=axis)
|
||
|
# determine if any of the samples contain ties
|
||
|
sorted_xy = np.sort(xy, axis=axis)
|
||
|
diffs = np.diff(sorted_xy, axis=axis)
|
||
|
if 0 in diffs:
|
||
|
z = np.asarray(_mood_inner_lc(xy, x, diffs, sorted_xy, n, m, N,
|
||
|
axis=axis))
|
||
|
else:
|
||
|
if axis != 0:
|
||
|
xy = np.moveaxis(xy, axis, 0)
|
||
|
|
||
|
xy = xy.reshape(xy.shape[0], -1)
|
||
|
# Generalized to the n-dimensional case by adding the axis argument,
|
||
|
# and using for loops, since rankdata is not vectorized. For improving
|
||
|
# performance consider vectorizing rankdata function.
|
||
|
all_ranks = np.empty_like(xy)
|
||
|
for j in range(xy.shape[1]):
|
||
|
all_ranks[:, j] = _stats_py.rankdata(xy[:, j])
|
||
|
|
||
|
Ri = all_ranks[:n]
|
||
|
M = np.sum((Ri - (N + 1.0) / 2) ** 2, axis=0)
|
||
|
# Approx stat.
|
||
|
mnM = n * (N * N - 1.0) / 12
|
||
|
varM = m * n * (N + 1.0) * (N + 2) * (N - 2) / 180
|
||
|
z = (M - mnM) / sqrt(varM)
|
||
|
pval = _get_pvalue(z, _SimpleNormal(), alternative, xp=np)
|
||
|
|
||
|
if res_shape == ():
|
||
|
# Return scalars, not 0-D arrays
|
||
|
z = z[0]
|
||
|
pval = pval[0]
|
||
|
else:
|
||
|
z.shape = res_shape
|
||
|
pval.shape = res_shape
|
||
|
return SignificanceResult(z[()], pval[()])
|
||
|
|
||
|
|
||
|
WilcoxonResult = _make_tuple_bunch('WilcoxonResult', ['statistic', 'pvalue'])
|
||
|
|
||
|
|
||
|
def wilcoxon_result_unpacker(res):
|
||
|
if hasattr(res, 'zstatistic'):
|
||
|
return res.statistic, res.pvalue, res.zstatistic
|
||
|
else:
|
||
|
return res.statistic, res.pvalue
|
||
|
|
||
|
|
||
|
def wilcoxon_result_object(statistic, pvalue, zstatistic=None):
|
||
|
res = WilcoxonResult(statistic, pvalue)
|
||
|
if zstatistic is not None:
|
||
|
res.zstatistic = zstatistic
|
||
|
return res
|
||
|
|
||
|
|
||
|
def wilcoxon_outputs(kwds):
|
||
|
method = kwds.get('method', 'auto')
|
||
|
if method == 'approx':
|
||
|
return 3
|
||
|
return 2
|
||
|
|
||
|
|
||
|
@_rename_parameter("mode", "method")
|
||
|
@_axis_nan_policy_factory(
|
||
|
wilcoxon_result_object, paired=True,
|
||
|
n_samples=lambda kwds: 2 if kwds.get('y', None) is not None else 1,
|
||
|
result_to_tuple=wilcoxon_result_unpacker, n_outputs=wilcoxon_outputs,
|
||
|
)
|
||
|
def wilcoxon(x, y=None, zero_method="wilcox", correction=False,
|
||
|
alternative="two-sided", method='auto', *, axis=0):
|
||
|
"""Calculate the Wilcoxon signed-rank test.
|
||
|
|
||
|
The Wilcoxon signed-rank test tests the null hypothesis that two
|
||
|
related paired samples come from the same distribution. In particular,
|
||
|
it tests whether the distribution of the differences ``x - y`` is symmetric
|
||
|
about zero. It is a non-parametric version of the paired T-test.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Either the first set of measurements (in which case ``y`` is the second
|
||
|
set of measurements), or the differences between two sets of
|
||
|
measurements (in which case ``y`` is not to be specified.) Must be
|
||
|
one-dimensional.
|
||
|
y : array_like, optional
|
||
|
Either the second set of measurements (if ``x`` is the first set of
|
||
|
measurements), or not specified (if ``x`` is the differences between
|
||
|
two sets of measurements.) Must be one-dimensional.
|
||
|
|
||
|
.. warning::
|
||
|
When `y` is provided, `wilcoxon` calculates the test statistic
|
||
|
based on the ranks of the absolute values of ``d = x - y``.
|
||
|
Roundoff error in the subtraction can result in elements of ``d``
|
||
|
being assigned different ranks even when they would be tied with
|
||
|
exact arithmetic. Rather than passing `x` and `y` separately,
|
||
|
consider computing the difference ``x - y``, rounding as needed to
|
||
|
ensure that only truly unique elements are numerically distinct,
|
||
|
and passing the result as `x`, leaving `y` at the default (None).
|
||
|
|
||
|
zero_method : {"wilcox", "pratt", "zsplit"}, optional
|
||
|
There are different conventions for handling pairs of observations
|
||
|
with equal values ("zero-differences", or "zeros").
|
||
|
|
||
|
* "wilcox": Discards all zero-differences (default); see [4]_.
|
||
|
* "pratt": Includes zero-differences in the ranking process,
|
||
|
but drops the ranks of the zeros (more conservative); see [3]_.
|
||
|
In this case, the normal approximation is adjusted as in [5]_.
|
||
|
* "zsplit": Includes zero-differences in the ranking process and
|
||
|
splits the zero rank between positive and negative ones.
|
||
|
|
||
|
correction : bool, optional
|
||
|
If True, apply continuity correction by adjusting the Wilcoxon rank
|
||
|
statistic by 0.5 towards the mean value when computing the
|
||
|
z-statistic if a normal approximation is used. Default is False.
|
||
|
alternative : {"two-sided", "greater", "less"}, optional
|
||
|
Defines the alternative hypothesis. Default is 'two-sided'.
|
||
|
In the following, let ``d`` represent the difference between the paired
|
||
|
samples: ``d = x - y`` if both ``x`` and ``y`` are provided, or
|
||
|
``d = x`` otherwise.
|
||
|
|
||
|
* 'two-sided': the distribution underlying ``d`` is not symmetric
|
||
|
about zero.
|
||
|
* 'less': the distribution underlying ``d`` is stochastically less
|
||
|
than a distribution symmetric about zero.
|
||
|
* 'greater': the distribution underlying ``d`` is stochastically
|
||
|
greater than a distribution symmetric about zero.
|
||
|
|
||
|
method : {"auto", "exact", "approx"} or `PermutationMethod` instance, optional
|
||
|
Method to calculate the p-value, see Notes. Default is "auto".
|
||
|
|
||
|
axis : int or None, default: 0
|
||
|
If an int, the axis of the input along which to compute the statistic.
|
||
|
The statistic of each axis-slice (e.g. row) of the input will appear
|
||
|
in a corresponding element of the output. If ``None``, the input will
|
||
|
be raveled before computing the statistic.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
An object with the following attributes.
|
||
|
|
||
|
statistic : array_like
|
||
|
If `alternative` is "two-sided", the sum of the ranks of the
|
||
|
differences above or below zero, whichever is smaller.
|
||
|
Otherwise the sum of the ranks of the differences above zero.
|
||
|
pvalue : array_like
|
||
|
The p-value for the test depending on `alternative` and `method`.
|
||
|
zstatistic : array_like
|
||
|
When ``method = 'approx'``, this is the normalized z-statistic::
|
||
|
|
||
|
z = (T - mn - d) / se
|
||
|
|
||
|
where ``T`` is `statistic` as defined above, ``mn`` is the mean of the
|
||
|
distribution under the null hypothesis, ``d`` is a continuity
|
||
|
correction, and ``se`` is the standard error.
|
||
|
When ``method != 'approx'``, this attribute is not available.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kruskal, mannwhitneyu
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
In the following, let ``d`` represent the difference between the paired
|
||
|
samples: ``d = x - y`` if both ``x`` and ``y`` are provided, or ``d = x``
|
||
|
otherwise. Assume that all elements of ``d`` are independent and
|
||
|
identically distributed observations, and all are distinct and nonzero.
|
||
|
|
||
|
- When ``len(d)`` is sufficiently large, the null distribution of the
|
||
|
normalized test statistic (`zstatistic` above) is approximately normal,
|
||
|
and ``method = 'approx'`` can be used to compute the p-value.
|
||
|
|
||
|
- When ``len(d)`` is small, the normal approximation may not be accurate,
|
||
|
and ``method='exact'`` is preferred (at the cost of additional
|
||
|
execution time).
|
||
|
|
||
|
- The default, ``method='auto'``, selects between the two: when
|
||
|
``len(d) <= 50`` and there are no zeros, the exact method is used;
|
||
|
otherwise, the approximate method is used.
|
||
|
|
||
|
The presence of "ties" (i.e. not all elements of ``d`` are unique) or
|
||
|
"zeros" (i.e. elements of ``d`` are zero) changes the null distribution
|
||
|
of the test statistic, and ``method='exact'`` no longer calculates
|
||
|
the exact p-value. If ``method='approx'``, the z-statistic is adjusted
|
||
|
for more accurate comparison against the standard normal, but still,
|
||
|
for finite sample sizes, the standard normal is only an approximation of
|
||
|
the true null distribution of the z-statistic. For such situations, the
|
||
|
`method` parameter also accepts instances `PermutationMethod`. In this
|
||
|
case, the p-value is computed using `permutation_test` with the provided
|
||
|
configuration options and other appropriate settings.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
|
||
|
.. [2] Conover, W.J., Practical Nonparametric Statistics, 1971.
|
||
|
.. [3] Pratt, J.W., Remarks on Zeros and Ties in the Wilcoxon Signed
|
||
|
Rank Procedures, Journal of the American Statistical Association,
|
||
|
Vol. 54, 1959, pp. 655-667. :doi:`10.1080/01621459.1959.10501526`
|
||
|
.. [4] Wilcoxon, F., Individual Comparisons by Ranking Methods,
|
||
|
Biometrics Bulletin, Vol. 1, 1945, pp. 80-83. :doi:`10.2307/3001968`
|
||
|
.. [5] Cureton, E.E., The Normal Approximation to the Signed-Rank
|
||
|
Sampling Distribution When Zero Differences are Present,
|
||
|
Journal of the American Statistical Association, Vol. 62, 1967,
|
||
|
pp. 1068-1069. :doi:`10.1080/01621459.1967.10500917`
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
In [4]_, the differences in height between cross- and self-fertilized
|
||
|
corn plants is given as follows:
|
||
|
|
||
|
>>> d = [6, 8, 14, 16, 23, 24, 28, 29, 41, -48, 49, 56, 60, -67, 75]
|
||
|
|
||
|
Cross-fertilized plants appear to be higher. To test the null
|
||
|
hypothesis that there is no height difference, we can apply the
|
||
|
two-sided test:
|
||
|
|
||
|
>>> from scipy.stats import wilcoxon
|
||
|
>>> res = wilcoxon(d)
|
||
|
>>> res.statistic, res.pvalue
|
||
|
(24.0, 0.041259765625)
|
||
|
|
||
|
Hence, we would reject the null hypothesis at a confidence level of 5%,
|
||
|
concluding that there is a difference in height between the groups.
|
||
|
To confirm that the median of the differences can be assumed to be
|
||
|
positive, we use:
|
||
|
|
||
|
>>> res = wilcoxon(d, alternative='greater')
|
||
|
>>> res.statistic, res.pvalue
|
||
|
(96.0, 0.0206298828125)
|
||
|
|
||
|
This shows that the null hypothesis that the median is negative can be
|
||
|
rejected at a confidence level of 5% in favor of the alternative that
|
||
|
the median is greater than zero. The p-values above are exact. Using the
|
||
|
normal approximation gives very similar values:
|
||
|
|
||
|
>>> res = wilcoxon(d, method='approx')
|
||
|
>>> res.statistic, res.pvalue
|
||
|
(24.0, 0.04088813291185591)
|
||
|
|
||
|
Note that the statistic changed to 96 in the one-sided case (the sum
|
||
|
of ranks of positive differences) whereas it is 24 in the two-sided
|
||
|
case (the minimum of sum of ranks above and below zero).
|
||
|
|
||
|
In the example above, the differences in height between paired plants are
|
||
|
provided to `wilcoxon` directly. Alternatively, `wilcoxon` accepts two
|
||
|
samples of equal length, calculates the differences between paired
|
||
|
elements, then performs the test. Consider the samples ``x`` and ``y``:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> x = np.array([0.5, 0.825, 0.375, 0.5])
|
||
|
>>> y = np.array([0.525, 0.775, 0.325, 0.55])
|
||
|
>>> res = wilcoxon(x, y, alternative='greater')
|
||
|
>>> res
|
||
|
WilcoxonResult(statistic=5.0, pvalue=0.5625)
|
||
|
|
||
|
Note that had we calculated the differences by hand, the test would have
|
||
|
produced different results:
|
||
|
|
||
|
>>> d = [-0.025, 0.05, 0.05, -0.05]
|
||
|
>>> ref = wilcoxon(d, alternative='greater')
|
||
|
>>> ref
|
||
|
WilcoxonResult(statistic=6.0, pvalue=0.4375)
|
||
|
|
||
|
The substantial difference is due to roundoff error in the results of
|
||
|
``x-y``:
|
||
|
|
||
|
>>> d - (x-y)
|
||
|
array([2.08166817e-17, 6.93889390e-17, 1.38777878e-17, 4.16333634e-17])
|
||
|
|
||
|
Even though we expected all the elements of ``(x-y)[1:]`` to have the same
|
||
|
magnitude ``0.05``, they have slightly different magnitudes in practice,
|
||
|
and therefore are assigned different ranks in the test. Before performing
|
||
|
the test, consider calculating ``d`` and adjusting it as necessary to
|
||
|
ensure that theoretically identically values are not numerically distinct.
|
||
|
For example:
|
||
|
|
||
|
>>> d2 = np.around(x - y, decimals=3)
|
||
|
>>> wilcoxon(d2, alternative='greater')
|
||
|
WilcoxonResult(statistic=6.0, pvalue=0.4375)
|
||
|
|
||
|
"""
|
||
|
return _wilcoxon._wilcoxon_nd(x, y, zero_method, correction, alternative,
|
||
|
method, axis)
|
||
|
|
||
|
|
||
|
MedianTestResult = _make_tuple_bunch(
|
||
|
'MedianTestResult',
|
||
|
['statistic', 'pvalue', 'median', 'table'], []
|
||
|
)
|
||
|
|
||
|
|
||
|
def median_test(*samples, ties='below', correction=True, lambda_=1,
|
||
|
nan_policy='propagate'):
|
||
|
"""Perform a Mood's median test.
|
||
|
|
||
|
Test that two or more samples come from populations with the same median.
|
||
|
|
||
|
Let ``n = len(samples)`` be the number of samples. The "grand median" of
|
||
|
all the data is computed, and a contingency table is formed by
|
||
|
classifying the values in each sample as being above or below the grand
|
||
|
median. The contingency table, along with `correction` and `lambda_`,
|
||
|
are passed to `scipy.stats.chi2_contingency` to compute the test statistic
|
||
|
and p-value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sample1, sample2, ... : array_like
|
||
|
The set of samples. There must be at least two samples.
|
||
|
Each sample must be a one-dimensional sequence containing at least
|
||
|
one value. The samples are not required to have the same length.
|
||
|
ties : str, optional
|
||
|
Determines how values equal to the grand median are classified in
|
||
|
the contingency table. The string must be one of::
|
||
|
|
||
|
"below":
|
||
|
Values equal to the grand median are counted as "below".
|
||
|
"above":
|
||
|
Values equal to the grand median are counted as "above".
|
||
|
"ignore":
|
||
|
Values equal to the grand median are not counted.
|
||
|
|
||
|
The default is "below".
|
||
|
correction : bool, optional
|
||
|
If True, *and* there are just two samples, apply Yates' correction
|
||
|
for continuity when computing the test statistic associated with
|
||
|
the contingency table. Default is True.
|
||
|
lambda_ : float or str, optional
|
||
|
By default, the statistic computed in this test is Pearson's
|
||
|
chi-squared statistic. `lambda_` allows a statistic from the
|
||
|
Cressie-Read power divergence family to be used instead. See
|
||
|
`power_divergence` for details.
|
||
|
Default is 1 (Pearson's chi-squared statistic).
|
||
|
nan_policy : {'propagate', 'raise', 'omit'}, optional
|
||
|
Defines how to handle when input contains nan. 'propagate' returns nan,
|
||
|
'raise' throws an error, 'omit' performs the calculations ignoring nan
|
||
|
values. Default is 'propagate'.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : MedianTestResult
|
||
|
An object containing attributes:
|
||
|
|
||
|
statistic : float
|
||
|
The test statistic. The statistic that is returned is determined
|
||
|
by `lambda_`. The default is Pearson's chi-squared statistic.
|
||
|
pvalue : float
|
||
|
The p-value of the test.
|
||
|
median : float
|
||
|
The grand median.
|
||
|
table : ndarray
|
||
|
The contingency table. The shape of the table is (2, n), where
|
||
|
n is the number of samples. The first row holds the counts of the
|
||
|
values above the grand median, and the second row holds the counts
|
||
|
of the values below the grand median. The table allows further
|
||
|
analysis with, for example, `scipy.stats.chi2_contingency`, or with
|
||
|
`scipy.stats.fisher_exact` if there are two samples, without having
|
||
|
to recompute the table. If ``nan_policy`` is "propagate" and there
|
||
|
are nans in the input, the return value for ``table`` is ``None``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kruskal : Compute the Kruskal-Wallis H-test for independent samples.
|
||
|
mannwhitneyu : Computes the Mann-Whitney rank test on samples x and y.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 0.15.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Mood, A. M., Introduction to the Theory of Statistics. McGraw-Hill
|
||
|
(1950), pp. 394-399.
|
||
|
.. [2] Zar, J. H., Biostatistical Analysis, 5th ed. Prentice Hall (2010).
|
||
|
See Sections 8.12 and 10.15.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
A biologist runs an experiment in which there are three groups of plants.
|
||
|
Group 1 has 16 plants, group 2 has 15 plants, and group 3 has 17 plants.
|
||
|
Each plant produces a number of seeds. The seed counts for each group
|
||
|
are::
|
||
|
|
||
|
Group 1: 10 14 14 18 20 22 24 25 31 31 32 39 43 43 48 49
|
||
|
Group 2: 28 30 31 33 34 35 36 40 44 55 57 61 91 92 99
|
||
|
Group 3: 0 3 9 22 23 25 25 33 34 34 40 45 46 48 62 67 84
|
||
|
|
||
|
The following code applies Mood's median test to these samples.
|
||
|
|
||
|
>>> g1 = [10, 14, 14, 18, 20, 22, 24, 25, 31, 31, 32, 39, 43, 43, 48, 49]
|
||
|
>>> g2 = [28, 30, 31, 33, 34, 35, 36, 40, 44, 55, 57, 61, 91, 92, 99]
|
||
|
>>> g3 = [0, 3, 9, 22, 23, 25, 25, 33, 34, 34, 40, 45, 46, 48, 62, 67, 84]
|
||
|
>>> from scipy.stats import median_test
|
||
|
>>> res = median_test(g1, g2, g3)
|
||
|
|
||
|
The median is
|
||
|
|
||
|
>>> res.median
|
||
|
34.0
|
||
|
|
||
|
and the contingency table is
|
||
|
|
||
|
>>> res.table
|
||
|
array([[ 5, 10, 7],
|
||
|
[11, 5, 10]])
|
||
|
|
||
|
`p` is too large to conclude that the medians are not the same:
|
||
|
|
||
|
>>> res.pvalue
|
||
|
0.12609082774093244
|
||
|
|
||
|
The "G-test" can be performed by passing ``lambda_="log-likelihood"`` to
|
||
|
`median_test`.
|
||
|
|
||
|
>>> res = median_test(g1, g2, g3, lambda_="log-likelihood")
|
||
|
>>> res.pvalue
|
||
|
0.12224779737117837
|
||
|
|
||
|
The median occurs several times in the data, so we'll get a different
|
||
|
result if, for example, ``ties="above"`` is used:
|
||
|
|
||
|
>>> res = median_test(g1, g2, g3, ties="above")
|
||
|
>>> res.pvalue
|
||
|
0.063873276069553273
|
||
|
|
||
|
>>> res.table
|
||
|
array([[ 5, 11, 9],
|
||
|
[11, 4, 8]])
|
||
|
|
||
|
This example demonstrates that if the data set is not large and there
|
||
|
are values equal to the median, the p-value can be sensitive to the
|
||
|
choice of `ties`.
|
||
|
|
||
|
"""
|
||
|
if len(samples) < 2:
|
||
|
raise ValueError('median_test requires two or more samples.')
|
||
|
|
||
|
ties_options = ['below', 'above', 'ignore']
|
||
|
if ties not in ties_options:
|
||
|
raise ValueError(f"invalid 'ties' option '{ties}'; 'ties' must be one "
|
||
|
f"of: {str(ties_options)[1:-1]}")
|
||
|
|
||
|
data = [np.asarray(sample) for sample in samples]
|
||
|
|
||
|
# Validate the sizes and shapes of the arguments.
|
||
|
for k, d in enumerate(data):
|
||
|
if d.size == 0:
|
||
|
raise ValueError("Sample %d is empty. All samples must "
|
||
|
"contain at least one value." % (k + 1))
|
||
|
if d.ndim != 1:
|
||
|
raise ValueError("Sample %d has %d dimensions. All "
|
||
|
"samples must be one-dimensional sequences." %
|
||
|
(k + 1, d.ndim))
|
||
|
|
||
|
cdata = np.concatenate(data)
|
||
|
contains_nan, nan_policy = _contains_nan(cdata, nan_policy)
|
||
|
if contains_nan and nan_policy == 'propagate':
|
||
|
return MedianTestResult(np.nan, np.nan, np.nan, None)
|
||
|
|
||
|
if contains_nan:
|
||
|
grand_median = np.median(cdata[~np.isnan(cdata)])
|
||
|
else:
|
||
|
grand_median = np.median(cdata)
|
||
|
# When the minimum version of numpy supported by scipy is 1.9.0,
|
||
|
# the above if/else statement can be replaced by the single line:
|
||
|
# grand_median = np.nanmedian(cdata)
|
||
|
|
||
|
# Create the contingency table.
|
||
|
table = np.zeros((2, len(data)), dtype=np.int64)
|
||
|
for k, sample in enumerate(data):
|
||
|
sample = sample[~np.isnan(sample)]
|
||
|
|
||
|
nabove = count_nonzero(sample > grand_median)
|
||
|
nbelow = count_nonzero(sample < grand_median)
|
||
|
nequal = sample.size - (nabove + nbelow)
|
||
|
table[0, k] += nabove
|
||
|
table[1, k] += nbelow
|
||
|
if ties == "below":
|
||
|
table[1, k] += nequal
|
||
|
elif ties == "above":
|
||
|
table[0, k] += nequal
|
||
|
|
||
|
# Check that no row or column of the table is all zero.
|
||
|
# Such a table can not be given to chi2_contingency, because it would have
|
||
|
# a zero in the table of expected frequencies.
|
||
|
rowsums = table.sum(axis=1)
|
||
|
if rowsums[0] == 0:
|
||
|
raise ValueError(f"All values are below the grand median ({grand_median}).")
|
||
|
if rowsums[1] == 0:
|
||
|
raise ValueError(f"All values are above the grand median ({grand_median}).")
|
||
|
if ties == "ignore":
|
||
|
# We already checked that each sample has at least one value, but it
|
||
|
# is possible that all those values equal the grand median. If `ties`
|
||
|
# is "ignore", that would result in a column of zeros in `table`. We
|
||
|
# check for that case here.
|
||
|
zero_cols = np.nonzero((table == 0).all(axis=0))[0]
|
||
|
if len(zero_cols) > 0:
|
||
|
msg = ("All values in sample %d are equal to the grand "
|
||
|
"median (%r), so they are ignored, resulting in an "
|
||
|
"empty sample." % (zero_cols[0] + 1, grand_median))
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
stat, p, dof, expected = chi2_contingency(table, lambda_=lambda_,
|
||
|
correction=correction)
|
||
|
return MedianTestResult(stat, p, grand_median, table)
|
||
|
|
||
|
|
||
|
def _circfuncs_common(samples, high, low, xp=None):
|
||
|
xp = array_namespace(samples) if xp is None else xp
|
||
|
|
||
|
if xp.isdtype(samples.dtype, 'integral'):
|
||
|
dtype = xp.asarray(1.).dtype # get default float type
|
||
|
samples = xp.asarray(samples, dtype=dtype)
|
||
|
|
||
|
# Recast samples as radians that range between 0 and 2 pi and calculate
|
||
|
# the sine and cosine
|
||
|
sin_samp = xp.sin((samples - low)*2.*xp.pi / (high - low))
|
||
|
cos_samp = xp.cos((samples - low)*2.*xp.pi / (high - low))
|
||
|
|
||
|
return samples, sin_samp, cos_samp
|
||
|
|
||
|
|
||
|
@_axis_nan_policy_factory(
|
||
|
lambda x: x, n_outputs=1, default_axis=None,
|
||
|
result_to_tuple=lambda x: (x,)
|
||
|
)
|
||
|
def circmean(samples, high=2*pi, low=0, axis=None, nan_policy='propagate'):
|
||
|
r"""Compute the circular mean of a sample of angle observations.
|
||
|
|
||
|
Given :math:`n` angle observations :math:`x_1, \cdots, x_n` measured in
|
||
|
radians, their `circular mean` is defined by ([1]_, Eq. 2.2.4)
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\mathrm{Arg} \left( \frac{1}{n} \sum_{k=1}^n e^{i x_k} \right)
|
||
|
|
||
|
where :math:`i` is the imaginary unit and :math:`\mathop{\mathrm{Arg}} z`
|
||
|
gives the principal value of the argument of complex number :math:`z`,
|
||
|
restricted to the range :math:`[0,2\pi]` by default. :math:`z` in the
|
||
|
above expression is known as the `mean resultant vector`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
samples : array_like
|
||
|
Input array of angle observations. The value of a full angle is
|
||
|
equal to ``(high - low)``.
|
||
|
high : float, optional
|
||
|
Upper boundary of the principal value of an angle. Default is ``2*pi``.
|
||
|
low : float, optional
|
||
|
Lower boundary of the principal value of an angle. Default is ``0``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
circmean : float
|
||
|
Circular mean, restricted to the range ``[low, high]``.
|
||
|
|
||
|
If the mean resultant vector is zero, an input-dependent,
|
||
|
implementation-defined number between ``[low, high]`` is returned.
|
||
|
If the input array is empty, ``np.nan`` is returned.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
circstd : Circular standard deviation.
|
||
|
circvar : Circular variance.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Mardia, K. V. and Jupp, P. E. *Directional Statistics*.
|
||
|
John Wiley & Sons, 1999.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
For readability, all angles are printed out in degrees.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.stats import circmean
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> angles = np.deg2rad(np.array([20, 30, 330]))
|
||
|
>>> circmean = circmean(angles)
|
||
|
>>> np.rad2deg(circmean)
|
||
|
7.294976657784009
|
||
|
|
||
|
>>> mean = angles.mean()
|
||
|
>>> np.rad2deg(mean)
|
||
|
126.66666666666666
|
||
|
|
||
|
Plot and compare the circular mean against the arithmetic mean.
|
||
|
|
||
|
>>> plt.plot(np.cos(np.linspace(0, 2*np.pi, 500)),
|
||
|
... np.sin(np.linspace(0, 2*np.pi, 500)),
|
||
|
... c='k')
|
||
|
>>> plt.scatter(np.cos(angles), np.sin(angles), c='k')
|
||
|
>>> plt.scatter(np.cos(circmean), np.sin(circmean), c='b',
|
||
|
... label='circmean')
|
||
|
>>> plt.scatter(np.cos(mean), np.sin(mean), c='r', label='mean')
|
||
|
>>> plt.legend()
|
||
|
>>> plt.axis('equal')
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
xp = array_namespace(samples)
|
||
|
# Needed for non-NumPy arrays to get appropriate NaN result
|
||
|
# Apparently atan2(0, 0) is 0, even though it is mathematically undefined
|
||
|
if xp_size(samples) == 0:
|
||
|
return xp.mean(samples, axis=axis)
|
||
|
samples, sin_samp, cos_samp = _circfuncs_common(samples, high, low, xp=xp)
|
||
|
sin_sum = xp.sum(sin_samp, axis=axis)
|
||
|
cos_sum = xp.sum(cos_samp, axis=axis)
|
||
|
res = xp.atan2(sin_sum, cos_sum) % (2*xp.pi)
|
||
|
|
||
|
res = res[()] if res.ndim == 0 else res
|
||
|
return res*(high - low)/2.0/xp.pi + low
|
||
|
|
||
|
|
||
|
@_axis_nan_policy_factory(
|
||
|
lambda x: x, n_outputs=1, default_axis=None,
|
||
|
result_to_tuple=lambda x: (x,)
|
||
|
)
|
||
|
def circvar(samples, high=2*pi, low=0, axis=None, nan_policy='propagate'):
|
||
|
r"""Compute the circular variance of a sample of angle observations.
|
||
|
|
||
|
Given :math:`n` angle observations :math:`x_1, \cdots, x_n` measured in
|
||
|
radians, their `circular variance` is defined by ([2]_, Eq. 2.3.3)
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
1 - \left| \frac{1}{n} \sum_{k=1}^n e^{i x_k} \right|
|
||
|
|
||
|
where :math:`i` is the imaginary unit and :math:`|z|` gives the length
|
||
|
of the complex number :math:`z`. :math:`|z|` in the above expression
|
||
|
is known as the `mean resultant length`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
samples : array_like
|
||
|
Input array of angle observations. The value of a full angle is
|
||
|
equal to ``(high - low)``.
|
||
|
high : float, optional
|
||
|
Upper boundary of the principal value of an angle. Default is ``2*pi``.
|
||
|
low : float, optional
|
||
|
Lower boundary of the principal value of an angle. Default is ``0``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
circvar : float
|
||
|
Circular variance. The returned value is in the range ``[0, 1]``,
|
||
|
where ``0`` indicates no variance and ``1`` indicates large variance.
|
||
|
|
||
|
If the input array is empty, ``np.nan`` is returned.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
circmean : Circular mean.
|
||
|
circstd : Circular standard deviation.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
In the limit of small angles, the circular variance is close to
|
||
|
half the 'linear' variance if measured in radians.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Fisher, N.I. *Statistical analysis of circular data*. Cambridge
|
||
|
University Press, 1993.
|
||
|
.. [2] Mardia, K. V. and Jupp, P. E. *Directional Statistics*.
|
||
|
John Wiley & Sons, 1999.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.stats import circvar
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> samples_1 = np.array([0.072, -0.158, 0.077, 0.108, 0.286,
|
||
|
... 0.133, -0.473, -0.001, -0.348, 0.131])
|
||
|
>>> samples_2 = np.array([0.111, -0.879, 0.078, 0.733, 0.421,
|
||
|
... 0.104, -0.136, -0.867, 0.012, 0.105])
|
||
|
>>> circvar_1 = circvar(samples_1)
|
||
|
>>> circvar_2 = circvar(samples_2)
|
||
|
|
||
|
Plot the samples.
|
||
|
|
||
|
>>> fig, (left, right) = plt.subplots(ncols=2)
|
||
|
>>> for image in (left, right):
|
||
|
... image.plot(np.cos(np.linspace(0, 2*np.pi, 500)),
|
||
|
... np.sin(np.linspace(0, 2*np.pi, 500)),
|
||
|
... c='k')
|
||
|
... image.axis('equal')
|
||
|
... image.axis('off')
|
||
|
>>> left.scatter(np.cos(samples_1), np.sin(samples_1), c='k', s=15)
|
||
|
>>> left.set_title(f"circular variance: {np.round(circvar_1, 2)!r}")
|
||
|
>>> right.scatter(np.cos(samples_2), np.sin(samples_2), c='k', s=15)
|
||
|
>>> right.set_title(f"circular variance: {np.round(circvar_2, 2)!r}")
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
xp = array_namespace(samples)
|
||
|
samples, sin_samp, cos_samp = _circfuncs_common(samples, high, low, xp=xp)
|
||
|
sin_mean = xp.mean(sin_samp, axis=axis)
|
||
|
cos_mean = xp.mean(cos_samp, axis=axis)
|
||
|
hypotenuse = (sin_mean**2. + cos_mean**2.)**0.5
|
||
|
# hypotenuse can go slightly above 1 due to rounding errors
|
||
|
with np.errstate(invalid='ignore'):
|
||
|
R = xp_minimum(xp.asarray(1.), hypotenuse)
|
||
|
|
||
|
res = 1. - R
|
||
|
return res
|
||
|
|
||
|
|
||
|
@_axis_nan_policy_factory(
|
||
|
lambda x: x, n_outputs=1, default_axis=None,
|
||
|
result_to_tuple=lambda x: (x,)
|
||
|
)
|
||
|
def circstd(samples, high=2*pi, low=0, axis=None, nan_policy='propagate', *,
|
||
|
normalize=False):
|
||
|
r"""
|
||
|
Compute the circular standard deviation of a sample of angle observations.
|
||
|
|
||
|
Given :math:`n` angle observations :math:`x_1, \cdots, x_n` measured in
|
||
|
radians, their `circular standard deviation` is defined by
|
||
|
([2]_, Eq. 2.3.11)
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\sqrt{ -2 \log \left| \frac{1}{n} \sum_{k=1}^n e^{i x_k} \right| }
|
||
|
|
||
|
where :math:`i` is the imaginary unit and :math:`|z|` gives the length
|
||
|
of the complex number :math:`z`. :math:`|z|` in the above expression
|
||
|
is known as the `mean resultant length`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
samples : array_like
|
||
|
Input array of angle observations. The value of a full angle is
|
||
|
equal to ``(high - low)``.
|
||
|
high : float, optional
|
||
|
Upper boundary of the principal value of an angle. Default is ``2*pi``.
|
||
|
low : float, optional
|
||
|
Lower boundary of the principal value of an angle. Default is ``0``.
|
||
|
normalize : boolean, optional
|
||
|
If ``False`` (the default), the return value is computed from the
|
||
|
above formula with the input scaled by ``(2*pi)/(high-low)`` and
|
||
|
the output scaled (back) by ``(high-low)/(2*pi)``. If ``True``,
|
||
|
the output is not scaled and is returned directly.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
circstd : float
|
||
|
Circular standard deviation, optionally normalized.
|
||
|
|
||
|
If the input array is empty, ``np.nan`` is returned.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
circmean : Circular mean.
|
||
|
circvar : Circular variance.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
In the limit of small angles, the circular standard deviation is close
|
||
|
to the 'linear' standard deviation if ``normalize`` is ``False``.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Mardia, K. V. (1972). 2. In *Statistics of Directional Data*
|
||
|
(pp. 18-24). Academic Press. :doi:`10.1016/C2013-0-07425-7`.
|
||
|
.. [2] Mardia, K. V. and Jupp, P. E. *Directional Statistics*.
|
||
|
John Wiley & Sons, 1999.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.stats import circstd
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> samples_1 = np.array([0.072, -0.158, 0.077, 0.108, 0.286,
|
||
|
... 0.133, -0.473, -0.001, -0.348, 0.131])
|
||
|
>>> samples_2 = np.array([0.111, -0.879, 0.078, 0.733, 0.421,
|
||
|
... 0.104, -0.136, -0.867, 0.012, 0.105])
|
||
|
>>> circstd_1 = circstd(samples_1)
|
||
|
>>> circstd_2 = circstd(samples_2)
|
||
|
|
||
|
Plot the samples.
|
||
|
|
||
|
>>> fig, (left, right) = plt.subplots(ncols=2)
|
||
|
>>> for image in (left, right):
|
||
|
... image.plot(np.cos(np.linspace(0, 2*np.pi, 500)),
|
||
|
... np.sin(np.linspace(0, 2*np.pi, 500)),
|
||
|
... c='k')
|
||
|
... image.axis('equal')
|
||
|
... image.axis('off')
|
||
|
>>> left.scatter(np.cos(samples_1), np.sin(samples_1), c='k', s=15)
|
||
|
>>> left.set_title(f"circular std: {np.round(circstd_1, 2)!r}")
|
||
|
>>> right.plot(np.cos(np.linspace(0, 2*np.pi, 500)),
|
||
|
... np.sin(np.linspace(0, 2*np.pi, 500)),
|
||
|
... c='k')
|
||
|
>>> right.scatter(np.cos(samples_2), np.sin(samples_2), c='k', s=15)
|
||
|
>>> right.set_title(f"circular std: {np.round(circstd_2, 2)!r}")
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
xp = array_namespace(samples)
|
||
|
samples, sin_samp, cos_samp = _circfuncs_common(samples, high, low, xp=xp)
|
||
|
sin_mean = xp.mean(sin_samp, axis=axis) # [1] (2.2.3)
|
||
|
cos_mean = xp.mean(cos_samp, axis=axis) # [1] (2.2.3)
|
||
|
hypotenuse = (sin_mean**2. + cos_mean**2.)**0.5
|
||
|
# hypotenuse can go slightly above 1 due to rounding errors
|
||
|
with np.errstate(invalid='ignore'):
|
||
|
R = xp_minimum(xp.asarray(1.), hypotenuse) # [1] (2.2.4)
|
||
|
|
||
|
res = xp.sqrt(-2*xp.log(R))
|
||
|
if not normalize:
|
||
|
res *= (high-low)/(2.*xp.pi) # [1] (2.3.14) w/ (2.3.7)
|
||
|
return res
|
||
|
|
||
|
|
||
|
class DirectionalStats:
|
||
|
def __init__(self, mean_direction, mean_resultant_length):
|
||
|
self.mean_direction = mean_direction
|
||
|
self.mean_resultant_length = mean_resultant_length
|
||
|
|
||
|
def __repr__(self):
|
||
|
return (f"DirectionalStats(mean_direction={self.mean_direction},"
|
||
|
f" mean_resultant_length={self.mean_resultant_length})")
|
||
|
|
||
|
|
||
|
def directional_stats(samples, *, axis=0, normalize=True):
|
||
|
"""
|
||
|
Computes sample statistics for directional data.
|
||
|
|
||
|
Computes the directional mean (also called the mean direction vector) and
|
||
|
mean resultant length of a sample of vectors.
|
||
|
|
||
|
The directional mean is a measure of "preferred direction" of vector data.
|
||
|
It is analogous to the sample mean, but it is for use when the length of
|
||
|
the data is irrelevant (e.g. unit vectors).
|
||
|
|
||
|
The mean resultant length is a value between 0 and 1 used to quantify the
|
||
|
dispersion of directional data: the smaller the mean resultant length, the
|
||
|
greater the dispersion. Several definitions of directional variance
|
||
|
involving the mean resultant length are given in [1]_ and [2]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
samples : array_like
|
||
|
Input array. Must be at least two-dimensional, and the last axis of the
|
||
|
input must correspond with the dimensionality of the vector space.
|
||
|
When the input is exactly two dimensional, this means that each row
|
||
|
of the data is a vector observation.
|
||
|
axis : int, default: 0
|
||
|
Axis along which the directional mean is computed.
|
||
|
normalize: boolean, default: True
|
||
|
If True, normalize the input to ensure that each observation is a
|
||
|
unit vector. It the observations are already unit vectors, consider
|
||
|
setting this to False to avoid unnecessary computation.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : DirectionalStats
|
||
|
An object containing attributes:
|
||
|
|
||
|
mean_direction : ndarray
|
||
|
Directional mean.
|
||
|
mean_resultant_length : ndarray
|
||
|
The mean resultant length [1]_.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
circmean: circular mean; i.e. directional mean for 2D *angles*
|
||
|
circvar: circular variance; i.e. directional variance for 2D *angles*
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This uses a definition of directional mean from [1]_.
|
||
|
Assuming the observations are unit vectors, the calculation is as follows.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
mean = samples.mean(axis=0)
|
||
|
mean_resultant_length = np.linalg.norm(mean)
|
||
|
mean_direction = mean / mean_resultant_length
|
||
|
|
||
|
This definition is appropriate for *directional* data (i.e. vector data
|
||
|
for which the magnitude of each observation is irrelevant) but not
|
||
|
for *axial* data (i.e. vector data for which the magnitude and *sign* of
|
||
|
each observation is irrelevant).
|
||
|
|
||
|
Several definitions of directional variance involving the mean resultant
|
||
|
length ``R`` have been proposed, including ``1 - R`` [1]_, ``1 - R**2``
|
||
|
[2]_, and ``2 * (1 - R)`` [2]_. Rather than choosing one, this function
|
||
|
returns ``R`` as attribute `mean_resultant_length` so the user can compute
|
||
|
their preferred measure of dispersion.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Mardia, Jupp. (2000). *Directional Statistics*
|
||
|
(p. 163). Wiley.
|
||
|
|
||
|
.. [2] https://en.wikipedia.org/wiki/Directional_statistics
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.stats import directional_stats
|
||
|
>>> data = np.array([[3, 4], # first observation, 2D vector space
|
||
|
... [6, -8]]) # second observation
|
||
|
>>> dirstats = directional_stats(data)
|
||
|
>>> dirstats.mean_direction
|
||
|
array([1., 0.])
|
||
|
|
||
|
In contrast, the regular sample mean of the vectors would be influenced
|
||
|
by the magnitude of each observation. Furthermore, the result would not be
|
||
|
a unit vector.
|
||
|
|
||
|
>>> data.mean(axis=0)
|
||
|
array([4.5, -2.])
|
||
|
|
||
|
An exemplary use case for `directional_stats` is to find a *meaningful*
|
||
|
center for a set of observations on a sphere, e.g. geographical locations.
|
||
|
|
||
|
>>> data = np.array([[0.8660254, 0.5, 0.],
|
||
|
... [0.8660254, -0.5, 0.]])
|
||
|
>>> dirstats = directional_stats(data)
|
||
|
>>> dirstats.mean_direction
|
||
|
array([1., 0., 0.])
|
||
|
|
||
|
The regular sample mean on the other hand yields a result which does not
|
||
|
lie on the surface of the sphere.
|
||
|
|
||
|
>>> data.mean(axis=0)
|
||
|
array([0.8660254, 0., 0.])
|
||
|
|
||
|
The function also returns the mean resultant length, which
|
||
|
can be used to calculate a directional variance. For example, using the
|
||
|
definition ``Var(z) = 1 - R`` from [2]_ where ``R`` is the
|
||
|
mean resultant length, we can calculate the directional variance of the
|
||
|
vectors in the above example as:
|
||
|
|
||
|
>>> 1 - dirstats.mean_resultant_length
|
||
|
0.13397459716167093
|
||
|
"""
|
||
|
samples = np.asarray(samples)
|
||
|
if samples.ndim < 2:
|
||
|
raise ValueError("samples must at least be two-dimensional. "
|
||
|
f"Instead samples has shape: {samples.shape!r}")
|
||
|
samples = np.moveaxis(samples, axis, 0)
|
||
|
if normalize:
|
||
|
vectornorms = np.linalg.norm(samples, axis=-1, keepdims=True)
|
||
|
samples = samples/vectornorms
|
||
|
mean = np.mean(samples, axis=0)
|
||
|
mean_resultant_length = np.linalg.norm(mean, axis=-1, keepdims=True)
|
||
|
mean_direction = mean / mean_resultant_length
|
||
|
return DirectionalStats(mean_direction,
|
||
|
mean_resultant_length.squeeze(-1)[()])
|
||
|
|
||
|
|
||
|
def false_discovery_control(ps, *, axis=0, method='bh'):
|
||
|
"""Adjust p-values to control the false discovery rate.
|
||
|
|
||
|
The false discovery rate (FDR) is the expected proportion of rejected null
|
||
|
hypotheses that are actually true.
|
||
|
If the null hypothesis is rejected when the *adjusted* p-value falls below
|
||
|
a specified level, the false discovery rate is controlled at that level.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ps : 1D array_like
|
||
|
The p-values to adjust. Elements must be real numbers between 0 and 1.
|
||
|
axis : int
|
||
|
The axis along which to perform the adjustment. The adjustment is
|
||
|
performed independently along each axis-slice. If `axis` is None, `ps`
|
||
|
is raveled before performing the adjustment.
|
||
|
method : {'bh', 'by'}
|
||
|
The false discovery rate control procedure to apply: ``'bh'`` is for
|
||
|
Benjamini-Hochberg [1]_ (Eq. 1), ``'by'`` is for Benjaminini-Yekutieli
|
||
|
[2]_ (Theorem 1.3). The latter is more conservative, but it is
|
||
|
guaranteed to control the FDR even when the p-values are not from
|
||
|
independent tests.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ps_adusted : array_like
|
||
|
The adjusted p-values. If the null hypothesis is rejected where these
|
||
|
fall below a specified level, the false discovery rate is controlled
|
||
|
at that level.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
combine_pvalues
|
||
|
statsmodels.stats.multitest.multipletests
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
In multiple hypothesis testing, false discovery control procedures tend to
|
||
|
offer higher power than familywise error rate control procedures (e.g.
|
||
|
Bonferroni correction [1]_).
|
||
|
|
||
|
If the p-values correspond with independent tests (or tests with
|
||
|
"positive regression dependencies" [2]_), rejecting null hypotheses
|
||
|
corresponding with Benjamini-Hochberg-adjusted p-values below :math:`q`
|
||
|
controls the false discovery rate at a level less than or equal to
|
||
|
:math:`q m_0 / m`, where :math:`m_0` is the number of true null hypotheses
|
||
|
and :math:`m` is the total number of null hypotheses tested. The same is
|
||
|
true even for dependent tests when the p-values are adjusted accorded to
|
||
|
the more conservative Benjaminini-Yekutieli procedure.
|
||
|
|
||
|
The adjusted p-values produced by this function are comparable to those
|
||
|
produced by the R function ``p.adjust`` and the statsmodels function
|
||
|
`statsmodels.stats.multitest.multipletests`. Please consider the latter
|
||
|
for more advanced methods of multiple comparison correction.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Benjamini, Yoav, and Yosef Hochberg. "Controlling the false
|
||
|
discovery rate: a practical and powerful approach to multiple
|
||
|
testing." Journal of the Royal statistical society: series B
|
||
|
(Methodological) 57.1 (1995): 289-300.
|
||
|
|
||
|
.. [2] Benjamini, Yoav, and Daniel Yekutieli. "The control of the false
|
||
|
discovery rate in multiple testing under dependency." Annals of
|
||
|
statistics (2001): 1165-1188.
|
||
|
|
||
|
.. [3] TileStats. FDR - Benjamini-Hochberg explained - Youtube.
|
||
|
https://www.youtube.com/watch?v=rZKa4tW2NKs.
|
||
|
|
||
|
.. [4] Neuhaus, Karl-Ludwig, et al. "Improved thrombolysis in acute
|
||
|
myocardial infarction with front-loaded administration of alteplase:
|
||
|
results of the rt-PA-APSAC patency study (TAPS)." Journal of the
|
||
|
American College of Cardiology 19.5 (1992): 885-891.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
We follow the example from [1]_.
|
||
|
|
||
|
Thrombolysis with recombinant tissue-type plasminogen activator (rt-PA)
|
||
|
and anisoylated plasminogen streptokinase activator (APSAC) in
|
||
|
myocardial infarction has been proved to reduce mortality. [4]_
|
||
|
investigated the effects of a new front-loaded administration of rt-PA
|
||
|
versus those obtained with a standard regimen of APSAC, in a randomized
|
||
|
multicentre trial in 421 patients with acute myocardial infarction.
|
||
|
|
||
|
There were four families of hypotheses tested in the study, the last of
|
||
|
which was "cardiac and other events after the start of thrombolitic
|
||
|
treatment". FDR control may be desired in this family of hypotheses
|
||
|
because it would not be appropriate to conclude that the front-loaded
|
||
|
treatment is better if it is merely equivalent to the previous treatment.
|
||
|
|
||
|
The p-values corresponding with the 15 hypotheses in this family were
|
||
|
|
||
|
>>> ps = [0.0001, 0.0004, 0.0019, 0.0095, 0.0201, 0.0278, 0.0298, 0.0344,
|
||
|
... 0.0459, 0.3240, 0.4262, 0.5719, 0.6528, 0.7590, 1.000]
|
||
|
|
||
|
If the chosen significance level is 0.05, we may be tempted to reject the
|
||
|
null hypotheses for the tests corresponding with the first nine p-values,
|
||
|
as the first nine p-values fall below the chosen significance level.
|
||
|
However, this would ignore the problem of "multiplicity": if we fail to
|
||
|
correct for the fact that multiple comparisons are being performed, we
|
||
|
are more likely to incorrectly reject true null hypotheses.
|
||
|
|
||
|
One approach to the multiplicity problem is to control the family-wise
|
||
|
error rate (FWER), that is, the rate at which the null hypothesis is
|
||
|
rejected when it is actually true. A common procedure of this kind is the
|
||
|
Bonferroni correction [1]_. We begin by multiplying the p-values by the
|
||
|
number of hypotheses tested.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> np.array(ps) * len(ps)
|
||
|
array([1.5000e-03, 6.0000e-03, 2.8500e-02, 1.4250e-01, 3.0150e-01,
|
||
|
4.1700e-01, 4.4700e-01, 5.1600e-01, 6.8850e-01, 4.8600e+00,
|
||
|
6.3930e+00, 8.5785e+00, 9.7920e+00, 1.1385e+01, 1.5000e+01])
|
||
|
|
||
|
To control the FWER at 5%, we reject only the hypotheses corresponding
|
||
|
with adjusted p-values less than 0.05. In this case, only the hypotheses
|
||
|
corresponding with the first three p-values can be rejected. According to
|
||
|
[1]_, these three hypotheses concerned "allergic reaction" and "two
|
||
|
different aspects of bleeding."
|
||
|
|
||
|
An alternative approach is to control the false discovery rate: the
|
||
|
expected fraction of rejected null hypotheses that are actually true. The
|
||
|
advantage of this approach is that it typically affords greater power: an
|
||
|
increased rate of rejecting the null hypothesis when it is indeed false. To
|
||
|
control the false discovery rate at 5%, we apply the Benjamini-Hochberg
|
||
|
p-value adjustment.
|
||
|
|
||
|
>>> from scipy import stats
|
||
|
>>> stats.false_discovery_control(ps)
|
||
|
array([0.0015 , 0.003 , 0.0095 , 0.035625 , 0.0603 ,
|
||
|
0.06385714, 0.06385714, 0.0645 , 0.0765 , 0.486 ,
|
||
|
0.58118182, 0.714875 , 0.75323077, 0.81321429, 1. ])
|
||
|
|
||
|
Now, the first *four* adjusted p-values fall below 0.05, so we would reject
|
||
|
the null hypotheses corresponding with these *four* p-values. Rejection
|
||
|
of the fourth null hypothesis was particularly important to the original
|
||
|
study as it led to the conclusion that the new treatment had a
|
||
|
"substantially lower in-hospital mortality rate."
|
||
|
|
||
|
"""
|
||
|
# Input Validation and Special Cases
|
||
|
ps = np.asarray(ps)
|
||
|
|
||
|
ps_in_range = (np.issubdtype(ps.dtype, np.number)
|
||
|
and np.all(ps == np.clip(ps, 0, 1)))
|
||
|
if not ps_in_range:
|
||
|
raise ValueError("`ps` must include only numbers between 0 and 1.")
|
||
|
|
||
|
methods = {'bh', 'by'}
|
||
|
if method.lower() not in methods:
|
||
|
raise ValueError(f"Unrecognized `method` '{method}'."
|
||
|
f"Method must be one of {methods}.")
|
||
|
method = method.lower()
|
||
|
|
||
|
if axis is None:
|
||
|
axis = 0
|
||
|
ps = ps.ravel()
|
||
|
|
||
|
axis = np.asarray(axis)[()]
|
||
|
if not np.issubdtype(axis.dtype, np.integer) or axis.size != 1:
|
||
|
raise ValueError("`axis` must be an integer or `None`")
|
||
|
|
||
|
if ps.size <= 1 or ps.shape[axis] <= 1:
|
||
|
return ps[()]
|
||
|
|
||
|
ps = np.moveaxis(ps, axis, -1)
|
||
|
m = ps.shape[-1]
|
||
|
|
||
|
# Main Algorithm
|
||
|
# Equivalent to the ideas of [1] and [2], except that this adjusts the
|
||
|
# p-values as described in [3]. The results are similar to those produced
|
||
|
# by R's p.adjust.
|
||
|
|
||
|
# "Let [ps] be the ordered observed p-values..."
|
||
|
order = np.argsort(ps, axis=-1)
|
||
|
ps = np.take_along_axis(ps, order, axis=-1) # this copies ps
|
||
|
|
||
|
# Equation 1 of [1] rearranged to reject when p is less than specified q
|
||
|
i = np.arange(1, m+1)
|
||
|
ps *= m / i
|
||
|
|
||
|
# Theorem 1.3 of [2]
|
||
|
if method == 'by':
|
||
|
ps *= np.sum(1 / i)
|
||
|
|
||
|
# accounts for rejecting all null hypotheses i for i < k, where k is
|
||
|
# defined in Eq. 1 of either [1] or [2]. See [3]. Starting with the index j
|
||
|
# of the second to last element, we replace element j with element j+1 if
|
||
|
# the latter is smaller.
|
||
|
np.minimum.accumulate(ps[..., ::-1], out=ps[..., ::-1], axis=-1)
|
||
|
|
||
|
# Restore original order of axes and data
|
||
|
np.put_along_axis(ps, order, values=ps.copy(), axis=-1)
|
||
|
ps = np.moveaxis(ps, -1, axis)
|
||
|
|
||
|
return np.clip(ps, 0, 1)
|