355 lines
10 KiB
Python
355 lines
10 KiB
Python
|
import numpy as np
|
||
|
from ._ufuncs import (_spherical_jn, _spherical_yn, _spherical_in,
|
||
|
_spherical_kn, _spherical_jn_d, _spherical_yn_d,
|
||
|
_spherical_in_d, _spherical_kn_d)
|
||
|
|
||
|
def spherical_jn(n, z, derivative=False):
|
||
|
r"""Spherical Bessel function of the first kind or its derivative.
|
||
|
|
||
|
Defined as [1]_,
|
||
|
|
||
|
.. math:: j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n + 1/2}(z),
|
||
|
|
||
|
where :math:`J_n` is the Bessel function of the first kind.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int, array_like
|
||
|
Order of the Bessel function (n >= 0).
|
||
|
z : complex or float, array_like
|
||
|
Argument of the Bessel function.
|
||
|
derivative : bool, optional
|
||
|
If True, the value of the derivative (rather than the function
|
||
|
itself) is returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
jn : ndarray
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For real arguments greater than the order, the function is computed
|
||
|
using the ascending recurrence [2]_. For small real or complex
|
||
|
arguments, the definitional relation to the cylindrical Bessel function
|
||
|
of the first kind is used.
|
||
|
|
||
|
The derivative is computed using the relations [3]_,
|
||
|
|
||
|
.. math::
|
||
|
j_n'(z) = j_{n-1}(z) - \frac{n + 1}{z} j_n(z).
|
||
|
|
||
|
j_0'(z) = -j_1(z)
|
||
|
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://dlmf.nist.gov/10.47.E3
|
||
|
.. [2] https://dlmf.nist.gov/10.51.E1
|
||
|
.. [3] https://dlmf.nist.gov/10.51.E2
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
The spherical Bessel functions of the first kind :math:`j_n` accept
|
||
|
both real and complex second argument. They can return a complex type:
|
||
|
|
||
|
>>> from scipy.special import spherical_jn
|
||
|
>>> spherical_jn(0, 3+5j)
|
||
|
(-9.878987731663194-8.021894345786002j)
|
||
|
>>> type(spherical_jn(0, 3+5j))
|
||
|
<class 'numpy.complex128'>
|
||
|
|
||
|
We can verify the relation for the derivative from the Notes
|
||
|
for :math:`n=3` in the interval :math:`[1, 2]`:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> x = np.arange(1.0, 2.0, 0.01)
|
||
|
>>> np.allclose(spherical_jn(3, x, True),
|
||
|
... spherical_jn(2, x) - 4/x * spherical_jn(3, x))
|
||
|
True
|
||
|
|
||
|
The first few :math:`j_n` with real argument:
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.arange(0.0, 10.0, 0.01)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.set_ylim(-0.5, 1.5)
|
||
|
>>> ax.set_title(r'Spherical Bessel functions $j_n$')
|
||
|
>>> for n in np.arange(0, 4):
|
||
|
... ax.plot(x, spherical_jn(n, x), label=rf'$j_{n}$')
|
||
|
>>> plt.legend(loc='best')
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
n = np.asarray(n, dtype=np.dtype("long"))
|
||
|
if derivative:
|
||
|
return _spherical_jn_d(n, z)
|
||
|
else:
|
||
|
return _spherical_jn(n, z)
|
||
|
|
||
|
|
||
|
def spherical_yn(n, z, derivative=False):
|
||
|
r"""Spherical Bessel function of the second kind or its derivative.
|
||
|
|
||
|
Defined as [1]_,
|
||
|
|
||
|
.. math:: y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n + 1/2}(z),
|
||
|
|
||
|
where :math:`Y_n` is the Bessel function of the second kind.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int, array_like
|
||
|
Order of the Bessel function (n >= 0).
|
||
|
z : complex or float, array_like
|
||
|
Argument of the Bessel function.
|
||
|
derivative : bool, optional
|
||
|
If True, the value of the derivative (rather than the function
|
||
|
itself) is returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
yn : ndarray
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For real arguments, the function is computed using the ascending
|
||
|
recurrence [2]_. For complex arguments, the definitional relation to
|
||
|
the cylindrical Bessel function of the second kind is used.
|
||
|
|
||
|
The derivative is computed using the relations [3]_,
|
||
|
|
||
|
.. math::
|
||
|
y_n' = y_{n-1} - \frac{n + 1}{z} y_n.
|
||
|
|
||
|
y_0' = -y_1
|
||
|
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://dlmf.nist.gov/10.47.E4
|
||
|
.. [2] https://dlmf.nist.gov/10.51.E1
|
||
|
.. [3] https://dlmf.nist.gov/10.51.E2
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
The spherical Bessel functions of the second kind :math:`y_n` accept
|
||
|
both real and complex second argument. They can return a complex type:
|
||
|
|
||
|
>>> from scipy.special import spherical_yn
|
||
|
>>> spherical_yn(0, 3+5j)
|
||
|
(8.022343088587197-9.880052589376795j)
|
||
|
>>> type(spherical_yn(0, 3+5j))
|
||
|
<class 'numpy.complex128'>
|
||
|
|
||
|
We can verify the relation for the derivative from the Notes
|
||
|
for :math:`n=3` in the interval :math:`[1, 2]`:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> x = np.arange(1.0, 2.0, 0.01)
|
||
|
>>> np.allclose(spherical_yn(3, x, True),
|
||
|
... spherical_yn(2, x) - 4/x * spherical_yn(3, x))
|
||
|
True
|
||
|
|
||
|
The first few :math:`y_n` with real argument:
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.arange(0.0, 10.0, 0.01)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.set_ylim(-2.0, 1.0)
|
||
|
>>> ax.set_title(r'Spherical Bessel functions $y_n$')
|
||
|
>>> for n in np.arange(0, 4):
|
||
|
... ax.plot(x, spherical_yn(n, x), label=rf'$y_{n}$')
|
||
|
>>> plt.legend(loc='best')
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
n = np.asarray(n, dtype=np.dtype("long"))
|
||
|
if derivative:
|
||
|
return _spherical_yn_d(n, z)
|
||
|
else:
|
||
|
return _spherical_yn(n, z)
|
||
|
|
||
|
|
||
|
def spherical_in(n, z, derivative=False):
|
||
|
r"""Modified spherical Bessel function of the first kind or its derivative.
|
||
|
|
||
|
Defined as [1]_,
|
||
|
|
||
|
.. math:: i_n(z) = \sqrt{\frac{\pi}{2z}} I_{n + 1/2}(z),
|
||
|
|
||
|
where :math:`I_n` is the modified Bessel function of the first kind.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int, array_like
|
||
|
Order of the Bessel function (n >= 0).
|
||
|
z : complex or float, array_like
|
||
|
Argument of the Bessel function.
|
||
|
derivative : bool, optional
|
||
|
If True, the value of the derivative (rather than the function
|
||
|
itself) is returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
in : ndarray
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The function is computed using its definitional relation to the
|
||
|
modified cylindrical Bessel function of the first kind.
|
||
|
|
||
|
The derivative is computed using the relations [2]_,
|
||
|
|
||
|
.. math::
|
||
|
i_n' = i_{n-1} - \frac{n + 1}{z} i_n.
|
||
|
|
||
|
i_1' = i_0
|
||
|
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://dlmf.nist.gov/10.47.E7
|
||
|
.. [2] https://dlmf.nist.gov/10.51.E5
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
The modified spherical Bessel functions of the first kind :math:`i_n`
|
||
|
accept both real and complex second argument.
|
||
|
They can return a complex type:
|
||
|
|
||
|
>>> from scipy.special import spherical_in
|
||
|
>>> spherical_in(0, 3+5j)
|
||
|
(-1.1689867793369182-1.2697305267234222j)
|
||
|
>>> type(spherical_in(0, 3+5j))
|
||
|
<class 'numpy.complex128'>
|
||
|
|
||
|
We can verify the relation for the derivative from the Notes
|
||
|
for :math:`n=3` in the interval :math:`[1, 2]`:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> x = np.arange(1.0, 2.0, 0.01)
|
||
|
>>> np.allclose(spherical_in(3, x, True),
|
||
|
... spherical_in(2, x) - 4/x * spherical_in(3, x))
|
||
|
True
|
||
|
|
||
|
The first few :math:`i_n` with real argument:
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.arange(0.0, 6.0, 0.01)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.set_ylim(-0.5, 5.0)
|
||
|
>>> ax.set_title(r'Modified spherical Bessel functions $i_n$')
|
||
|
>>> for n in np.arange(0, 4):
|
||
|
... ax.plot(x, spherical_in(n, x), label=rf'$i_{n}$')
|
||
|
>>> plt.legend(loc='best')
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
n = np.asarray(n, dtype=np.dtype("long"))
|
||
|
if derivative:
|
||
|
return _spherical_in_d(n, z)
|
||
|
else:
|
||
|
return _spherical_in(n, z)
|
||
|
|
||
|
|
||
|
def spherical_kn(n, z, derivative=False):
|
||
|
r"""Modified spherical Bessel function of the second kind or its derivative.
|
||
|
|
||
|
Defined as [1]_,
|
||
|
|
||
|
.. math:: k_n(z) = \sqrt{\frac{\pi}{2z}} K_{n + 1/2}(z),
|
||
|
|
||
|
where :math:`K_n` is the modified Bessel function of the second kind.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int, array_like
|
||
|
Order of the Bessel function (n >= 0).
|
||
|
z : complex or float, array_like
|
||
|
Argument of the Bessel function.
|
||
|
derivative : bool, optional
|
||
|
If True, the value of the derivative (rather than the function
|
||
|
itself) is returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
kn : ndarray
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The function is computed using its definitional relation to the
|
||
|
modified cylindrical Bessel function of the second kind.
|
||
|
|
||
|
The derivative is computed using the relations [2]_,
|
||
|
|
||
|
.. math::
|
||
|
k_n' = -k_{n-1} - \frac{n + 1}{z} k_n.
|
||
|
|
||
|
k_0' = -k_1
|
||
|
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://dlmf.nist.gov/10.47.E9
|
||
|
.. [2] https://dlmf.nist.gov/10.51.E5
|
||
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
||
|
Handbook of Mathematical Functions with Formulas,
|
||
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
The modified spherical Bessel functions of the second kind :math:`k_n`
|
||
|
accept both real and complex second argument.
|
||
|
They can return a complex type:
|
||
|
|
||
|
>>> from scipy.special import spherical_kn
|
||
|
>>> spherical_kn(0, 3+5j)
|
||
|
(0.012985785614001561+0.003354691603137546j)
|
||
|
>>> type(spherical_kn(0, 3+5j))
|
||
|
<class 'numpy.complex128'>
|
||
|
|
||
|
We can verify the relation for the derivative from the Notes
|
||
|
for :math:`n=3` in the interval :math:`[1, 2]`:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> x = np.arange(1.0, 2.0, 0.01)
|
||
|
>>> np.allclose(spherical_kn(3, x, True),
|
||
|
... - 4/x * spherical_kn(3, x) - spherical_kn(2, x))
|
||
|
True
|
||
|
|
||
|
The first few :math:`k_n` with real argument:
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.arange(0.0, 4.0, 0.01)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.set_ylim(0.0, 5.0)
|
||
|
>>> ax.set_title(r'Modified spherical Bessel functions $k_n$')
|
||
|
>>> for n in np.arange(0, 4):
|
||
|
... ax.plot(x, spherical_kn(n, x), label=rf'$k_{n}$')
|
||
|
>>> plt.legend(loc='best')
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
n = np.asarray(n, dtype=np.dtype("long"))
|
||
|
if derivative:
|
||
|
return _spherical_kn_d(n, z)
|
||
|
else:
|
||
|
return _spherical_kn(n, z)
|