3452 lines
103 KiB
Python
3452 lines
103 KiB
Python
|
#
|
||
|
# Author: Travis Oliphant, 2002
|
||
|
#
|
||
|
|
||
|
import operator
|
||
|
import numpy as np
|
||
|
import math
|
||
|
import warnings
|
||
|
from collections import defaultdict
|
||
|
from heapq import heapify, heappop
|
||
|
from numpy import (pi, asarray, floor, isscalar, sqrt, where,
|
||
|
sin, place, issubdtype, extract, inexact, nan, zeros, sinc)
|
||
|
from . import _ufuncs
|
||
|
from ._ufuncs import (mathieu_a, mathieu_b, iv, jv, gamma,
|
||
|
psi, hankel1, hankel2, yv, kv, poch, binom,
|
||
|
_stirling2_inexact)
|
||
|
from ._gufuncs import (_lpn, _lpmn, _clpmn, _lqn, _lqmn, _rctj, _rcty,
|
||
|
_sph_harm_all as _sph_harm_all_gufunc)
|
||
|
from . import _specfun
|
||
|
from ._comb import _comb_int
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
'ai_zeros',
|
||
|
'assoc_laguerre',
|
||
|
'bei_zeros',
|
||
|
'beip_zeros',
|
||
|
'ber_zeros',
|
||
|
'bernoulli',
|
||
|
'berp_zeros',
|
||
|
'bi_zeros',
|
||
|
'clpmn',
|
||
|
'comb',
|
||
|
'digamma',
|
||
|
'diric',
|
||
|
'erf_zeros',
|
||
|
'euler',
|
||
|
'factorial',
|
||
|
'factorial2',
|
||
|
'factorialk',
|
||
|
'fresnel_zeros',
|
||
|
'fresnelc_zeros',
|
||
|
'fresnels_zeros',
|
||
|
'h1vp',
|
||
|
'h2vp',
|
||
|
'ivp',
|
||
|
'jn_zeros',
|
||
|
'jnjnp_zeros',
|
||
|
'jnp_zeros',
|
||
|
'jnyn_zeros',
|
||
|
'jvp',
|
||
|
'kei_zeros',
|
||
|
'keip_zeros',
|
||
|
'kelvin_zeros',
|
||
|
'ker_zeros',
|
||
|
'kerp_zeros',
|
||
|
'kvp',
|
||
|
'lmbda',
|
||
|
'lpmn',
|
||
|
'lpn',
|
||
|
'lqmn',
|
||
|
'lqn',
|
||
|
'mathieu_even_coef',
|
||
|
'mathieu_odd_coef',
|
||
|
'obl_cv_seq',
|
||
|
'pbdn_seq',
|
||
|
'pbdv_seq',
|
||
|
'pbvv_seq',
|
||
|
'perm',
|
||
|
'polygamma',
|
||
|
'pro_cv_seq',
|
||
|
'riccati_jn',
|
||
|
'riccati_yn',
|
||
|
'sinc',
|
||
|
'stirling2',
|
||
|
'y0_zeros',
|
||
|
'y1_zeros',
|
||
|
'y1p_zeros',
|
||
|
'yn_zeros',
|
||
|
'ynp_zeros',
|
||
|
'yvp',
|
||
|
'zeta'
|
||
|
]
|
||
|
|
||
|
|
||
|
# mapping k to last n such that factorialk(n, k) < np.iinfo(np.int64).max
|
||
|
_FACTORIALK_LIMITS_64BITS = {1: 20, 2: 33, 3: 44, 4: 54, 5: 65,
|
||
|
6: 74, 7: 84, 8: 93, 9: 101}
|
||
|
# mapping k to last n such that factorialk(n, k) < np.iinfo(np.int32).max
|
||
|
_FACTORIALK_LIMITS_32BITS = {1: 12, 2: 19, 3: 25, 4: 31, 5: 37,
|
||
|
6: 43, 7: 47, 8: 51, 9: 56}
|
||
|
|
||
|
|
||
|
def _nonneg_int_or_fail(n, var_name, strict=True):
|
||
|
try:
|
||
|
if strict:
|
||
|
# Raises an exception if float
|
||
|
n = operator.index(n)
|
||
|
elif n == floor(n):
|
||
|
n = int(n)
|
||
|
else:
|
||
|
raise ValueError()
|
||
|
if n < 0:
|
||
|
raise ValueError()
|
||
|
except (ValueError, TypeError) as err:
|
||
|
raise err.__class__(f"{var_name} must be a non-negative integer") from err
|
||
|
return n
|
||
|
|
||
|
|
||
|
def diric(x, n):
|
||
|
"""Periodic sinc function, also called the Dirichlet function.
|
||
|
|
||
|
The Dirichlet function is defined as::
|
||
|
|
||
|
diric(x, n) = sin(x * n/2) / (n * sin(x / 2)),
|
||
|
|
||
|
where `n` is a positive integer.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Input data
|
||
|
n : int
|
||
|
Integer defining the periodicity.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
diric : ndarray
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import special
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> x = np.linspace(-8*np.pi, 8*np.pi, num=201)
|
||
|
>>> plt.figure(figsize=(8, 8));
|
||
|
>>> for idx, n in enumerate([2, 3, 4, 9]):
|
||
|
... plt.subplot(2, 2, idx+1)
|
||
|
... plt.plot(x, special.diric(x, n))
|
||
|
... plt.title('diric, n={}'.format(n))
|
||
|
>>> plt.show()
|
||
|
|
||
|
The following example demonstrates that `diric` gives the magnitudes
|
||
|
(modulo the sign and scaling) of the Fourier coefficients of a
|
||
|
rectangular pulse.
|
||
|
|
||
|
Suppress output of values that are effectively 0:
|
||
|
|
||
|
>>> np.set_printoptions(suppress=True)
|
||
|
|
||
|
Create a signal `x` of length `m` with `k` ones:
|
||
|
|
||
|
>>> m = 8
|
||
|
>>> k = 3
|
||
|
>>> x = np.zeros(m)
|
||
|
>>> x[:k] = 1
|
||
|
|
||
|
Use the FFT to compute the Fourier transform of `x`, and
|
||
|
inspect the magnitudes of the coefficients:
|
||
|
|
||
|
>>> np.abs(np.fft.fft(x))
|
||
|
array([ 3. , 2.41421356, 1. , 0.41421356, 1. ,
|
||
|
0.41421356, 1. , 2.41421356])
|
||
|
|
||
|
Now find the same values (up to sign) using `diric`. We multiply
|
||
|
by `k` to account for the different scaling conventions of
|
||
|
`numpy.fft.fft` and `diric`:
|
||
|
|
||
|
>>> theta = np.linspace(0, 2*np.pi, m, endpoint=False)
|
||
|
>>> k * special.diric(theta, k)
|
||
|
array([ 3. , 2.41421356, 1. , -0.41421356, -1. ,
|
||
|
-0.41421356, 1. , 2.41421356])
|
||
|
"""
|
||
|
x, n = asarray(x), asarray(n)
|
||
|
n = asarray(n + (x-x))
|
||
|
x = asarray(x + (n-n))
|
||
|
if issubdtype(x.dtype, inexact):
|
||
|
ytype = x.dtype
|
||
|
else:
|
||
|
ytype = float
|
||
|
y = zeros(x.shape, ytype)
|
||
|
|
||
|
# empirical minval for 32, 64 or 128 bit float computations
|
||
|
# where sin(x/2) < minval, result is fixed at +1 or -1
|
||
|
if np.finfo(ytype).eps < 1e-18:
|
||
|
minval = 1e-11
|
||
|
elif np.finfo(ytype).eps < 1e-15:
|
||
|
minval = 1e-7
|
||
|
else:
|
||
|
minval = 1e-3
|
||
|
|
||
|
mask1 = (n <= 0) | (n != floor(n))
|
||
|
place(y, mask1, nan)
|
||
|
|
||
|
x = x / 2
|
||
|
denom = sin(x)
|
||
|
mask2 = (1-mask1) & (abs(denom) < minval)
|
||
|
xsub = extract(mask2, x)
|
||
|
nsub = extract(mask2, n)
|
||
|
zsub = xsub / pi
|
||
|
place(y, mask2, pow(-1, np.round(zsub)*(nsub-1)))
|
||
|
|
||
|
mask = (1-mask1) & (1-mask2)
|
||
|
xsub = extract(mask, x)
|
||
|
nsub = extract(mask, n)
|
||
|
dsub = extract(mask, denom)
|
||
|
place(y, mask, sin(nsub*xsub)/(nsub*dsub))
|
||
|
return y
|
||
|
|
||
|
|
||
|
def jnjnp_zeros(nt):
|
||
|
"""Compute zeros of integer-order Bessel functions Jn and Jn'.
|
||
|
|
||
|
Results are arranged in order of the magnitudes of the zeros.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number (<=1200) of zeros to compute
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
zo[l-1] : ndarray
|
||
|
Value of the lth zero of Jn(x) and Jn'(x). Of length `nt`.
|
||
|
n[l-1] : ndarray
|
||
|
Order of the Jn(x) or Jn'(x) associated with lth zero. Of length `nt`.
|
||
|
m[l-1] : ndarray
|
||
|
Serial number of the zeros of Jn(x) or Jn'(x) associated
|
||
|
with lth zero. Of length `nt`.
|
||
|
t[l-1] : ndarray
|
||
|
0 if lth zero in zo is zero of Jn(x), 1 if it is a zero of Jn'(x). Of
|
||
|
length `nt`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
jn_zeros, jnp_zeros : to get separated arrays of zeros.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 5.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt > 1200):
|
||
|
raise ValueError("Number must be integer <= 1200.")
|
||
|
nt = int(nt)
|
||
|
n, m, t, zo = _specfun.jdzo(nt)
|
||
|
return zo[1:nt+1], n[:nt], m[:nt], t[:nt]
|
||
|
|
||
|
|
||
|
def jnyn_zeros(n, nt):
|
||
|
"""Compute nt zeros of Bessel functions Jn(x), Jn'(x), Yn(x), and Yn'(x).
|
||
|
|
||
|
Returns 4 arrays of length `nt`, corresponding to the first `nt`
|
||
|
zeros of Jn(x), Jn'(x), Yn(x), and Yn'(x), respectively. The zeros
|
||
|
are returned in ascending order.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Order of the Bessel functions
|
||
|
nt : int
|
||
|
Number (<=1200) of zeros to compute
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Jn : ndarray
|
||
|
First `nt` zeros of Jn
|
||
|
Jnp : ndarray
|
||
|
First `nt` zeros of Jn'
|
||
|
Yn : ndarray
|
||
|
First `nt` zeros of Yn
|
||
|
Ynp : ndarray
|
||
|
First `nt` zeros of Yn'
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
jn_zeros, jnp_zeros, yn_zeros, ynp_zeros
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 5.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the first three roots of :math:`J_1`, :math:`J_1'`,
|
||
|
:math:`Y_1` and :math:`Y_1'`.
|
||
|
|
||
|
>>> from scipy.special import jnyn_zeros
|
||
|
>>> jn_roots, jnp_roots, yn_roots, ynp_roots = jnyn_zeros(1, 3)
|
||
|
>>> jn_roots, yn_roots
|
||
|
(array([ 3.83170597, 7.01558667, 10.17346814]),
|
||
|
array([2.19714133, 5.42968104, 8.59600587]))
|
||
|
|
||
|
Plot :math:`J_1`, :math:`J_1'`, :math:`Y_1`, :math:`Y_1'` and their roots.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.special import jnyn_zeros, jvp, jn, yvp, yn
|
||
|
>>> jn_roots, jnp_roots, yn_roots, ynp_roots = jnyn_zeros(1, 3)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> xmax= 11
|
||
|
>>> x = np.linspace(0, xmax)
|
||
|
>>> x[0] += 1e-15
|
||
|
>>> ax.plot(x, jn(1, x), label=r"$J_1$", c='r')
|
||
|
>>> ax.plot(x, jvp(1, x, 1), label=r"$J_1'$", c='b')
|
||
|
>>> ax.plot(x, yn(1, x), label=r"$Y_1$", c='y')
|
||
|
>>> ax.plot(x, yvp(1, x, 1), label=r"$Y_1'$", c='c')
|
||
|
>>> zeros = np.zeros((3, ))
|
||
|
>>> ax.scatter(jn_roots, zeros, s=30, c='r', zorder=5,
|
||
|
... label=r"$J_1$ roots")
|
||
|
>>> ax.scatter(jnp_roots, zeros, s=30, c='b', zorder=5,
|
||
|
... label=r"$J_1'$ roots")
|
||
|
>>> ax.scatter(yn_roots, zeros, s=30, c='y', zorder=5,
|
||
|
... label=r"$Y_1$ roots")
|
||
|
>>> ax.scatter(ynp_roots, zeros, s=30, c='c', zorder=5,
|
||
|
... label=r"$Y_1'$ roots")
|
||
|
>>> ax.hlines(0, 0, xmax, color='k')
|
||
|
>>> ax.set_ylim(-0.6, 0.6)
|
||
|
>>> ax.set_xlim(0, xmax)
|
||
|
>>> ax.legend(ncol=2, bbox_to_anchor=(1., 0.75))
|
||
|
>>> plt.tight_layout()
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
if not (isscalar(nt) and isscalar(n)):
|
||
|
raise ValueError("Arguments must be scalars.")
|
||
|
if (floor(n) != n) or (floor(nt) != nt):
|
||
|
raise ValueError("Arguments must be integers.")
|
||
|
if (nt <= 0):
|
||
|
raise ValueError("nt > 0")
|
||
|
return _specfun.jyzo(abs(n), nt)
|
||
|
|
||
|
|
||
|
def jn_zeros(n, nt):
|
||
|
r"""Compute zeros of integer-order Bessel functions Jn.
|
||
|
|
||
|
Compute `nt` zeros of the Bessel functions :math:`J_n(x)` on the
|
||
|
interval :math:`(0, \infty)`. The zeros are returned in ascending
|
||
|
order. Note that this interval excludes the zero at :math:`x = 0`
|
||
|
that exists for :math:`n > 0`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Order of Bessel function
|
||
|
nt : int
|
||
|
Number of zeros to return
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
First `nt` zeros of the Bessel function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
jv: Real-order Bessel functions of the first kind
|
||
|
jnp_zeros: Zeros of :math:`Jn'`
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 5.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the first four positive roots of :math:`J_3`.
|
||
|
|
||
|
>>> from scipy.special import jn_zeros
|
||
|
>>> jn_zeros(3, 4)
|
||
|
array([ 6.3801619 , 9.76102313, 13.01520072, 16.22346616])
|
||
|
|
||
|
Plot :math:`J_3` and its first four positive roots. Note
|
||
|
that the root located at 0 is not returned by `jn_zeros`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.special import jn, jn_zeros
|
||
|
>>> j3_roots = jn_zeros(3, 4)
|
||
|
>>> xmax = 18
|
||
|
>>> xmin = -1
|
||
|
>>> x = np.linspace(xmin, xmax, 500)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, jn(3, x), label=r'$J_3$')
|
||
|
>>> ax.scatter(j3_roots, np.zeros((4, )), s=30, c='r',
|
||
|
... label=r"$J_3$_Zeros", zorder=5)
|
||
|
>>> ax.scatter(0, 0, s=30, c='k',
|
||
|
... label=r"Root at 0", zorder=5)
|
||
|
>>> ax.hlines(0, 0, xmax, color='k')
|
||
|
>>> ax.set_xlim(xmin, xmax)
|
||
|
>>> plt.legend()
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
return jnyn_zeros(n, nt)[0]
|
||
|
|
||
|
|
||
|
def jnp_zeros(n, nt):
|
||
|
r"""Compute zeros of integer-order Bessel function derivatives Jn'.
|
||
|
|
||
|
Compute `nt` zeros of the functions :math:`J_n'(x)` on the
|
||
|
interval :math:`(0, \infty)`. The zeros are returned in ascending
|
||
|
order. Note that this interval excludes the zero at :math:`x = 0`
|
||
|
that exists for :math:`n > 1`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Order of Bessel function
|
||
|
nt : int
|
||
|
Number of zeros to return
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
First `nt` zeros of the Bessel function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
jvp: Derivatives of integer-order Bessel functions of the first kind
|
||
|
jv: Float-order Bessel functions of the first kind
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 5.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the first four roots of :math:`J_2'`.
|
||
|
|
||
|
>>> from scipy.special import jnp_zeros
|
||
|
>>> jnp_zeros(2, 4)
|
||
|
array([ 3.05423693, 6.70613319, 9.96946782, 13.17037086])
|
||
|
|
||
|
As `jnp_zeros` yields the roots of :math:`J_n'`, it can be used to
|
||
|
compute the locations of the peaks of :math:`J_n`. Plot
|
||
|
:math:`J_2`, :math:`J_2'` and the locations of the roots of :math:`J_2'`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.special import jn, jnp_zeros, jvp
|
||
|
>>> j2_roots = jnp_zeros(2, 4)
|
||
|
>>> xmax = 15
|
||
|
>>> x = np.linspace(0, xmax, 500)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, jn(2, x), label=r'$J_2$')
|
||
|
>>> ax.plot(x, jvp(2, x, 1), label=r"$J_2'$")
|
||
|
>>> ax.hlines(0, 0, xmax, color='k')
|
||
|
>>> ax.scatter(j2_roots, np.zeros((4, )), s=30, c='r',
|
||
|
... label=r"Roots of $J_2'$", zorder=5)
|
||
|
>>> ax.set_ylim(-0.4, 0.8)
|
||
|
>>> ax.set_xlim(0, xmax)
|
||
|
>>> plt.legend()
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
return jnyn_zeros(n, nt)[1]
|
||
|
|
||
|
|
||
|
def yn_zeros(n, nt):
|
||
|
r"""Compute zeros of integer-order Bessel function Yn(x).
|
||
|
|
||
|
Compute `nt` zeros of the functions :math:`Y_n(x)` on the interval
|
||
|
:math:`(0, \infty)`. The zeros are returned in ascending order.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Order of Bessel function
|
||
|
nt : int
|
||
|
Number of zeros to return
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
First `nt` zeros of the Bessel function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
yn: Bessel function of the second kind for integer order
|
||
|
yv: Bessel function of the second kind for real order
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 5.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the first four roots of :math:`Y_2`.
|
||
|
|
||
|
>>> from scipy.special import yn_zeros
|
||
|
>>> yn_zeros(2, 4)
|
||
|
array([ 3.38424177, 6.79380751, 10.02347798, 13.20998671])
|
||
|
|
||
|
Plot :math:`Y_2` and its first four roots.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.special import yn, yn_zeros
|
||
|
>>> xmin = 2
|
||
|
>>> xmax = 15
|
||
|
>>> x = np.linspace(xmin, xmax, 500)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.hlines(0, xmin, xmax, color='k')
|
||
|
>>> ax.plot(x, yn(2, x), label=r'$Y_2$')
|
||
|
>>> ax.scatter(yn_zeros(2, 4), np.zeros((4, )), s=30, c='r',
|
||
|
... label='Roots', zorder=5)
|
||
|
>>> ax.set_ylim(-0.4, 0.4)
|
||
|
>>> ax.set_xlim(xmin, xmax)
|
||
|
>>> plt.legend()
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
return jnyn_zeros(n, nt)[2]
|
||
|
|
||
|
|
||
|
def ynp_zeros(n, nt):
|
||
|
r"""Compute zeros of integer-order Bessel function derivatives Yn'(x).
|
||
|
|
||
|
Compute `nt` zeros of the functions :math:`Y_n'(x)` on the
|
||
|
interval :math:`(0, \infty)`. The zeros are returned in ascending
|
||
|
order.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Order of Bessel function
|
||
|
nt : int
|
||
|
Number of zeros to return
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
First `nt` zeros of the Bessel derivative function.
|
||
|
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
yvp
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 5.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the first four roots of the first derivative of the
|
||
|
Bessel function of second kind for order 0 :math:`Y_0'`.
|
||
|
|
||
|
>>> from scipy.special import ynp_zeros
|
||
|
>>> ynp_zeros(0, 4)
|
||
|
array([ 2.19714133, 5.42968104, 8.59600587, 11.74915483])
|
||
|
|
||
|
Plot :math:`Y_0`, :math:`Y_0'` and confirm visually that the roots of
|
||
|
:math:`Y_0'` are located at local extrema of :math:`Y_0`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.special import yn, ynp_zeros, yvp
|
||
|
>>> zeros = ynp_zeros(0, 4)
|
||
|
>>> xmax = 13
|
||
|
>>> x = np.linspace(0, xmax, 500)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, yn(0, x), label=r'$Y_0$')
|
||
|
>>> ax.plot(x, yvp(0, x, 1), label=r"$Y_0'$")
|
||
|
>>> ax.scatter(zeros, np.zeros((4, )), s=30, c='r',
|
||
|
... label=r"Roots of $Y_0'$", zorder=5)
|
||
|
>>> for root in zeros:
|
||
|
... y0_extremum = yn(0, root)
|
||
|
... lower = min(0, y0_extremum)
|
||
|
... upper = max(0, y0_extremum)
|
||
|
... ax.vlines(root, lower, upper, color='r')
|
||
|
>>> ax.hlines(0, 0, xmax, color='k')
|
||
|
>>> ax.set_ylim(-0.6, 0.6)
|
||
|
>>> ax.set_xlim(0, xmax)
|
||
|
>>> plt.legend()
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
return jnyn_zeros(n, nt)[3]
|
||
|
|
||
|
|
||
|
def y0_zeros(nt, complex=False):
|
||
|
"""Compute nt zeros of Bessel function Y0(z), and derivative at each zero.
|
||
|
|
||
|
The derivatives are given by Y0'(z0) = -Y1(z0) at each zero z0.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to return
|
||
|
complex : bool, default False
|
||
|
Set to False to return only the real zeros; set to True to return only
|
||
|
the complex zeros with negative real part and positive imaginary part.
|
||
|
Note that the complex conjugates of the latter are also zeros of the
|
||
|
function, but are not returned by this routine.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
z0n : ndarray
|
||
|
Location of nth zero of Y0(z)
|
||
|
y0pz0n : ndarray
|
||
|
Value of derivative Y0'(z0) for nth zero
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 5.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the first 4 real roots and the derivatives at the roots of
|
||
|
:math:`Y_0`:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import y0_zeros
|
||
|
>>> zeros, grads = y0_zeros(4)
|
||
|
>>> with np.printoptions(precision=5):
|
||
|
... print(f"Roots: {zeros}")
|
||
|
... print(f"Gradients: {grads}")
|
||
|
Roots: [ 0.89358+0.j 3.95768+0.j 7.08605+0.j 10.22235+0.j]
|
||
|
Gradients: [-0.87942+0.j 0.40254+0.j -0.3001 +0.j 0.2497 +0.j]
|
||
|
|
||
|
Plot the real part of :math:`Y_0` and the first four computed roots.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.special import y0
|
||
|
>>> xmin = 0
|
||
|
>>> xmax = 11
|
||
|
>>> x = np.linspace(xmin, xmax, 500)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.hlines(0, xmin, xmax, color='k')
|
||
|
>>> ax.plot(x, y0(x), label=r'$Y_0$')
|
||
|
>>> zeros, grads = y0_zeros(4)
|
||
|
>>> ax.scatter(zeros.real, np.zeros((4, )), s=30, c='r',
|
||
|
... label=r'$Y_0$_zeros', zorder=5)
|
||
|
>>> ax.set_ylim(-0.5, 0.6)
|
||
|
>>> ax.set_xlim(xmin, xmax)
|
||
|
>>> plt.legend(ncol=2)
|
||
|
>>> plt.show()
|
||
|
|
||
|
Compute the first 4 complex roots and the derivatives at the roots of
|
||
|
:math:`Y_0` by setting ``complex=True``:
|
||
|
|
||
|
>>> y0_zeros(4, True)
|
||
|
(array([ -2.40301663+0.53988231j, -5.5198767 +0.54718001j,
|
||
|
-8.6536724 +0.54841207j, -11.79151203+0.54881912j]),
|
||
|
array([ 0.10074769-0.88196771j, -0.02924642+0.5871695j ,
|
||
|
0.01490806-0.46945875j, -0.00937368+0.40230454j]))
|
||
|
"""
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("Arguments must be scalar positive integer.")
|
||
|
kf = 0
|
||
|
kc = not complex
|
||
|
return _specfun.cyzo(nt, kf, kc)
|
||
|
|
||
|
|
||
|
def y1_zeros(nt, complex=False):
|
||
|
"""Compute nt zeros of Bessel function Y1(z), and derivative at each zero.
|
||
|
|
||
|
The derivatives are given by Y1'(z1) = Y0(z1) at each zero z1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to return
|
||
|
complex : bool, default False
|
||
|
Set to False to return only the real zeros; set to True to return only
|
||
|
the complex zeros with negative real part and positive imaginary part.
|
||
|
Note that the complex conjugates of the latter are also zeros of the
|
||
|
function, but are not returned by this routine.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
z1n : ndarray
|
||
|
Location of nth zero of Y1(z)
|
||
|
y1pz1n : ndarray
|
||
|
Value of derivative Y1'(z1) for nth zero
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 5.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the first 4 real roots and the derivatives at the roots of
|
||
|
:math:`Y_1`:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import y1_zeros
|
||
|
>>> zeros, grads = y1_zeros(4)
|
||
|
>>> with np.printoptions(precision=5):
|
||
|
... print(f"Roots: {zeros}")
|
||
|
... print(f"Gradients: {grads}")
|
||
|
Roots: [ 2.19714+0.j 5.42968+0.j 8.59601+0.j 11.74915+0.j]
|
||
|
Gradients: [ 0.52079+0.j -0.34032+0.j 0.27146+0.j -0.23246+0.j]
|
||
|
|
||
|
Extract the real parts:
|
||
|
|
||
|
>>> realzeros = zeros.real
|
||
|
>>> realzeros
|
||
|
array([ 2.19714133, 5.42968104, 8.59600587, 11.74915483])
|
||
|
|
||
|
Plot :math:`Y_1` and the first four computed roots.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.special import y1
|
||
|
>>> xmin = 0
|
||
|
>>> xmax = 13
|
||
|
>>> x = np.linspace(xmin, xmax, 500)
|
||
|
>>> zeros, grads = y1_zeros(4)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.hlines(0, xmin, xmax, color='k')
|
||
|
>>> ax.plot(x, y1(x), label=r'$Y_1$')
|
||
|
>>> ax.scatter(zeros.real, np.zeros((4, )), s=30, c='r',
|
||
|
... label=r'$Y_1$_zeros', zorder=5)
|
||
|
>>> ax.set_ylim(-0.5, 0.5)
|
||
|
>>> ax.set_xlim(xmin, xmax)
|
||
|
>>> plt.legend()
|
||
|
>>> plt.show()
|
||
|
|
||
|
Compute the first 4 complex roots and the derivatives at the roots of
|
||
|
:math:`Y_1` by setting ``complex=True``:
|
||
|
|
||
|
>>> y1_zeros(4, True)
|
||
|
(array([ -0.50274327+0.78624371j, -3.83353519+0.56235654j,
|
||
|
-7.01590368+0.55339305j, -10.17357383+0.55127339j]),
|
||
|
array([-0.45952768+1.31710194j, 0.04830191-0.69251288j,
|
||
|
-0.02012695+0.51864253j, 0.011614 -0.43203296j]))
|
||
|
"""
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("Arguments must be scalar positive integer.")
|
||
|
kf = 1
|
||
|
kc = not complex
|
||
|
return _specfun.cyzo(nt, kf, kc)
|
||
|
|
||
|
|
||
|
def y1p_zeros(nt, complex=False):
|
||
|
"""Compute nt zeros of Bessel derivative Y1'(z), and value at each zero.
|
||
|
|
||
|
The values are given by Y1(z1) at each z1 where Y1'(z1)=0.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to return
|
||
|
complex : bool, default False
|
||
|
Set to False to return only the real zeros; set to True to return only
|
||
|
the complex zeros with negative real part and positive imaginary part.
|
||
|
Note that the complex conjugates of the latter are also zeros of the
|
||
|
function, but are not returned by this routine.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
z1pn : ndarray
|
||
|
Location of nth zero of Y1'(z)
|
||
|
y1z1pn : ndarray
|
||
|
Value of derivative Y1(z1) for nth zero
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 5.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the first four roots of :math:`Y_1'` and the values of
|
||
|
:math:`Y_1` at these roots.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import y1p_zeros
|
||
|
>>> y1grad_roots, y1_values = y1p_zeros(4)
|
||
|
>>> with np.printoptions(precision=5):
|
||
|
... print(f"Y1' Roots: {y1grad_roots.real}")
|
||
|
... print(f"Y1 values: {y1_values.real}")
|
||
|
Y1' Roots: [ 3.68302 6.9415 10.1234 13.28576]
|
||
|
Y1 values: [ 0.41673 -0.30317 0.25091 -0.21897]
|
||
|
|
||
|
`y1p_zeros` can be used to calculate the extremal points of :math:`Y_1`
|
||
|
directly. Here we plot :math:`Y_1` and the first four extrema.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.special import y1, yvp
|
||
|
>>> y1_roots, y1_values_at_roots = y1p_zeros(4)
|
||
|
>>> real_roots = y1_roots.real
|
||
|
>>> xmax = 15
|
||
|
>>> x = np.linspace(0, xmax, 500)
|
||
|
>>> x[0] += 1e-15
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, y1(x), label=r'$Y_1$')
|
||
|
>>> ax.plot(x, yvp(1, x, 1), label=r"$Y_1'$")
|
||
|
>>> ax.scatter(real_roots, np.zeros((4, )), s=30, c='r',
|
||
|
... label=r"Roots of $Y_1'$", zorder=5)
|
||
|
>>> ax.scatter(real_roots, y1_values_at_roots.real, s=30, c='k',
|
||
|
... label=r"Extrema of $Y_1$", zorder=5)
|
||
|
>>> ax.hlines(0, 0, xmax, color='k')
|
||
|
>>> ax.set_ylim(-0.5, 0.5)
|
||
|
>>> ax.set_xlim(0, xmax)
|
||
|
>>> ax.legend(ncol=2, bbox_to_anchor=(1., 0.75))
|
||
|
>>> plt.tight_layout()
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("Arguments must be scalar positive integer.")
|
||
|
kf = 2
|
||
|
kc = not complex
|
||
|
return _specfun.cyzo(nt, kf, kc)
|
||
|
|
||
|
|
||
|
def _bessel_diff_formula(v, z, n, L, phase):
|
||
|
# from AMS55.
|
||
|
# L(v, z) = J(v, z), Y(v, z), H1(v, z), H2(v, z), phase = -1
|
||
|
# L(v, z) = I(v, z) or exp(v*pi*i)K(v, z), phase = 1
|
||
|
# For K, you can pull out the exp((v-k)*pi*i) into the caller
|
||
|
v = asarray(v)
|
||
|
p = 1.0
|
||
|
s = L(v-n, z)
|
||
|
for i in range(1, n+1):
|
||
|
p = phase * (p * (n-i+1)) / i # = choose(k, i)
|
||
|
s += p*L(v-n + i*2, z)
|
||
|
return s / (2.**n)
|
||
|
|
||
|
|
||
|
def jvp(v, z, n=1):
|
||
|
"""Compute derivatives of Bessel functions of the first kind.
|
||
|
|
||
|
Compute the nth derivative of the Bessel function `Jv` with
|
||
|
respect to `z`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like or float
|
||
|
Order of Bessel function
|
||
|
z : complex
|
||
|
Argument at which to evaluate the derivative; can be real or
|
||
|
complex.
|
||
|
n : int, default 1
|
||
|
Order of derivative. For 0 returns the Bessel function `jv` itself.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the derivative of the Bessel function.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The derivative is computed using the relation DLFM 10.6.7 [2]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 5.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
.. [2] NIST Digital Library of Mathematical Functions.
|
||
|
https://dlmf.nist.gov/10.6.E7
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
Compute the Bessel function of the first kind of order 0 and
|
||
|
its first two derivatives at 1.
|
||
|
|
||
|
>>> from scipy.special import jvp
|
||
|
>>> jvp(0, 1, 0), jvp(0, 1, 1), jvp(0, 1, 2)
|
||
|
(0.7651976865579666, -0.44005058574493355, -0.3251471008130331)
|
||
|
|
||
|
Compute the first derivative of the Bessel function of the first
|
||
|
kind for several orders at 1 by providing an array for `v`.
|
||
|
|
||
|
>>> jvp([0, 1, 2], 1, 1)
|
||
|
array([-0.44005059, 0.3251471 , 0.21024362])
|
||
|
|
||
|
Compute the first derivative of the Bessel function of the first
|
||
|
kind of order 0 at several points by providing an array for `z`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([0., 1.5, 3.])
|
||
|
>>> jvp(0, points, 1)
|
||
|
array([-0. , -0.55793651, -0.33905896])
|
||
|
|
||
|
Plot the Bessel function of the first kind of order 1 and its
|
||
|
first three derivatives.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(-10, 10, 1000)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, jvp(1, x, 0), label=r"$J_1$")
|
||
|
>>> ax.plot(x, jvp(1, x, 1), label=r"$J_1'$")
|
||
|
>>> ax.plot(x, jvp(1, x, 2), label=r"$J_1''$")
|
||
|
>>> ax.plot(x, jvp(1, x, 3), label=r"$J_1'''$")
|
||
|
>>> plt.legend()
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
n = _nonneg_int_or_fail(n, 'n')
|
||
|
if n == 0:
|
||
|
return jv(v, z)
|
||
|
else:
|
||
|
return _bessel_diff_formula(v, z, n, jv, -1)
|
||
|
|
||
|
|
||
|
def yvp(v, z, n=1):
|
||
|
"""Compute derivatives of Bessel functions of the second kind.
|
||
|
|
||
|
Compute the nth derivative of the Bessel function `Yv` with
|
||
|
respect to `z`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like of float
|
||
|
Order of Bessel function
|
||
|
z : complex
|
||
|
Argument at which to evaluate the derivative
|
||
|
n : int, default 1
|
||
|
Order of derivative. For 0 returns the BEssel function `yv`
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
nth derivative of the Bessel function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
yv : Bessel functions of the second kind
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The derivative is computed using the relation DLFM 10.6.7 [2]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 5.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
.. [2] NIST Digital Library of Mathematical Functions.
|
||
|
https://dlmf.nist.gov/10.6.E7
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the Bessel function of the second kind of order 0 and
|
||
|
its first two derivatives at 1.
|
||
|
|
||
|
>>> from scipy.special import yvp
|
||
|
>>> yvp(0, 1, 0), yvp(0, 1, 1), yvp(0, 1, 2)
|
||
|
(0.088256964215677, 0.7812128213002889, -0.8694697855159659)
|
||
|
|
||
|
Compute the first derivative of the Bessel function of the second
|
||
|
kind for several orders at 1 by providing an array for `v`.
|
||
|
|
||
|
>>> yvp([0, 1, 2], 1, 1)
|
||
|
array([0.78121282, 0.86946979, 2.52015239])
|
||
|
|
||
|
Compute the first derivative of the Bessel function of the
|
||
|
second kind of order 0 at several points by providing an array for `z`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([0.5, 1.5, 3.])
|
||
|
>>> yvp(0, points, 1)
|
||
|
array([ 1.47147239, 0.41230863, -0.32467442])
|
||
|
|
||
|
Plot the Bessel function of the second kind of order 1 and its
|
||
|
first three derivatives.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(0, 5, 1000)
|
||
|
>>> x[0] += 1e-15
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, yvp(1, x, 0), label=r"$Y_1$")
|
||
|
>>> ax.plot(x, yvp(1, x, 1), label=r"$Y_1'$")
|
||
|
>>> ax.plot(x, yvp(1, x, 2), label=r"$Y_1''$")
|
||
|
>>> ax.plot(x, yvp(1, x, 3), label=r"$Y_1'''$")
|
||
|
>>> ax.set_ylim(-10, 10)
|
||
|
>>> plt.legend()
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
n = _nonneg_int_or_fail(n, 'n')
|
||
|
if n == 0:
|
||
|
return yv(v, z)
|
||
|
else:
|
||
|
return _bessel_diff_formula(v, z, n, yv, -1)
|
||
|
|
||
|
|
||
|
def kvp(v, z, n=1):
|
||
|
"""Compute derivatives of real-order modified Bessel function Kv(z)
|
||
|
|
||
|
Kv(z) is the modified Bessel function of the second kind.
|
||
|
Derivative is calculated with respect to `z`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like of float
|
||
|
Order of Bessel function
|
||
|
z : array_like of complex
|
||
|
Argument at which to evaluate the derivative
|
||
|
n : int, default 1
|
||
|
Order of derivative. For 0 returns the Bessel function `kv` itself.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray
|
||
|
The results
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kv
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The derivative is computed using the relation DLFM 10.29.5 [2]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 6.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
.. [2] NIST Digital Library of Mathematical Functions.
|
||
|
https://dlmf.nist.gov/10.29.E5
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the modified bessel function of the second kind of order 0 and
|
||
|
its first two derivatives at 1.
|
||
|
|
||
|
>>> from scipy.special import kvp
|
||
|
>>> kvp(0, 1, 0), kvp(0, 1, 1), kvp(0, 1, 2)
|
||
|
(0.42102443824070834, -0.6019072301972346, 1.0229316684379428)
|
||
|
|
||
|
Compute the first derivative of the modified Bessel function of the second
|
||
|
kind for several orders at 1 by providing an array for `v`.
|
||
|
|
||
|
>>> kvp([0, 1, 2], 1, 1)
|
||
|
array([-0.60190723, -1.02293167, -3.85158503])
|
||
|
|
||
|
Compute the first derivative of the modified Bessel function of the
|
||
|
second kind of order 0 at several points by providing an array for `z`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([0.5, 1.5, 3.])
|
||
|
>>> kvp(0, points, 1)
|
||
|
array([-1.65644112, -0.2773878 , -0.04015643])
|
||
|
|
||
|
Plot the modified bessel function of the second kind and its
|
||
|
first three derivatives.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(0, 5, 1000)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, kvp(1, x, 0), label=r"$K_1$")
|
||
|
>>> ax.plot(x, kvp(1, x, 1), label=r"$K_1'$")
|
||
|
>>> ax.plot(x, kvp(1, x, 2), label=r"$K_1''$")
|
||
|
>>> ax.plot(x, kvp(1, x, 3), label=r"$K_1'''$")
|
||
|
>>> ax.set_ylim(-2.5, 2.5)
|
||
|
>>> plt.legend()
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
n = _nonneg_int_or_fail(n, 'n')
|
||
|
if n == 0:
|
||
|
return kv(v, z)
|
||
|
else:
|
||
|
return (-1)**n * _bessel_diff_formula(v, z, n, kv, 1)
|
||
|
|
||
|
|
||
|
def ivp(v, z, n=1):
|
||
|
"""Compute derivatives of modified Bessel functions of the first kind.
|
||
|
|
||
|
Compute the nth derivative of the modified Bessel function `Iv`
|
||
|
with respect to `z`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like or float
|
||
|
Order of Bessel function
|
||
|
z : array_like
|
||
|
Argument at which to evaluate the derivative; can be real or
|
||
|
complex.
|
||
|
n : int, default 1
|
||
|
Order of derivative. For 0, returns the Bessel function `iv` itself.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
nth derivative of the modified Bessel function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
iv
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The derivative is computed using the relation DLFM 10.29.5 [2]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 6.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
.. [2] NIST Digital Library of Mathematical Functions.
|
||
|
https://dlmf.nist.gov/10.29.E5
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the modified Bessel function of the first kind of order 0 and
|
||
|
its first two derivatives at 1.
|
||
|
|
||
|
>>> from scipy.special import ivp
|
||
|
>>> ivp(0, 1, 0), ivp(0, 1, 1), ivp(0, 1, 2)
|
||
|
(1.2660658777520084, 0.565159103992485, 0.7009067737595233)
|
||
|
|
||
|
Compute the first derivative of the modified Bessel function of the first
|
||
|
kind for several orders at 1 by providing an array for `v`.
|
||
|
|
||
|
>>> ivp([0, 1, 2], 1, 1)
|
||
|
array([0.5651591 , 0.70090677, 0.29366376])
|
||
|
|
||
|
Compute the first derivative of the modified Bessel function of the
|
||
|
first kind of order 0 at several points by providing an array for `z`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([0., 1.5, 3.])
|
||
|
>>> ivp(0, points, 1)
|
||
|
array([0. , 0.98166643, 3.95337022])
|
||
|
|
||
|
Plot the modified Bessel function of the first kind of order 1 and its
|
||
|
first three derivatives.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> x = np.linspace(-5, 5, 1000)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x, ivp(1, x, 0), label=r"$I_1$")
|
||
|
>>> ax.plot(x, ivp(1, x, 1), label=r"$I_1'$")
|
||
|
>>> ax.plot(x, ivp(1, x, 2), label=r"$I_1''$")
|
||
|
>>> ax.plot(x, ivp(1, x, 3), label=r"$I_1'''$")
|
||
|
>>> plt.legend()
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
n = _nonneg_int_or_fail(n, 'n')
|
||
|
if n == 0:
|
||
|
return iv(v, z)
|
||
|
else:
|
||
|
return _bessel_diff_formula(v, z, n, iv, 1)
|
||
|
|
||
|
|
||
|
def h1vp(v, z, n=1):
|
||
|
"""Compute derivatives of Hankel function H1v(z) with respect to `z`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Order of Hankel function
|
||
|
z : array_like
|
||
|
Argument at which to evaluate the derivative. Can be real or
|
||
|
complex.
|
||
|
n : int, default 1
|
||
|
Order of derivative. For 0 returns the Hankel function `h1v` itself.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the derivative of the Hankel function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hankel1
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The derivative is computed using the relation DLFM 10.6.7 [2]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 5.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
.. [2] NIST Digital Library of Mathematical Functions.
|
||
|
https://dlmf.nist.gov/10.6.E7
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the Hankel function of the first kind of order 0 and
|
||
|
its first two derivatives at 1.
|
||
|
|
||
|
>>> from scipy.special import h1vp
|
||
|
>>> h1vp(0, 1, 0), h1vp(0, 1, 1), h1vp(0, 1, 2)
|
||
|
((0.7651976865579664+0.088256964215677j),
|
||
|
(-0.44005058574493355+0.7812128213002889j),
|
||
|
(-0.3251471008130329-0.8694697855159659j))
|
||
|
|
||
|
Compute the first derivative of the Hankel function of the first kind
|
||
|
for several orders at 1 by providing an array for `v`.
|
||
|
|
||
|
>>> h1vp([0, 1, 2], 1, 1)
|
||
|
array([-0.44005059+0.78121282j, 0.3251471 +0.86946979j,
|
||
|
0.21024362+2.52015239j])
|
||
|
|
||
|
Compute the first derivative of the Hankel function of the first kind
|
||
|
of order 0 at several points by providing an array for `z`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([0.5, 1.5, 3.])
|
||
|
>>> h1vp(0, points, 1)
|
||
|
array([-0.24226846+1.47147239j, -0.55793651+0.41230863j,
|
||
|
-0.33905896-0.32467442j])
|
||
|
"""
|
||
|
n = _nonneg_int_or_fail(n, 'n')
|
||
|
if n == 0:
|
||
|
return hankel1(v, z)
|
||
|
else:
|
||
|
return _bessel_diff_formula(v, z, n, hankel1, -1)
|
||
|
|
||
|
|
||
|
def h2vp(v, z, n=1):
|
||
|
"""Compute derivatives of Hankel function H2v(z) with respect to `z`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : array_like
|
||
|
Order of Hankel function
|
||
|
z : array_like
|
||
|
Argument at which to evaluate the derivative. Can be real or
|
||
|
complex.
|
||
|
n : int, default 1
|
||
|
Order of derivative. For 0 returns the Hankel function `h2v` itself.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar or ndarray
|
||
|
Values of the derivative of the Hankel function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hankel2
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The derivative is computed using the relation DLFM 10.6.7 [2]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 5.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
.. [2] NIST Digital Library of Mathematical Functions.
|
||
|
https://dlmf.nist.gov/10.6.E7
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the Hankel function of the second kind of order 0 and
|
||
|
its first two derivatives at 1.
|
||
|
|
||
|
>>> from scipy.special import h2vp
|
||
|
>>> h2vp(0, 1, 0), h2vp(0, 1, 1), h2vp(0, 1, 2)
|
||
|
((0.7651976865579664-0.088256964215677j),
|
||
|
(-0.44005058574493355-0.7812128213002889j),
|
||
|
(-0.3251471008130329+0.8694697855159659j))
|
||
|
|
||
|
Compute the first derivative of the Hankel function of the second kind
|
||
|
for several orders at 1 by providing an array for `v`.
|
||
|
|
||
|
>>> h2vp([0, 1, 2], 1, 1)
|
||
|
array([-0.44005059-0.78121282j, 0.3251471 -0.86946979j,
|
||
|
0.21024362-2.52015239j])
|
||
|
|
||
|
Compute the first derivative of the Hankel function of the second kind
|
||
|
of order 0 at several points by providing an array for `z`.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> points = np.array([0.5, 1.5, 3.])
|
||
|
>>> h2vp(0, points, 1)
|
||
|
array([-0.24226846-1.47147239j, -0.55793651-0.41230863j,
|
||
|
-0.33905896+0.32467442j])
|
||
|
"""
|
||
|
n = _nonneg_int_or_fail(n, 'n')
|
||
|
if n == 0:
|
||
|
return hankel2(v, z)
|
||
|
else:
|
||
|
return _bessel_diff_formula(v, z, n, hankel2, -1)
|
||
|
|
||
|
|
||
|
def riccati_jn(n, x):
|
||
|
r"""Compute Ricatti-Bessel function of the first kind and its derivative.
|
||
|
|
||
|
The Ricatti-Bessel function of the first kind is defined as :math:`x
|
||
|
j_n(x)`, where :math:`j_n` is the spherical Bessel function of the first
|
||
|
kind of order :math:`n`.
|
||
|
|
||
|
This function computes the value and first derivative of the
|
||
|
Ricatti-Bessel function for all orders up to and including `n`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Maximum order of function to compute
|
||
|
x : float
|
||
|
Argument at which to evaluate
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
jn : ndarray
|
||
|
Value of j0(x), ..., jn(x)
|
||
|
jnp : ndarray
|
||
|
First derivative j0'(x), ..., jn'(x)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The computation is carried out via backward recurrence, using the
|
||
|
relation DLMF 10.51.1 [2]_.
|
||
|
|
||
|
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
|
||
|
Jin [1]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
.. [2] NIST Digital Library of Mathematical Functions.
|
||
|
https://dlmf.nist.gov/10.51.E1
|
||
|
|
||
|
"""
|
||
|
if not (isscalar(n) and isscalar(x)):
|
||
|
raise ValueError("arguments must be scalars.")
|
||
|
n = _nonneg_int_or_fail(n, 'n', strict=False)
|
||
|
if (n == 0):
|
||
|
n1 = 1
|
||
|
else:
|
||
|
n1 = n
|
||
|
|
||
|
jn = np.empty((n1 + 1,), dtype = np.float64)
|
||
|
jnp = np.empty_like(jn)
|
||
|
|
||
|
_rctj(x, out = (jn, jnp))
|
||
|
return jn[:(n+1)], jnp[:(n+1)]
|
||
|
|
||
|
|
||
|
def riccati_yn(n, x):
|
||
|
"""Compute Ricatti-Bessel function of the second kind and its derivative.
|
||
|
|
||
|
The Ricatti-Bessel function of the second kind is defined as :math:`x
|
||
|
y_n(x)`, where :math:`y_n` is the spherical Bessel function of the second
|
||
|
kind of order :math:`n`.
|
||
|
|
||
|
This function computes the value and first derivative of the function for
|
||
|
all orders up to and including `n`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Maximum order of function to compute
|
||
|
x : float
|
||
|
Argument at which to evaluate
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
yn : ndarray
|
||
|
Value of y0(x), ..., yn(x)
|
||
|
ynp : ndarray
|
||
|
First derivative y0'(x), ..., yn'(x)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The computation is carried out via ascending recurrence, using the
|
||
|
relation DLMF 10.51.1 [2]_.
|
||
|
|
||
|
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
|
||
|
Jin [1]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
.. [2] NIST Digital Library of Mathematical Functions.
|
||
|
https://dlmf.nist.gov/10.51.E1
|
||
|
|
||
|
"""
|
||
|
if not (isscalar(n) and isscalar(x)):
|
||
|
raise ValueError("arguments must be scalars.")
|
||
|
n = _nonneg_int_or_fail(n, 'n', strict=False)
|
||
|
if (n == 0):
|
||
|
n1 = 1
|
||
|
else:
|
||
|
n1 = n
|
||
|
|
||
|
yn = np.empty((n1 + 1,), dtype = np.float64)
|
||
|
ynp = np.empty_like(yn)
|
||
|
_rcty(x, out = (yn, ynp))
|
||
|
|
||
|
return yn[:(n+1)], ynp[:(n+1)]
|
||
|
|
||
|
|
||
|
def erf_zeros(nt):
|
||
|
"""Compute the first nt zero in the first quadrant, ordered by absolute value.
|
||
|
|
||
|
Zeros in the other quadrants can be obtained by using the symmetries
|
||
|
erf(-z) = erf(z) and erf(conj(z)) = conj(erf(z)).
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
The number of zeros to compute
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
The locations of the zeros of erf : ndarray (complex)
|
||
|
Complex values at which zeros of erf(z)
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import special
|
||
|
>>> special.erf_zeros(1)
|
||
|
array([1.45061616+1.880943j])
|
||
|
|
||
|
Check that erf is (close to) zero for the value returned by erf_zeros
|
||
|
|
||
|
>>> special.erf(special.erf_zeros(1))
|
||
|
array([4.95159469e-14-1.16407394e-16j])
|
||
|
|
||
|
"""
|
||
|
if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
|
||
|
raise ValueError("Argument must be positive scalar integer.")
|
||
|
return _specfun.cerzo(nt)
|
||
|
|
||
|
|
||
|
def fresnelc_zeros(nt):
|
||
|
"""Compute nt complex zeros of cosine Fresnel integral C(z).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to compute
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
fresnelc_zeros: ndarray
|
||
|
Zeros of the cosine Fresnel integral
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
|
||
|
raise ValueError("Argument must be positive scalar integer.")
|
||
|
return _specfun.fcszo(1, nt)
|
||
|
|
||
|
|
||
|
def fresnels_zeros(nt):
|
||
|
"""Compute nt complex zeros of sine Fresnel integral S(z).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to compute
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
fresnels_zeros: ndarray
|
||
|
Zeros of the sine Fresnel integral
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
|
||
|
raise ValueError("Argument must be positive scalar integer.")
|
||
|
return _specfun.fcszo(2, nt)
|
||
|
|
||
|
|
||
|
def fresnel_zeros(nt):
|
||
|
"""Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to compute
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
zeros_sine: ndarray
|
||
|
Zeros of the sine Fresnel integral
|
||
|
zeros_cosine : ndarray
|
||
|
Zeros of the cosine Fresnel integral
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
|
||
|
raise ValueError("Argument must be positive scalar integer.")
|
||
|
return _specfun.fcszo(2, nt), _specfun.fcszo(1, nt)
|
||
|
|
||
|
|
||
|
def assoc_laguerre(x, n, k=0.0):
|
||
|
"""Compute the generalized (associated) Laguerre polynomial of degree n and order k.
|
||
|
|
||
|
The polynomial :math:`L^{(k)}_n(x)` is orthogonal over ``[0, inf)``,
|
||
|
with weighting function ``exp(-x) * x**k`` with ``k > -1``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : float or ndarray
|
||
|
Points where to evaluate the Laguerre polynomial
|
||
|
n : int
|
||
|
Degree of the Laguerre polynomial
|
||
|
k : int
|
||
|
Order of the Laguerre polynomial
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
assoc_laguerre: float or ndarray
|
||
|
Associated laguerre polynomial values
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`assoc_laguerre` is a simple wrapper around `eval_genlaguerre`, with
|
||
|
reversed argument order ``(x, n, k=0.0) --> (n, k, x)``.
|
||
|
|
||
|
"""
|
||
|
return _ufuncs.eval_genlaguerre(n, k, x)
|
||
|
|
||
|
|
||
|
digamma = psi
|
||
|
|
||
|
|
||
|
def polygamma(n, x):
|
||
|
r"""Polygamma functions.
|
||
|
|
||
|
Defined as :math:`\psi^{(n)}(x)` where :math:`\psi` is the
|
||
|
`digamma` function. See [dlmf]_ for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
The order of the derivative of the digamma function; must be
|
||
|
integral
|
||
|
x : array_like
|
||
|
Real valued input
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
Function results
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
digamma
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
||
|
https://dlmf.nist.gov/5.15
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import special
|
||
|
>>> x = [2, 3, 25.5]
|
||
|
>>> special.polygamma(1, x)
|
||
|
array([ 0.64493407, 0.39493407, 0.03999467])
|
||
|
>>> special.polygamma(0, x) == special.psi(x)
|
||
|
array([ True, True, True], dtype=bool)
|
||
|
|
||
|
"""
|
||
|
n, x = asarray(n), asarray(x)
|
||
|
fac2 = (-1.0)**(n+1) * gamma(n+1.0) * zeta(n+1, x)
|
||
|
return where(n == 0, psi(x), fac2)
|
||
|
|
||
|
|
||
|
def mathieu_even_coef(m, q):
|
||
|
r"""Fourier coefficients for even Mathieu and modified Mathieu functions.
|
||
|
|
||
|
The Fourier series of the even solutions of the Mathieu differential
|
||
|
equation are of the form
|
||
|
|
||
|
.. math:: \mathrm{ce}_{2n}(z, q) = \sum_{k=0}^{\infty} A_{(2n)}^{(2k)} \cos 2kz
|
||
|
|
||
|
.. math:: \mathrm{ce}_{2n+1}(z, q) =
|
||
|
\sum_{k=0}^{\infty} A_{(2n+1)}^{(2k+1)} \cos (2k+1)z
|
||
|
|
||
|
This function returns the coefficients :math:`A_{(2n)}^{(2k)}` for even
|
||
|
input m=2n, and the coefficients :math:`A_{(2n+1)}^{(2k+1)}` for odd input
|
||
|
m=2n+1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : int
|
||
|
Order of Mathieu functions. Must be non-negative.
|
||
|
q : float (>=0)
|
||
|
Parameter of Mathieu functions. Must be non-negative.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Ak : ndarray
|
||
|
Even or odd Fourier coefficients, corresponding to even or odd m.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
.. [2] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/28.4#i
|
||
|
|
||
|
"""
|
||
|
if not (isscalar(m) and isscalar(q)):
|
||
|
raise ValueError("m and q must be scalars.")
|
||
|
if (q < 0):
|
||
|
raise ValueError("q >=0")
|
||
|
if (m != floor(m)) or (m < 0):
|
||
|
raise ValueError("m must be an integer >=0.")
|
||
|
|
||
|
if (q <= 1):
|
||
|
qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q
|
||
|
else:
|
||
|
qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q
|
||
|
km = int(qm + 0.5*m)
|
||
|
if km > 251:
|
||
|
warnings.warn("Too many predicted coefficients.", RuntimeWarning, stacklevel=2)
|
||
|
kd = 1
|
||
|
m = int(floor(m))
|
||
|
if m % 2:
|
||
|
kd = 2
|
||
|
|
||
|
a = mathieu_a(m, q)
|
||
|
fc = _specfun.fcoef(kd, m, q, a)
|
||
|
return fc[:km]
|
||
|
|
||
|
|
||
|
def mathieu_odd_coef(m, q):
|
||
|
r"""Fourier coefficients for even Mathieu and modified Mathieu functions.
|
||
|
|
||
|
The Fourier series of the odd solutions of the Mathieu differential
|
||
|
equation are of the form
|
||
|
|
||
|
.. math:: \mathrm{se}_{2n+1}(z, q) =
|
||
|
\sum_{k=0}^{\infty} B_{(2n+1)}^{(2k+1)} \sin (2k+1)z
|
||
|
|
||
|
.. math:: \mathrm{se}_{2n+2}(z, q) =
|
||
|
\sum_{k=0}^{\infty} B_{(2n+2)}^{(2k+2)} \sin (2k+2)z
|
||
|
|
||
|
This function returns the coefficients :math:`B_{(2n+2)}^{(2k+2)}` for even
|
||
|
input m=2n+2, and the coefficients :math:`B_{(2n+1)}^{(2k+1)}` for odd
|
||
|
input m=2n+1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : int
|
||
|
Order of Mathieu functions. Must be non-negative.
|
||
|
q : float (>=0)
|
||
|
Parameter of Mathieu functions. Must be non-negative.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Bk : ndarray
|
||
|
Even or odd Fourier coefficients, corresponding to even or odd m.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not (isscalar(m) and isscalar(q)):
|
||
|
raise ValueError("m and q must be scalars.")
|
||
|
if (q < 0):
|
||
|
raise ValueError("q >=0")
|
||
|
if (m != floor(m)) or (m <= 0):
|
||
|
raise ValueError("m must be an integer > 0")
|
||
|
|
||
|
if (q <= 1):
|
||
|
qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q
|
||
|
else:
|
||
|
qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q
|
||
|
km = int(qm + 0.5*m)
|
||
|
if km > 251:
|
||
|
warnings.warn("Too many predicted coefficients.", RuntimeWarning, stacklevel=2)
|
||
|
kd = 4
|
||
|
m = int(floor(m))
|
||
|
if m % 2:
|
||
|
kd = 3
|
||
|
|
||
|
b = mathieu_b(m, q)
|
||
|
fc = _specfun.fcoef(kd, m, q, b)
|
||
|
return fc[:km]
|
||
|
|
||
|
|
||
|
def lpmn(m, n, z):
|
||
|
"""Sequence of associated Legendre functions of the first kind.
|
||
|
|
||
|
Computes the associated Legendre function of the first kind of order m and
|
||
|
degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``.
|
||
|
Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and
|
||
|
``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``.
|
||
|
|
||
|
This function takes a real argument ``z``. For complex arguments ``z``
|
||
|
use clpmn instead.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : int
|
||
|
``|m| <= n``; the order of the Legendre function.
|
||
|
n : int
|
||
|
where ``n >= 0``; the degree of the Legendre function. Often
|
||
|
called ``l`` (lower case L) in descriptions of the associated
|
||
|
Legendre function
|
||
|
z : array_like
|
||
|
Input value.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Pmn_z : (m+1, n+1) array
|
||
|
Values for all orders 0..m and degrees 0..n
|
||
|
Pmn_d_z : (m+1, n+1) array
|
||
|
Derivatives for all orders 0..m and degrees 0..n
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
clpmn: associated Legendre functions of the first kind for complex z
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
In the interval (-1, 1), Ferrer's function of the first kind is
|
||
|
returned. The phase convention used for the intervals (1, inf)
|
||
|
and (-inf, -1) is such that the result is always real.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
.. [2] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/14.3
|
||
|
|
||
|
"""
|
||
|
n = _nonneg_int_or_fail(n, 'n', strict=False)
|
||
|
if not isscalar(m) or (abs(m) > n):
|
||
|
raise ValueError("m must be <= n.")
|
||
|
if not isscalar(n) or (n < 0):
|
||
|
raise ValueError("n must be a non-negative integer.")
|
||
|
if np.iscomplexobj(z):
|
||
|
raise ValueError("Argument must be real. Use clpmn instead.")
|
||
|
|
||
|
m, n = int(m), int(n) # Convert to int to maintain backwards compatibility.
|
||
|
if (m < 0):
|
||
|
m_signbit = True
|
||
|
m_abs = -m
|
||
|
else:
|
||
|
m_signbit = False
|
||
|
m_abs = m
|
||
|
|
||
|
z = np.asarray(z)
|
||
|
if (not np.issubdtype(z.dtype, np.inexact)):
|
||
|
z = z.astype(np.float64)
|
||
|
|
||
|
p = np.empty((m_abs + 1, n + 1) + z.shape, dtype=np.float64)
|
||
|
pd = np.empty_like(p)
|
||
|
if (z.ndim == 0):
|
||
|
_lpmn(z, m_signbit, out = (p, pd))
|
||
|
else:
|
||
|
_lpmn(z, m_signbit, out = (np.moveaxis(p, (0, 1), (-2, -1)),
|
||
|
np.moveaxis(pd, (0, 1), (-2, -1)))) # new axes must be last for the ufunc
|
||
|
|
||
|
return p, pd
|
||
|
|
||
|
|
||
|
def clpmn(m, n, z, type=3):
|
||
|
"""Associated Legendre function of the first kind for complex arguments.
|
||
|
|
||
|
Computes the associated Legendre function of the first kind of order m and
|
||
|
degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``.
|
||
|
Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and
|
||
|
``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : int
|
||
|
``|m| <= n``; the order of the Legendre function.
|
||
|
n : int
|
||
|
where ``n >= 0``; the degree of the Legendre function. Often
|
||
|
called ``l`` (lower case L) in descriptions of the associated
|
||
|
Legendre function
|
||
|
z : array_like, float or complex
|
||
|
Input value.
|
||
|
type : int, optional
|
||
|
takes values 2 or 3
|
||
|
2: cut on the real axis ``|x| > 1``
|
||
|
3: cut on the real axis ``-1 < x < 1`` (default)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Pmn_z : (m+1, n+1) array
|
||
|
Values for all orders ``0..m`` and degrees ``0..n``
|
||
|
Pmn_d_z : (m+1, n+1) array
|
||
|
Derivatives for all orders ``0..m`` and degrees ``0..n``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
lpmn: associated Legendre functions of the first kind for real z
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
By default, i.e. for ``type=3``, phase conventions are chosen according
|
||
|
to [1]_ such that the function is analytic. The cut lies on the interval
|
||
|
(-1, 1). Approaching the cut from above or below in general yields a phase
|
||
|
factor with respect to Ferrer's function of the first kind
|
||
|
(cf. `lpmn`).
|
||
|
|
||
|
For ``type=2`` a cut at ``|x| > 1`` is chosen. Approaching the real values
|
||
|
on the interval (-1, 1) in the complex plane yields Ferrer's function
|
||
|
of the first kind.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
.. [2] NIST Digital Library of Mathematical Functions
|
||
|
https://dlmf.nist.gov/14.21
|
||
|
|
||
|
"""
|
||
|
if not isscalar(m) or (abs(m) > n):
|
||
|
raise ValueError("m must be <= n.")
|
||
|
if not isscalar(n) or (n < 0):
|
||
|
raise ValueError("n must be a non-negative integer.")
|
||
|
if not (type == 2 or type == 3):
|
||
|
raise ValueError("type must be either 2 or 3.")
|
||
|
|
||
|
m, n = int(m), int(n) # Convert to int to maintain backwards compatibility.
|
||
|
if (m < 0):
|
||
|
mp = -m
|
||
|
m_signbit = True
|
||
|
else:
|
||
|
mp = m
|
||
|
m_signbit = False
|
||
|
|
||
|
z = np.asarray(z)
|
||
|
if (not np.issubdtype(z.dtype, np.inexact)):
|
||
|
z = z.astype(np.complex128)
|
||
|
|
||
|
p = np.empty((mp + 1, n + 1) + z.shape, dtype=np.complex128)
|
||
|
pd = np.empty_like(p)
|
||
|
if (z.ndim == 0):
|
||
|
_clpmn(z, type, m_signbit, out = (p, pd))
|
||
|
else:
|
||
|
_clpmn(z, type, m_signbit, out = (np.moveaxis(p, (0, 1), (-2, -1)),
|
||
|
np.moveaxis(pd, (0, 1), (-2, -1)))) # new axes must be last for the ufunc
|
||
|
|
||
|
return p, pd
|
||
|
|
||
|
|
||
|
def lqmn(m, n, z):
|
||
|
"""Sequence of associated Legendre functions of the second kind.
|
||
|
|
||
|
Computes the associated Legendre function of the second kind of order m and
|
||
|
degree n, ``Qmn(z)`` = :math:`Q_n^m(z)`, and its derivative, ``Qmn'(z)``.
|
||
|
Returns two arrays of size ``(m+1, n+1)`` containing ``Qmn(z)`` and
|
||
|
``Qmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : int
|
||
|
``|m| <= n``; the order of the Legendre function.
|
||
|
n : int
|
||
|
where ``n >= 0``; the degree of the Legendre function. Often
|
||
|
called ``l`` (lower case L) in descriptions of the associated
|
||
|
Legendre function
|
||
|
z : array_like, complex
|
||
|
Input value.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Qmn_z : (m+1, n+1) array
|
||
|
Values for all orders 0..m and degrees 0..n
|
||
|
Qmn_d_z : (m+1, n+1) array
|
||
|
Derivatives for all orders 0..m and degrees 0..n
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not isscalar(m) or (m < 0):
|
||
|
raise ValueError("m must be a non-negative integer.")
|
||
|
if not isscalar(n) or (n < 0):
|
||
|
raise ValueError("n must be a non-negative integer.")
|
||
|
|
||
|
m, n = int(m), int(n) # Convert to int to maintain backwards compatibility.
|
||
|
# Ensure neither m nor n == 0
|
||
|
mm = max(1, m)
|
||
|
nn = max(1, n)
|
||
|
|
||
|
z = np.asarray(z)
|
||
|
if (not np.issubdtype(z.dtype, np.inexact)):
|
||
|
z = z.astype(np.float64)
|
||
|
|
||
|
if np.iscomplexobj(z):
|
||
|
q = np.empty((mm + 1, nn + 1) + z.shape, dtype = np.complex128)
|
||
|
else:
|
||
|
q = np.empty((mm + 1, nn + 1) + z.shape, dtype = np.float64)
|
||
|
qd = np.empty_like(q)
|
||
|
if (z.ndim == 0):
|
||
|
_lqmn(z, out = (q, qd))
|
||
|
else:
|
||
|
_lqmn(z, out = (np.moveaxis(q, (0, 1), (-2, -1)),
|
||
|
np.moveaxis(qd, (0, 1), (-2, -1)))) # new axes must be last for the ufunc
|
||
|
|
||
|
return q[:(m+1), :(n+1)], qd[:(m+1), :(n+1)]
|
||
|
|
||
|
|
||
|
def bernoulli(n):
|
||
|
"""Bernoulli numbers B0..Bn (inclusive).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Indicated the number of terms in the Bernoulli series to generate.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
The Bernoulli numbers ``[B(0), B(1), ..., B(n)]``.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
.. [2] "Bernoulli number", Wikipedia, https://en.wikipedia.org/wiki/Bernoulli_number
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import bernoulli, zeta
|
||
|
>>> bernoulli(4)
|
||
|
array([ 1. , -0.5 , 0.16666667, 0. , -0.03333333])
|
||
|
|
||
|
The Wikipedia article ([2]_) points out the relationship between the
|
||
|
Bernoulli numbers and the zeta function, ``B_n^+ = -n * zeta(1 - n)``
|
||
|
for ``n > 0``:
|
||
|
|
||
|
>>> n = np.arange(1, 5)
|
||
|
>>> -n * zeta(1 - n)
|
||
|
array([ 0.5 , 0.16666667, -0. , -0.03333333])
|
||
|
|
||
|
Note that, in the notation used in the wikipedia article,
|
||
|
`bernoulli` computes ``B_n^-`` (i.e. it used the convention that
|
||
|
``B_1`` is -1/2). The relation given above is for ``B_n^+``, so the
|
||
|
sign of 0.5 does not match the output of ``bernoulli(4)``.
|
||
|
|
||
|
"""
|
||
|
if not isscalar(n) or (n < 0):
|
||
|
raise ValueError("n must be a non-negative integer.")
|
||
|
n = int(n)
|
||
|
if (n < 2):
|
||
|
n1 = 2
|
||
|
else:
|
||
|
n1 = n
|
||
|
return _specfun.bernob(int(n1))[:(n+1)]
|
||
|
|
||
|
|
||
|
def euler(n):
|
||
|
"""Euler numbers E(0), E(1), ..., E(n).
|
||
|
|
||
|
The Euler numbers [1]_ are also known as the secant numbers.
|
||
|
|
||
|
Because ``euler(n)`` returns floating point values, it does not give
|
||
|
exact values for large `n`. The first inexact value is E(22).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
The highest index of the Euler number to be returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
The Euler numbers [E(0), E(1), ..., E(n)].
|
||
|
The odd Euler numbers, which are all zero, are included.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Sequence A122045, The On-Line Encyclopedia of Integer Sequences,
|
||
|
https://oeis.org/A122045
|
||
|
.. [2] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import euler
|
||
|
>>> euler(6)
|
||
|
array([ 1., 0., -1., 0., 5., 0., -61.])
|
||
|
|
||
|
>>> euler(13).astype(np.int64)
|
||
|
array([ 1, 0, -1, 0, 5, 0, -61,
|
||
|
0, 1385, 0, -50521, 0, 2702765, 0])
|
||
|
|
||
|
>>> euler(22)[-1] # Exact value of E(22) is -69348874393137901.
|
||
|
-69348874393137976.0
|
||
|
|
||
|
"""
|
||
|
if not isscalar(n) or (n < 0):
|
||
|
raise ValueError("n must be a non-negative integer.")
|
||
|
n = int(n)
|
||
|
if (n < 2):
|
||
|
n1 = 2
|
||
|
else:
|
||
|
n1 = n
|
||
|
return _specfun.eulerb(n1)[:(n+1)]
|
||
|
|
||
|
|
||
|
def lpn(n, z):
|
||
|
"""Legendre function of the first kind.
|
||
|
|
||
|
Compute sequence of Legendre functions of the first kind (polynomials),
|
||
|
Pn(z) and derivatives for all degrees from 0 to n (inclusive).
|
||
|
|
||
|
See also special.legendre for polynomial class.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
n = _nonneg_int_or_fail(n, 'n', strict=False)
|
||
|
|
||
|
z = np.asarray(z)
|
||
|
if (not np.issubdtype(z.dtype, np.inexact)):
|
||
|
z = z.astype(np.float64)
|
||
|
|
||
|
pn = np.empty((n + 1,) + z.shape, dtype=z.dtype)
|
||
|
pd = np.empty_like(pn)
|
||
|
if (z.ndim == 0):
|
||
|
_lpn(z, out = (pn, pd))
|
||
|
else:
|
||
|
_lpn(z, out = (np.moveaxis(pn, 0, -1),
|
||
|
np.moveaxis(pd, 0, -1))) # new axes must be last for the ufunc
|
||
|
|
||
|
return pn, pd
|
||
|
|
||
|
|
||
|
def lqn(n, z):
|
||
|
"""Legendre function of the second kind.
|
||
|
|
||
|
Compute sequence of Legendre functions of the second kind, Qn(z) and
|
||
|
derivatives for all degrees from 0 to n (inclusive).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
n = _nonneg_int_or_fail(n, 'n', strict=False)
|
||
|
if (n < 1):
|
||
|
n1 = 1
|
||
|
else:
|
||
|
n1 = n
|
||
|
|
||
|
z = np.asarray(z)
|
||
|
if (not np.issubdtype(z.dtype, np.inexact)):
|
||
|
z = z.astype(float)
|
||
|
|
||
|
if np.iscomplexobj(z):
|
||
|
qn = np.empty((n1 + 1,) + z.shape, dtype=np.complex128)
|
||
|
else:
|
||
|
qn = np.empty((n1 + 1,) + z.shape, dtype=np.float64)
|
||
|
qd = np.empty_like(qn)
|
||
|
if (z.ndim == 0):
|
||
|
_lqn(z, out = (qn, qd))
|
||
|
else:
|
||
|
_lqn(z, out = (np.moveaxis(qn, 0, -1),
|
||
|
np.moveaxis(qd, 0, -1))) # new axes must be last for the ufunc
|
||
|
|
||
|
return qn[:(n+1)], qd[:(n+1)]
|
||
|
|
||
|
|
||
|
def ai_zeros(nt):
|
||
|
"""
|
||
|
Compute `nt` zeros and values of the Airy function Ai and its derivative.
|
||
|
|
||
|
Computes the first `nt` zeros, `a`, of the Airy function Ai(x);
|
||
|
first `nt` zeros, `ap`, of the derivative of the Airy function Ai'(x);
|
||
|
the corresponding values Ai(a');
|
||
|
and the corresponding values Ai'(a).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to compute
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
a : ndarray
|
||
|
First `nt` zeros of Ai(x)
|
||
|
ap : ndarray
|
||
|
First `nt` zeros of Ai'(x)
|
||
|
ai : ndarray
|
||
|
Values of Ai(x) evaluated at first `nt` zeros of Ai'(x)
|
||
|
aip : ndarray
|
||
|
Values of Ai'(x) evaluated at first `nt` zeros of Ai(x)
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import special
|
||
|
>>> a, ap, ai, aip = special.ai_zeros(3)
|
||
|
>>> a
|
||
|
array([-2.33810741, -4.08794944, -5.52055983])
|
||
|
>>> ap
|
||
|
array([-1.01879297, -3.24819758, -4.82009921])
|
||
|
>>> ai
|
||
|
array([ 0.53565666, -0.41901548, 0.38040647])
|
||
|
>>> aip
|
||
|
array([ 0.70121082, -0.80311137, 0.86520403])
|
||
|
|
||
|
"""
|
||
|
kf = 1
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("nt must be a positive integer scalar.")
|
||
|
return _specfun.airyzo(nt, kf)
|
||
|
|
||
|
|
||
|
def bi_zeros(nt):
|
||
|
"""
|
||
|
Compute `nt` zeros and values of the Airy function Bi and its derivative.
|
||
|
|
||
|
Computes the first `nt` zeros, b, of the Airy function Bi(x);
|
||
|
first `nt` zeros, b', of the derivative of the Airy function Bi'(x);
|
||
|
the corresponding values Bi(b');
|
||
|
and the corresponding values Bi'(b).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to compute
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
b : ndarray
|
||
|
First `nt` zeros of Bi(x)
|
||
|
bp : ndarray
|
||
|
First `nt` zeros of Bi'(x)
|
||
|
bi : ndarray
|
||
|
Values of Bi(x) evaluated at first `nt` zeros of Bi'(x)
|
||
|
bip : ndarray
|
||
|
Values of Bi'(x) evaluated at first `nt` zeros of Bi(x)
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import special
|
||
|
>>> b, bp, bi, bip = special.bi_zeros(3)
|
||
|
>>> b
|
||
|
array([-1.17371322, -3.2710933 , -4.83073784])
|
||
|
>>> bp
|
||
|
array([-2.29443968, -4.07315509, -5.51239573])
|
||
|
>>> bi
|
||
|
array([-0.45494438, 0.39652284, -0.36796916])
|
||
|
>>> bip
|
||
|
array([ 0.60195789, -0.76031014, 0.83699101])
|
||
|
|
||
|
"""
|
||
|
kf = 2
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("nt must be a positive integer scalar.")
|
||
|
return _specfun.airyzo(nt, kf)
|
||
|
|
||
|
|
||
|
def lmbda(v, x):
|
||
|
r"""Jahnke-Emden Lambda function, Lambdav(x).
|
||
|
|
||
|
This function is defined as [2]_,
|
||
|
|
||
|
.. math:: \Lambda_v(x) = \Gamma(v+1) \frac{J_v(x)}{(x/2)^v},
|
||
|
|
||
|
where :math:`\Gamma` is the gamma function and :math:`J_v` is the
|
||
|
Bessel function of the first kind.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : float
|
||
|
Order of the Lambda function
|
||
|
x : float
|
||
|
Value at which to evaluate the function and derivatives
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
vl : ndarray
|
||
|
Values of Lambda_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
|
||
|
dl : ndarray
|
||
|
Derivatives Lambda_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
.. [2] Jahnke, E. and Emde, F. "Tables of Functions with Formulae and
|
||
|
Curves" (4th ed.), Dover, 1945
|
||
|
"""
|
||
|
if not (isscalar(v) and isscalar(x)):
|
||
|
raise ValueError("arguments must be scalars.")
|
||
|
if (v < 0):
|
||
|
raise ValueError("argument must be > 0.")
|
||
|
n = int(v)
|
||
|
v0 = v - n
|
||
|
if (n < 1):
|
||
|
n1 = 1
|
||
|
else:
|
||
|
n1 = n
|
||
|
v1 = n1 + v0
|
||
|
if (v != floor(v)):
|
||
|
vm, vl, dl = _specfun.lamv(v1, x)
|
||
|
else:
|
||
|
vm, vl, dl = _specfun.lamn(v1, x)
|
||
|
return vl[:(n+1)], dl[:(n+1)]
|
||
|
|
||
|
|
||
|
def pbdv_seq(v, x):
|
||
|
"""Parabolic cylinder functions Dv(x) and derivatives.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : float
|
||
|
Order of the parabolic cylinder function
|
||
|
x : float
|
||
|
Value at which to evaluate the function and derivatives
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dv : ndarray
|
||
|
Values of D_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
|
||
|
dp : ndarray
|
||
|
Derivatives D_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 13.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not (isscalar(v) and isscalar(x)):
|
||
|
raise ValueError("arguments must be scalars.")
|
||
|
n = int(v)
|
||
|
v0 = v-n
|
||
|
if (n < 1):
|
||
|
n1 = 1
|
||
|
else:
|
||
|
n1 = n
|
||
|
v1 = n1 + v0
|
||
|
dv, dp, pdf, pdd = _specfun.pbdv(v1, x)
|
||
|
return dv[:n1+1], dp[:n1+1]
|
||
|
|
||
|
|
||
|
def pbvv_seq(v, x):
|
||
|
"""Parabolic cylinder functions Vv(x) and derivatives.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : float
|
||
|
Order of the parabolic cylinder function
|
||
|
x : float
|
||
|
Value at which to evaluate the function and derivatives
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dv : ndarray
|
||
|
Values of V_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
|
||
|
dp : ndarray
|
||
|
Derivatives V_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 13.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not (isscalar(v) and isscalar(x)):
|
||
|
raise ValueError("arguments must be scalars.")
|
||
|
n = int(v)
|
||
|
v0 = v-n
|
||
|
if (n <= 1):
|
||
|
n1 = 1
|
||
|
else:
|
||
|
n1 = n
|
||
|
v1 = n1 + v0
|
||
|
dv, dp, pdf, pdd = _specfun.pbvv(v1, x)
|
||
|
return dv[:n1+1], dp[:n1+1]
|
||
|
|
||
|
|
||
|
def pbdn_seq(n, z):
|
||
|
"""Parabolic cylinder functions Dn(z) and derivatives.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Order of the parabolic cylinder function
|
||
|
z : complex
|
||
|
Value at which to evaluate the function and derivatives
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dv : ndarray
|
||
|
Values of D_i(z), for i=0, ..., i=n.
|
||
|
dp : ndarray
|
||
|
Derivatives D_i'(z), for i=0, ..., i=n.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996, chapter 13.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not (isscalar(n) and isscalar(z)):
|
||
|
raise ValueError("arguments must be scalars.")
|
||
|
if (floor(n) != n):
|
||
|
raise ValueError("n must be an integer.")
|
||
|
if (abs(n) <= 1):
|
||
|
n1 = 1
|
||
|
else:
|
||
|
n1 = n
|
||
|
cpb, cpd = _specfun.cpbdn(n1, z)
|
||
|
return cpb[:n1+1], cpd[:n1+1]
|
||
|
|
||
|
|
||
|
def ber_zeros(nt):
|
||
|
"""Compute nt zeros of the Kelvin function ber.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to compute. Must be positive.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
First `nt` zeros of the Kelvin function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ber
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("nt must be positive integer scalar.")
|
||
|
return _specfun.klvnzo(nt, 1)
|
||
|
|
||
|
|
||
|
def bei_zeros(nt):
|
||
|
"""Compute nt zeros of the Kelvin function bei.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to compute. Must be positive.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
First `nt` zeros of the Kelvin function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bei
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("nt must be positive integer scalar.")
|
||
|
return _specfun.klvnzo(nt, 2)
|
||
|
|
||
|
|
||
|
def ker_zeros(nt):
|
||
|
"""Compute nt zeros of the Kelvin function ker.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to compute. Must be positive.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
First `nt` zeros of the Kelvin function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ker
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("nt must be positive integer scalar.")
|
||
|
return _specfun.klvnzo(nt, 3)
|
||
|
|
||
|
|
||
|
def kei_zeros(nt):
|
||
|
"""Compute nt zeros of the Kelvin function kei.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to compute. Must be positive.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
First `nt` zeros of the Kelvin function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kei
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("nt must be positive integer scalar.")
|
||
|
return _specfun.klvnzo(nt, 4)
|
||
|
|
||
|
|
||
|
def berp_zeros(nt):
|
||
|
"""Compute nt zeros of the derivative of the Kelvin function ber.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to compute. Must be positive.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
First `nt` zeros of the derivative of the Kelvin function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ber, berp
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("nt must be positive integer scalar.")
|
||
|
return _specfun.klvnzo(nt, 5)
|
||
|
|
||
|
|
||
|
def beip_zeros(nt):
|
||
|
"""Compute nt zeros of the derivative of the Kelvin function bei.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to compute. Must be positive.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
First `nt` zeros of the derivative of the Kelvin function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bei, beip
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("nt must be positive integer scalar.")
|
||
|
return _specfun.klvnzo(nt, 6)
|
||
|
|
||
|
|
||
|
def kerp_zeros(nt):
|
||
|
"""Compute nt zeros of the derivative of the Kelvin function ker.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to compute. Must be positive.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
First `nt` zeros of the derivative of the Kelvin function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ker, kerp
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("nt must be positive integer scalar.")
|
||
|
return _specfun.klvnzo(nt, 7)
|
||
|
|
||
|
|
||
|
def keip_zeros(nt):
|
||
|
"""Compute nt zeros of the derivative of the Kelvin function kei.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nt : int
|
||
|
Number of zeros to compute. Must be positive.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
First `nt` zeros of the derivative of the Kelvin function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
kei, keip
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("nt must be positive integer scalar.")
|
||
|
return _specfun.klvnzo(nt, 8)
|
||
|
|
||
|
|
||
|
def kelvin_zeros(nt):
|
||
|
"""Compute nt zeros of all Kelvin functions.
|
||
|
|
||
|
Returned in a length-8 tuple of arrays of length nt. The tuple contains
|
||
|
the arrays of zeros of (ber, bei, ker, kei, ber', bei', ker', kei').
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
|
||
|
raise ValueError("nt must be positive integer scalar.")
|
||
|
return (_specfun.klvnzo(nt, 1),
|
||
|
_specfun.klvnzo(nt, 2),
|
||
|
_specfun.klvnzo(nt, 3),
|
||
|
_specfun.klvnzo(nt, 4),
|
||
|
_specfun.klvnzo(nt, 5),
|
||
|
_specfun.klvnzo(nt, 6),
|
||
|
_specfun.klvnzo(nt, 7),
|
||
|
_specfun.klvnzo(nt, 8))
|
||
|
|
||
|
|
||
|
def pro_cv_seq(m, n, c):
|
||
|
"""Characteristic values for prolate spheroidal wave functions.
|
||
|
|
||
|
Compute a sequence of characteristic values for the prolate
|
||
|
spheroidal wave functions for mode m and n'=m..n and spheroidal
|
||
|
parameter c.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not (isscalar(m) and isscalar(n) and isscalar(c)):
|
||
|
raise ValueError("Arguments must be scalars.")
|
||
|
if (n != floor(n)) or (m != floor(m)):
|
||
|
raise ValueError("Modes must be integers.")
|
||
|
if (n-m > 199):
|
||
|
raise ValueError("Difference between n and m is too large.")
|
||
|
maxL = n-m+1
|
||
|
return _specfun.segv(m, n, c, 1)[1][:maxL]
|
||
|
|
||
|
|
||
|
def obl_cv_seq(m, n, c):
|
||
|
"""Characteristic values for oblate spheroidal wave functions.
|
||
|
|
||
|
Compute a sequence of characteristic values for the oblate
|
||
|
spheroidal wave functions for mode m and n'=m..n and spheroidal
|
||
|
parameter c.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
||
|
Functions", John Wiley and Sons, 1996.
|
||
|
https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
|
||
|
|
||
|
"""
|
||
|
if not (isscalar(m) and isscalar(n) and isscalar(c)):
|
||
|
raise ValueError("Arguments must be scalars.")
|
||
|
if (n != floor(n)) or (m != floor(m)):
|
||
|
raise ValueError("Modes must be integers.")
|
||
|
if (n-m > 199):
|
||
|
raise ValueError("Difference between n and m is too large.")
|
||
|
maxL = n-m+1
|
||
|
return _specfun.segv(m, n, c, -1)[1][:maxL]
|
||
|
|
||
|
|
||
|
def comb(N, k, *, exact=False, repetition=False):
|
||
|
"""The number of combinations of N things taken k at a time.
|
||
|
|
||
|
This is often expressed as "N choose k".
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
N : int, ndarray
|
||
|
Number of things.
|
||
|
k : int, ndarray
|
||
|
Number of elements taken.
|
||
|
exact : bool, optional
|
||
|
For integers, if `exact` is False, then floating point precision is
|
||
|
used, otherwise the result is computed exactly.
|
||
|
|
||
|
.. deprecated:: 1.14.0
|
||
|
``exact=True`` is deprecated for non-integer `N` and `k` and will raise an
|
||
|
error in SciPy 1.16.0
|
||
|
repetition : bool, optional
|
||
|
If `repetition` is True, then the number of combinations with
|
||
|
repetition is computed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
val : int, float, ndarray
|
||
|
The total number of combinations.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
binom : Binomial coefficient considered as a function of two real
|
||
|
variables.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
- Array arguments accepted only for exact=False case.
|
||
|
- If N < 0, or k < 0, then 0 is returned.
|
||
|
- If k > N and repetition=False, then 0 is returned.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import comb
|
||
|
>>> k = np.array([3, 4])
|
||
|
>>> n = np.array([10, 10])
|
||
|
>>> comb(n, k, exact=False)
|
||
|
array([ 120., 210.])
|
||
|
>>> comb(10, 3, exact=True)
|
||
|
120
|
||
|
>>> comb(10, 3, exact=True, repetition=True)
|
||
|
220
|
||
|
|
||
|
"""
|
||
|
if repetition:
|
||
|
return comb(N + k - 1, k, exact=exact)
|
||
|
if exact:
|
||
|
if int(N) == N and int(k) == k:
|
||
|
# _comb_int casts inputs to integers, which is safe & intended here
|
||
|
return _comb_int(N, k)
|
||
|
# otherwise, we disregard `exact=True`; it makes no sense for
|
||
|
# non-integral arguments
|
||
|
msg = ("`exact=True` is deprecated for non-integer `N` and `k` and will raise "
|
||
|
"an error in SciPy 1.16.0")
|
||
|
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
||
|
return comb(N, k)
|
||
|
else:
|
||
|
k, N = asarray(k), asarray(N)
|
||
|
cond = (k <= N) & (N >= 0) & (k >= 0)
|
||
|
vals = binom(N, k)
|
||
|
if isinstance(vals, np.ndarray):
|
||
|
vals[~cond] = 0
|
||
|
elif not cond:
|
||
|
vals = np.float64(0)
|
||
|
return vals
|
||
|
|
||
|
|
||
|
def perm(N, k, exact=False):
|
||
|
"""Permutations of N things taken k at a time, i.e., k-permutations of N.
|
||
|
|
||
|
It's also known as "partial permutations".
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
N : int, ndarray
|
||
|
Number of things.
|
||
|
k : int, ndarray
|
||
|
Number of elements taken.
|
||
|
exact : bool, optional
|
||
|
If ``True``, calculate the answer exactly using long integer arithmetic (`N`
|
||
|
and `k` must be scalar integers). If ``False``, a floating point approximation
|
||
|
is calculated (more rapidly) using `poch`. Default is ``False``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
val : int, ndarray
|
||
|
The number of k-permutations of N.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
- Array arguments accepted only for exact=False case.
|
||
|
- If k > N, N < 0, or k < 0, then a 0 is returned.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import perm
|
||
|
>>> k = np.array([3, 4])
|
||
|
>>> n = np.array([10, 10])
|
||
|
>>> perm(n, k)
|
||
|
array([ 720., 5040.])
|
||
|
>>> perm(10, 3, exact=True)
|
||
|
720
|
||
|
|
||
|
"""
|
||
|
if exact:
|
||
|
N = np.squeeze(N)[()] # for backward compatibility (accepted size 1 arrays)
|
||
|
k = np.squeeze(k)[()]
|
||
|
if not (isscalar(N) and isscalar(k)):
|
||
|
raise ValueError("`N` and `k` must scalar integers be with `exact=True`.")
|
||
|
|
||
|
floor_N, floor_k = int(N), int(k)
|
||
|
non_integral = not (floor_N == N and floor_k == k)
|
||
|
if (k > N) or (N < 0) or (k < 0):
|
||
|
if non_integral:
|
||
|
msg = ("Non-integer `N` and `k` with `exact=True` is deprecated and "
|
||
|
"will raise an error in SciPy 1.16.0.")
|
||
|
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
||
|
return 0
|
||
|
if non_integral:
|
||
|
raise ValueError("Non-integer `N` and `k` with `exact=True` is not "
|
||
|
"supported.")
|
||
|
val = 1
|
||
|
for i in range(floor_N - floor_k + 1, floor_N + 1):
|
||
|
val *= i
|
||
|
return val
|
||
|
else:
|
||
|
k, N = asarray(k), asarray(N)
|
||
|
cond = (k <= N) & (N >= 0) & (k >= 0)
|
||
|
vals = poch(N - k + 1, k)
|
||
|
if isinstance(vals, np.ndarray):
|
||
|
vals[~cond] = 0
|
||
|
elif not cond:
|
||
|
vals = np.float64(0)
|
||
|
return vals
|
||
|
|
||
|
|
||
|
# https://stackoverflow.com/a/16327037
|
||
|
def _range_prod(lo, hi, k=1):
|
||
|
"""
|
||
|
Product of a range of numbers spaced k apart (from hi).
|
||
|
|
||
|
For k=1, this returns the product of
|
||
|
lo * (lo+1) * (lo+2) * ... * (hi-2) * (hi-1) * hi
|
||
|
= hi! / (lo-1)!
|
||
|
|
||
|
For k>1, it correspond to taking only every k'th number when
|
||
|
counting down from hi - e.g. 18!!!! = _range_prod(1, 18, 4).
|
||
|
|
||
|
Breaks into smaller products first for speed:
|
||
|
_range_prod(2, 9) = ((2*3)*(4*5))*((6*7)*(8*9))
|
||
|
"""
|
||
|
if lo + k < hi:
|
||
|
mid = (hi + lo) // 2
|
||
|
if k > 1:
|
||
|
# make sure mid is a multiple of k away from hi
|
||
|
mid = mid - ((mid - hi) % k)
|
||
|
return _range_prod(lo, mid, k) * _range_prod(mid + k, hi, k)
|
||
|
elif lo + k == hi:
|
||
|
return lo * hi
|
||
|
else:
|
||
|
return hi
|
||
|
|
||
|
|
||
|
def _factorialx_array_exact(n, k=1):
|
||
|
"""
|
||
|
Exact computation of factorial for an array.
|
||
|
|
||
|
The factorials are computed in incremental fashion, by taking
|
||
|
the sorted unique values of n and multiplying the intervening
|
||
|
numbers between the different unique values.
|
||
|
|
||
|
In other words, the factorial for the largest input is only
|
||
|
computed once, with each other result computed in the process.
|
||
|
|
||
|
k > 1 corresponds to the multifactorial.
|
||
|
"""
|
||
|
un = np.unique(n)
|
||
|
# numpy changed nan-sorting behaviour with 1.21, see numpy/numpy#18070;
|
||
|
# to unify the behaviour, we remove the nan's here; the respective
|
||
|
# values will be set separately at the end
|
||
|
un = un[~np.isnan(un)]
|
||
|
|
||
|
# Convert to object array if np.int64 can't handle size
|
||
|
if np.isnan(n).any():
|
||
|
dt = float
|
||
|
elif k in _FACTORIALK_LIMITS_64BITS.keys():
|
||
|
if un[-1] > _FACTORIALK_LIMITS_64BITS[k]:
|
||
|
# e.g. k=1: 21! > np.iinfo(np.int64).max
|
||
|
dt = object
|
||
|
elif un[-1] > _FACTORIALK_LIMITS_32BITS[k]:
|
||
|
# e.g. k=3: 26!!! > np.iinfo(np.int32).max
|
||
|
dt = np.int64
|
||
|
else:
|
||
|
dt = np.dtype("long")
|
||
|
else:
|
||
|
# for k >= 10, we always use object
|
||
|
dt = object
|
||
|
|
||
|
out = np.empty_like(n, dtype=dt)
|
||
|
|
||
|
# Handle invalid/trivial values
|
||
|
un = un[un > 1]
|
||
|
out[n < 2] = 1
|
||
|
out[n < 0] = 0
|
||
|
|
||
|
# Calculate products of each range of numbers
|
||
|
# we can only multiply incrementally if the values are k apart;
|
||
|
# therefore we partition `un` into "lanes", i.e. its residues modulo k
|
||
|
for lane in range(0, k):
|
||
|
ul = un[(un % k) == lane] if k > 1 else un
|
||
|
if ul.size:
|
||
|
# after np.unique, un resp. ul are sorted, ul[0] is the smallest;
|
||
|
# cast to python ints to avoid overflow with np.int-types
|
||
|
val = _range_prod(1, int(ul[0]), k=k)
|
||
|
out[n == ul[0]] = val
|
||
|
for i in range(len(ul) - 1):
|
||
|
# by the filtering above, we have ensured that prev & current
|
||
|
# are a multiple of k apart
|
||
|
prev = ul[i]
|
||
|
current = ul[i + 1]
|
||
|
# we already multiplied all factors until prev; continue
|
||
|
# building the full factorial from the following (`prev + 1`);
|
||
|
# use int() for the same reason as above
|
||
|
val *= _range_prod(int(prev + 1), int(current), k=k)
|
||
|
out[n == current] = val
|
||
|
|
||
|
if np.isnan(n).any():
|
||
|
out = out.astype(np.float64)
|
||
|
out[np.isnan(n)] = np.nan
|
||
|
return out
|
||
|
|
||
|
|
||
|
def _factorialx_array_approx(n, k):
|
||
|
"""
|
||
|
Calculate approximation to multifactorial for array n and integer k.
|
||
|
|
||
|
Ensure we only call _factorialx_approx_core where necessary/required.
|
||
|
"""
|
||
|
result = zeros(n.shape)
|
||
|
# keep nans as nans
|
||
|
place(result, np.isnan(n), np.nan)
|
||
|
# only compute where n >= 0 (excludes nans), everything else is 0
|
||
|
cond = (n >= 0)
|
||
|
n_to_compute = extract(cond, n)
|
||
|
place(result, cond, _factorialx_approx_core(n_to_compute, k=k))
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _factorialx_approx_core(n, k):
|
||
|
"""
|
||
|
Core approximation to multifactorial for array n and integer k.
|
||
|
"""
|
||
|
if k == 1:
|
||
|
# shortcut for k=1
|
||
|
result = gamma(n + 1)
|
||
|
if isinstance(n, np.ndarray):
|
||
|
# gamma does not maintain 0-dim arrays
|
||
|
result = np.array(result)
|
||
|
return result
|
||
|
|
||
|
n_mod_k = n % k
|
||
|
# scalar case separately, unified handling would be inefficient for arrays;
|
||
|
# don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below
|
||
|
if not isinstance(n, np.ndarray):
|
||
|
return (
|
||
|
np.power(k, (n - n_mod_k) / k)
|
||
|
* gamma(n / k + 1) / gamma(n_mod_k / k + 1)
|
||
|
* max(n_mod_k, 1)
|
||
|
)
|
||
|
|
||
|
# factor that's independent of the residue class (see factorialk docstring)
|
||
|
result = np.power(k, n / k) * gamma(n / k + 1)
|
||
|
# factor dependent on residue r (for `r=0` it's 1, so we skip `r=0`
|
||
|
# below and thus also avoid evaluating `max(r, 1)`)
|
||
|
def corr(k, r): return np.power(k, -r / k) / gamma(r / k + 1) * r
|
||
|
for r in np.unique(n_mod_k):
|
||
|
if r == 0:
|
||
|
continue
|
||
|
# cast to int because uint types break on `-r`
|
||
|
result[n_mod_k == r] *= corr(k, int(r))
|
||
|
return result
|
||
|
|
||
|
|
||
|
def factorial(n, exact=False):
|
||
|
"""
|
||
|
The factorial of a number or array of numbers.
|
||
|
|
||
|
The factorial of non-negative integer `n` is the product of all
|
||
|
positive integers less than or equal to `n`::
|
||
|
|
||
|
n! = n * (n - 1) * (n - 2) * ... * 1
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int or array_like of ints
|
||
|
Input values. If ``n < 0``, the return value is 0.
|
||
|
exact : bool, optional
|
||
|
If True, calculate the answer exactly using long integer arithmetic.
|
||
|
If False, result is approximated in floating point rapidly using the
|
||
|
`gamma` function.
|
||
|
Default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
nf : float or int or ndarray
|
||
|
Factorial of `n`, as integer or float depending on `exact`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For arrays with ``exact=True``, the factorial is computed only once, for
|
||
|
the largest input, with each other result computed in the process.
|
||
|
The output dtype is increased to ``int64`` or ``object`` if necessary.
|
||
|
|
||
|
With ``exact=False`` the factorial is approximated using the gamma
|
||
|
function:
|
||
|
|
||
|
.. math:: n! = \\Gamma(n+1)
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import factorial
|
||
|
>>> arr = np.array([3, 4, 5])
|
||
|
>>> factorial(arr, exact=False)
|
||
|
array([ 6., 24., 120.])
|
||
|
>>> factorial(arr, exact=True)
|
||
|
array([ 6, 24, 120])
|
||
|
>>> factorial(5, exact=True)
|
||
|
120
|
||
|
|
||
|
"""
|
||
|
# don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below
|
||
|
if np.ndim(n) == 0 and not isinstance(n, np.ndarray):
|
||
|
# scalar cases
|
||
|
if n is None or np.isnan(n):
|
||
|
return np.nan
|
||
|
elif not (np.issubdtype(type(n), np.integer)
|
||
|
or np.issubdtype(type(n), np.floating)):
|
||
|
raise ValueError(
|
||
|
f"Unsupported datatype for factorial: {type(n)}\n"
|
||
|
"Permitted data types are integers and floating point numbers"
|
||
|
)
|
||
|
elif n < 0:
|
||
|
return 0
|
||
|
elif exact and np.issubdtype(type(n), np.integer):
|
||
|
return math.factorial(n)
|
||
|
elif exact:
|
||
|
msg = ("Non-integer values of `n` together with `exact=True` are "
|
||
|
"deprecated. Either ensure integer `n` or use `exact=False`.")
|
||
|
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
||
|
return _factorialx_approx_core(n, k=1)
|
||
|
|
||
|
# arrays & array-likes
|
||
|
n = asarray(n)
|
||
|
if n.size == 0:
|
||
|
# return empty arrays unchanged
|
||
|
return n
|
||
|
if not (np.issubdtype(n.dtype, np.integer)
|
||
|
or np.issubdtype(n.dtype, np.floating)):
|
||
|
raise ValueError(
|
||
|
f"Unsupported datatype for factorial: {n.dtype}\n"
|
||
|
"Permitted data types are integers and floating point numbers"
|
||
|
)
|
||
|
if exact and not np.issubdtype(n.dtype, np.integer):
|
||
|
msg = ("factorial with `exact=True` does not "
|
||
|
"support non-integral arrays")
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
if exact:
|
||
|
return _factorialx_array_exact(n, k=1)
|
||
|
return _factorialx_array_approx(n, k=1)
|
||
|
|
||
|
|
||
|
def factorial2(n, exact=False):
|
||
|
"""Double factorial.
|
||
|
|
||
|
This is the factorial with every second value skipped. E.g., ``7!! = 7 * 5
|
||
|
* 3 * 1``. It can be approximated numerically as::
|
||
|
|
||
|
n!! = 2 ** (n / 2) * gamma(n / 2 + 1) * sqrt(2 / pi) n odd
|
||
|
= 2 ** (n / 2) * gamma(n / 2 + 1) n even
|
||
|
= 2 ** (n / 2) * (n / 2)! n even
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int or array_like
|
||
|
Calculate ``n!!``. If ``n < 0``, the return value is 0.
|
||
|
exact : bool, optional
|
||
|
The result can be approximated rapidly using the gamma-formula
|
||
|
above (default). If `exact` is set to True, calculate the
|
||
|
answer exactly using integer arithmetic.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
nff : float or int
|
||
|
Double factorial of `n`, as an int or a float depending on
|
||
|
`exact`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import factorial2
|
||
|
>>> factorial2(7, exact=False)
|
||
|
array(105.00000000000001)
|
||
|
>>> factorial2(7, exact=True)
|
||
|
105
|
||
|
|
||
|
"""
|
||
|
|
||
|
# don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below
|
||
|
if np.ndim(n) == 0 and not isinstance(n, np.ndarray):
|
||
|
# scalar cases
|
||
|
if n is None or np.isnan(n):
|
||
|
return np.nan
|
||
|
elif not np.issubdtype(type(n), np.integer):
|
||
|
msg = "factorial2 does not support non-integral scalar arguments"
|
||
|
raise ValueError(msg)
|
||
|
elif n < 0:
|
||
|
return 0
|
||
|
elif n in {0, 1}:
|
||
|
return 1
|
||
|
# general integer case
|
||
|
if exact:
|
||
|
return _range_prod(1, n, k=2)
|
||
|
return _factorialx_approx_core(n, k=2)
|
||
|
# arrays & array-likes
|
||
|
n = asarray(n)
|
||
|
if n.size == 0:
|
||
|
# return empty arrays unchanged
|
||
|
return n
|
||
|
if not np.issubdtype(n.dtype, np.integer):
|
||
|
raise ValueError("factorial2 does not support non-integral arrays")
|
||
|
if exact:
|
||
|
return _factorialx_array_exact(n, k=2)
|
||
|
return _factorialx_array_approx(n, k=2)
|
||
|
|
||
|
|
||
|
def factorialk(n, k, exact=None):
|
||
|
"""Multifactorial of n of order k, n(!!...!).
|
||
|
|
||
|
This is the multifactorial of n skipping k values. For example,
|
||
|
|
||
|
factorialk(17, 4) = 17!!!! = 17 * 13 * 9 * 5 * 1
|
||
|
|
||
|
In particular, for any integer ``n``, we have
|
||
|
|
||
|
factorialk(n, 1) = factorial(n)
|
||
|
|
||
|
factorialk(n, 2) = factorial2(n)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int or array_like
|
||
|
Calculate multifactorial. If ``n < 0``, the return value is 0.
|
||
|
k : int
|
||
|
Order of multifactorial.
|
||
|
exact : bool, optional
|
||
|
If exact is set to True, calculate the answer exactly using
|
||
|
integer arithmetic, otherwise use an approximation (faster,
|
||
|
but yields floats instead of integers)
|
||
|
|
||
|
.. warning::
|
||
|
The default value for ``exact`` will be changed to
|
||
|
``False`` in SciPy 1.15.0.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
val : int
|
||
|
Multifactorial of `n`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import factorialk
|
||
|
>>> factorialk(5, k=1, exact=True)
|
||
|
120
|
||
|
>>> factorialk(5, k=3, exact=True)
|
||
|
10
|
||
|
>>> factorialk([5, 7, 9], k=3, exact=True)
|
||
|
array([ 10, 28, 162])
|
||
|
>>> factorialk([5, 7, 9], k=3, exact=False)
|
||
|
array([ 10., 28., 162.])
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
While less straight-forward than for the double-factorial, it's possible to
|
||
|
calculate a general approximation formula of n!(k) by studying ``n`` for a given
|
||
|
remainder ``r < k`` (thus ``n = m * k + r``, resp. ``r = n % k``), which can be
|
||
|
put together into something valid for all integer values ``n >= 0`` & ``k > 0``::
|
||
|
|
||
|
n!(k) = k ** ((n - r)/k) * gamma(n/k + 1) / gamma(r/k + 1) * max(r, 1)
|
||
|
|
||
|
This is the basis of the approximation when ``exact=False``. Compare also [1].
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Complex extension to multifactorial
|
||
|
https://en.wikipedia.org/wiki/Double_factorial#Alternative_extension_of_the_multifactorial
|
||
|
"""
|
||
|
if not np.issubdtype(type(k), np.integer) or k < 1:
|
||
|
raise ValueError(f"k must be a positive integer, received: {k}")
|
||
|
if exact is None:
|
||
|
msg = (
|
||
|
"factorialk will default to `exact=False` starting from SciPy "
|
||
|
"1.15.0. To avoid behaviour changes due to this, explicitly "
|
||
|
"specify either `exact=False` (faster, returns floats), or the "
|
||
|
"past default `exact=True` (slower, lossless result as integer)."
|
||
|
)
|
||
|
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
||
|
exact = True
|
||
|
|
||
|
helpmsg = ""
|
||
|
if k in {1, 2}:
|
||
|
func = "factorial" if k == 1 else "factorial2"
|
||
|
helpmsg = f"\nYou can try to use {func} instead"
|
||
|
|
||
|
# don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below
|
||
|
if np.ndim(n) == 0 and not isinstance(n, np.ndarray):
|
||
|
# scalar cases
|
||
|
if n is None or np.isnan(n):
|
||
|
return np.nan
|
||
|
elif not np.issubdtype(type(n), np.integer):
|
||
|
msg = "factorialk does not support non-integral scalar arguments!"
|
||
|
raise ValueError(msg + helpmsg)
|
||
|
elif n < 0:
|
||
|
return 0
|
||
|
elif n in {0, 1}:
|
||
|
return 1
|
||
|
# general integer case
|
||
|
if exact:
|
||
|
return _range_prod(1, n, k=k)
|
||
|
return _factorialx_approx_core(n, k=k)
|
||
|
# arrays & array-likes
|
||
|
n = asarray(n)
|
||
|
if n.size == 0:
|
||
|
# return empty arrays unchanged
|
||
|
return n
|
||
|
if not np.issubdtype(n.dtype, np.integer):
|
||
|
msg = "factorialk does not support non-integral arrays!"
|
||
|
raise ValueError(msg + helpmsg)
|
||
|
if exact:
|
||
|
return _factorialx_array_exact(n, k=k)
|
||
|
return _factorialx_array_approx(n, k=k)
|
||
|
|
||
|
|
||
|
def stirling2(N, K, *, exact=False):
|
||
|
r"""Generate Stirling number(s) of the second kind.
|
||
|
|
||
|
Stirling numbers of the second kind count the number of ways to
|
||
|
partition a set with N elements into K non-empty subsets.
|
||
|
|
||
|
The values this function returns are calculated using a dynamic
|
||
|
program which avoids redundant computation across the subproblems
|
||
|
in the solution. For array-like input, this implementation also
|
||
|
avoids redundant computation across the different Stirling number
|
||
|
calculations.
|
||
|
|
||
|
The numbers are sometimes denoted
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
{N \brace{K}}
|
||
|
|
||
|
see [1]_ for details. This is often expressed-verbally-as
|
||
|
"N subset K".
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
N : int, ndarray
|
||
|
Number of things.
|
||
|
K : int, ndarray
|
||
|
Number of non-empty subsets taken.
|
||
|
exact : bool, optional
|
||
|
Uses dynamic programming (DP) with floating point
|
||
|
numbers for smaller arrays and uses a second order approximation due to
|
||
|
Temme for larger entries of `N` and `K` that allows trading speed for
|
||
|
accuracy. See [2]_ for a description. Temme approximation is used for
|
||
|
values `n>50`. The max error from the DP has max relative error
|
||
|
`4.5*10^-16` for `n<=50` and the max error from the Temme approximation
|
||
|
has max relative error `5*10^-5` for `51 <= n < 70` and
|
||
|
`9*10^-6` for `70 <= n < 101`. Note that these max relative errors will
|
||
|
decrease further as `n` increases.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
val : int, float, ndarray
|
||
|
The number of partitions.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
comb : The number of combinations of N things taken k at a time.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
- If N < 0, or K < 0, then 0 is returned.
|
||
|
- If K > N, then 0 is returned.
|
||
|
|
||
|
The output type will always be `int` or ndarray of `object`.
|
||
|
The input must contain either numpy or python integers otherwise a
|
||
|
TypeError is raised.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] R. L. Graham, D. E. Knuth and O. Patashnik, "Concrete
|
||
|
Mathematics: A Foundation for Computer Science," Addison-Wesley
|
||
|
Publishing Company, Boston, 1989. Chapter 6, page 258.
|
||
|
|
||
|
.. [2] Temme, Nico M. "Asymptotic estimates of Stirling numbers."
|
||
|
Studies in Applied Mathematics 89.3 (1993): 233-243.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import stirling2
|
||
|
>>> k = np.array([3, -1, 3])
|
||
|
>>> n = np.array([10, 10, 9])
|
||
|
>>> stirling2(n, k)
|
||
|
array([9330, 0, 3025], dtype=object)
|
||
|
|
||
|
"""
|
||
|
output_is_scalar = np.isscalar(N) and np.isscalar(K)
|
||
|
# make a min-heap of unique (n,k) pairs
|
||
|
N, K = asarray(N), asarray(K)
|
||
|
if not np.issubdtype(N.dtype, np.integer):
|
||
|
raise TypeError("Argument `N` must contain only integers")
|
||
|
if not np.issubdtype(K.dtype, np.integer):
|
||
|
raise TypeError("Argument `K` must contain only integers")
|
||
|
if not exact:
|
||
|
# NOTE: here we allow np.uint via casting to double types prior to
|
||
|
# passing to private ufunc dispatcher. All dispatched functions
|
||
|
# take double type for (n,k) arguments and return double.
|
||
|
return _stirling2_inexact(N.astype(float), K.astype(float))
|
||
|
nk_pairs = list(
|
||
|
set([(n.take(0), k.take(0))
|
||
|
for n, k in np.nditer([N, K], ['refs_ok'])])
|
||
|
)
|
||
|
heapify(nk_pairs)
|
||
|
# base mapping for small values
|
||
|
snsk_vals = defaultdict(int)
|
||
|
for pair in [(0, 0), (1, 1), (2, 1), (2, 2)]:
|
||
|
snsk_vals[pair] = 1
|
||
|
# for each pair in the min-heap, calculate the value, store for later
|
||
|
n_old, n_row = 2, [0, 1, 1]
|
||
|
while nk_pairs:
|
||
|
n, k = heappop(nk_pairs)
|
||
|
if n < 2 or k > n or k <= 0:
|
||
|
continue
|
||
|
elif k == n or k == 1:
|
||
|
snsk_vals[(n, k)] = 1
|
||
|
continue
|
||
|
elif n != n_old:
|
||
|
num_iters = n - n_old
|
||
|
while num_iters > 0:
|
||
|
n_row.append(1)
|
||
|
# traverse from back to remove second row
|
||
|
for j in range(len(n_row)-2, 1, -1):
|
||
|
n_row[j] = n_row[j]*j + n_row[j-1]
|
||
|
num_iters -= 1
|
||
|
snsk_vals[(n, k)] = n_row[k]
|
||
|
else:
|
||
|
snsk_vals[(n, k)] = n_row[k]
|
||
|
n_old, n_row = n, n_row
|
||
|
out_types = [object, object, object] if exact else [float, float, float]
|
||
|
# for each pair in the map, fetch the value, and populate the array
|
||
|
it = np.nditer(
|
||
|
[N, K, None],
|
||
|
['buffered', 'refs_ok'],
|
||
|
[['readonly'], ['readonly'], ['writeonly', 'allocate']],
|
||
|
op_dtypes=out_types,
|
||
|
)
|
||
|
with it:
|
||
|
while not it.finished:
|
||
|
it[2] = snsk_vals[(int(it[0]), int(it[1]))]
|
||
|
it.iternext()
|
||
|
output = it.operands[2]
|
||
|
# If N and K were both scalars, convert output to scalar.
|
||
|
if output_is_scalar:
|
||
|
output = output.take(0)
|
||
|
return output
|
||
|
|
||
|
|
||
|
def zeta(x, q=None, out=None):
|
||
|
r"""
|
||
|
Riemann or Hurwitz zeta function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like of float
|
||
|
Input data, must be real
|
||
|
q : array_like of float, optional
|
||
|
Input data, must be real. Defaults to Riemann zeta.
|
||
|
out : ndarray, optional
|
||
|
Output array for the computed values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : array_like
|
||
|
Values of zeta(x).
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
zetac
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The two-argument version is the Hurwitz zeta function
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\zeta(x, q) = \sum_{k=0}^{\infty} \frac{1}{(k + q)^x};
|
||
|
|
||
|
see [dlmf]_ for details. The Riemann zeta function corresponds to
|
||
|
the case when ``q = 1``.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
||
|
https://dlmf.nist.gov/25.11#i
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.special import zeta, polygamma, factorial
|
||
|
|
||
|
Some specific values:
|
||
|
|
||
|
>>> zeta(2), np.pi**2/6
|
||
|
(1.6449340668482266, 1.6449340668482264)
|
||
|
|
||
|
>>> zeta(4), np.pi**4/90
|
||
|
(1.0823232337111381, 1.082323233711138)
|
||
|
|
||
|
Relation to the `polygamma` function:
|
||
|
|
||
|
>>> m = 3
|
||
|
>>> x = 1.25
|
||
|
>>> polygamma(m, x)
|
||
|
array(2.782144009188397)
|
||
|
>>> (-1)**(m+1) * factorial(m) * zeta(m+1, x)
|
||
|
2.7821440091883969
|
||
|
|
||
|
"""
|
||
|
if q is None:
|
||
|
return _ufuncs._riemann_zeta(x, out)
|
||
|
else:
|
||
|
return _ufuncs._zeta(x, q, out)
|
||
|
|
||
|
|
||
|
def _sph_harm_all(m, n, theta, phi):
|
||
|
"""Private function. This may be removed or modified at any time."""
|
||
|
|
||
|
theta = np.asarray(theta)
|
||
|
if (not np.issubdtype(theta.dtype, np.inexact)):
|
||
|
theta = theta.astype(np.float64)
|
||
|
|
||
|
phi = np.asarray(phi)
|
||
|
if (not np.issubdtype(phi.dtype, np.inexact)):
|
||
|
phi = phi.astype(np.float64)
|
||
|
|
||
|
out = np.empty((2 * m + 1, n + 1) + np.broadcast_shapes(theta.shape, phi.shape),
|
||
|
dtype = np.result_type(1j, theta.dtype, phi.dtype))
|
||
|
_sph_harm_all_gufunc(theta, phi, out = np.moveaxis(out, (0, 1), (-2, -1)))
|
||
|
|
||
|
return out
|