256 lines
9.2 KiB
Python
256 lines
9.2 KiB
Python
|
import pytest
|
||
|
import numpy as np
|
||
|
from numpy.testing import TestCase, assert_array_equal
|
||
|
import scipy.sparse as sps
|
||
|
from scipy.optimize._constraints import (
|
||
|
Bounds, LinearConstraint, NonlinearConstraint, PreparedConstraint,
|
||
|
new_bounds_to_old, old_bound_to_new, strict_bounds)
|
||
|
|
||
|
|
||
|
class TestStrictBounds(TestCase):
|
||
|
def test_scalarvalue_unique_enforce_feasibility(self):
|
||
|
m = 3
|
||
|
lb = 2
|
||
|
ub = 4
|
||
|
enforce_feasibility = False
|
||
|
strict_lb, strict_ub = strict_bounds(lb, ub,
|
||
|
enforce_feasibility,
|
||
|
m)
|
||
|
assert_array_equal(strict_lb, [-np.inf, -np.inf, -np.inf])
|
||
|
assert_array_equal(strict_ub, [np.inf, np.inf, np.inf])
|
||
|
|
||
|
enforce_feasibility = True
|
||
|
strict_lb, strict_ub = strict_bounds(lb, ub,
|
||
|
enforce_feasibility,
|
||
|
m)
|
||
|
assert_array_equal(strict_lb, [2, 2, 2])
|
||
|
assert_array_equal(strict_ub, [4, 4, 4])
|
||
|
|
||
|
def test_vectorvalue_unique_enforce_feasibility(self):
|
||
|
m = 3
|
||
|
lb = [1, 2, 3]
|
||
|
ub = [4, 5, 6]
|
||
|
enforce_feasibility = False
|
||
|
strict_lb, strict_ub = strict_bounds(lb, ub,
|
||
|
enforce_feasibility,
|
||
|
m)
|
||
|
assert_array_equal(strict_lb, [-np.inf, -np.inf, -np.inf])
|
||
|
assert_array_equal(strict_ub, [np.inf, np.inf, np.inf])
|
||
|
|
||
|
enforce_feasibility = True
|
||
|
strict_lb, strict_ub = strict_bounds(lb, ub,
|
||
|
enforce_feasibility,
|
||
|
m)
|
||
|
assert_array_equal(strict_lb, [1, 2, 3])
|
||
|
assert_array_equal(strict_ub, [4, 5, 6])
|
||
|
|
||
|
def test_scalarvalue_vector_enforce_feasibility(self):
|
||
|
m = 3
|
||
|
lb = 2
|
||
|
ub = 4
|
||
|
enforce_feasibility = [False, True, False]
|
||
|
strict_lb, strict_ub = strict_bounds(lb, ub,
|
||
|
enforce_feasibility,
|
||
|
m)
|
||
|
assert_array_equal(strict_lb, [-np.inf, 2, -np.inf])
|
||
|
assert_array_equal(strict_ub, [np.inf, 4, np.inf])
|
||
|
|
||
|
def test_vectorvalue_vector_enforce_feasibility(self):
|
||
|
m = 3
|
||
|
lb = [1, 2, 3]
|
||
|
ub = [4, 6, np.inf]
|
||
|
enforce_feasibility = [True, False, True]
|
||
|
strict_lb, strict_ub = strict_bounds(lb, ub,
|
||
|
enforce_feasibility,
|
||
|
m)
|
||
|
assert_array_equal(strict_lb, [1, -np.inf, 3])
|
||
|
assert_array_equal(strict_ub, [4, np.inf, np.inf])
|
||
|
|
||
|
|
||
|
def test_prepare_constraint_infeasible_x0():
|
||
|
lb = np.array([0, 20, 30])
|
||
|
ub = np.array([0.5, np.inf, 70])
|
||
|
x0 = np.array([1, 2, 3])
|
||
|
enforce_feasibility = np.array([False, True, True], dtype=bool)
|
||
|
bounds = Bounds(lb, ub, enforce_feasibility)
|
||
|
pytest.raises(ValueError, PreparedConstraint, bounds, x0)
|
||
|
|
||
|
pc = PreparedConstraint(Bounds(lb, ub), [1, 2, 3])
|
||
|
assert (pc.violation([1, 2, 3]) > 0).any()
|
||
|
assert (pc.violation([0.25, 21, 31]) == 0).all()
|
||
|
|
||
|
x0 = np.array([1, 2, 3, 4])
|
||
|
A = np.array([[1, 2, 3, 4], [5, 0, 0, 6], [7, 0, 8, 0]])
|
||
|
enforce_feasibility = np.array([True, True, True], dtype=bool)
|
||
|
linear = LinearConstraint(A, -np.inf, 0, enforce_feasibility)
|
||
|
pytest.raises(ValueError, PreparedConstraint, linear, x0)
|
||
|
|
||
|
pc = PreparedConstraint(LinearConstraint(A, -np.inf, 0),
|
||
|
[1, 2, 3, 4])
|
||
|
assert (pc.violation([1, 2, 3, 4]) > 0).any()
|
||
|
assert (pc.violation([-10, 2, -10, 4]) == 0).all()
|
||
|
|
||
|
def fun(x):
|
||
|
return A.dot(x)
|
||
|
|
||
|
def jac(x):
|
||
|
return A
|
||
|
|
||
|
def hess(x, v):
|
||
|
return sps.csr_matrix((4, 4))
|
||
|
|
||
|
nonlinear = NonlinearConstraint(fun, -np.inf, 0, jac, hess,
|
||
|
enforce_feasibility)
|
||
|
pytest.raises(ValueError, PreparedConstraint, nonlinear, x0)
|
||
|
|
||
|
pc = PreparedConstraint(nonlinear, [-10, 2, -10, 4])
|
||
|
assert (pc.violation([1, 2, 3, 4]) > 0).any()
|
||
|
assert (pc.violation([-10, 2, -10, 4]) == 0).all()
|
||
|
|
||
|
|
||
|
def test_violation():
|
||
|
def cons_f(x):
|
||
|
return np.array([x[0] ** 2 + x[1], x[0] ** 2 - x[1]])
|
||
|
|
||
|
nlc = NonlinearConstraint(cons_f, [-1, -0.8500], [2, 2])
|
||
|
pc = PreparedConstraint(nlc, [0.5, 1])
|
||
|
|
||
|
assert_array_equal(pc.violation([0.5, 1]), [0., 0.])
|
||
|
|
||
|
np.testing.assert_almost_equal(pc.violation([0.5, 1.2]), [0., 0.1])
|
||
|
|
||
|
np.testing.assert_almost_equal(pc.violation([1.2, 1.2]), [0.64, 0])
|
||
|
|
||
|
np.testing.assert_almost_equal(pc.violation([0.1, -1.2]), [0.19, 0])
|
||
|
|
||
|
np.testing.assert_almost_equal(pc.violation([0.1, 2]), [0.01, 1.14])
|
||
|
|
||
|
|
||
|
def test_new_bounds_to_old():
|
||
|
lb = np.array([-np.inf, 2, 3])
|
||
|
ub = np.array([3, np.inf, 10])
|
||
|
|
||
|
bounds = [(None, 3), (2, None), (3, 10)]
|
||
|
assert_array_equal(new_bounds_to_old(lb, ub, 3), bounds)
|
||
|
|
||
|
bounds_single_lb = [(-1, 3), (-1, None), (-1, 10)]
|
||
|
assert_array_equal(new_bounds_to_old(-1, ub, 3), bounds_single_lb)
|
||
|
|
||
|
bounds_no_lb = [(None, 3), (None, None), (None, 10)]
|
||
|
assert_array_equal(new_bounds_to_old(-np.inf, ub, 3), bounds_no_lb)
|
||
|
|
||
|
bounds_single_ub = [(None, 20), (2, 20), (3, 20)]
|
||
|
assert_array_equal(new_bounds_to_old(lb, 20, 3), bounds_single_ub)
|
||
|
|
||
|
bounds_no_ub = [(None, None), (2, None), (3, None)]
|
||
|
assert_array_equal(new_bounds_to_old(lb, np.inf, 3), bounds_no_ub)
|
||
|
|
||
|
bounds_single_both = [(1, 2), (1, 2), (1, 2)]
|
||
|
assert_array_equal(new_bounds_to_old(1, 2, 3), bounds_single_both)
|
||
|
|
||
|
bounds_no_both = [(None, None), (None, None), (None, None)]
|
||
|
assert_array_equal(new_bounds_to_old(-np.inf, np.inf, 3), bounds_no_both)
|
||
|
|
||
|
|
||
|
def test_old_bounds_to_new():
|
||
|
bounds = ([1, 2], (None, 3), (-1, None))
|
||
|
lb_true = np.array([1, -np.inf, -1])
|
||
|
ub_true = np.array([2, 3, np.inf])
|
||
|
|
||
|
lb, ub = old_bound_to_new(bounds)
|
||
|
assert_array_equal(lb, lb_true)
|
||
|
assert_array_equal(ub, ub_true)
|
||
|
|
||
|
bounds = [(-np.inf, np.inf), (np.array([1]), np.array([1]))]
|
||
|
lb, ub = old_bound_to_new(bounds)
|
||
|
|
||
|
assert_array_equal(lb, [-np.inf, 1])
|
||
|
assert_array_equal(ub, [np.inf, 1])
|
||
|
|
||
|
|
||
|
class TestBounds:
|
||
|
def test_repr(self):
|
||
|
# so that eval works
|
||
|
from numpy import array, inf # noqa: F401
|
||
|
for args in (
|
||
|
(-1.0, 5.0),
|
||
|
(-1.0, np.inf, True),
|
||
|
(np.array([1.0, -np.inf]), np.array([2.0, np.inf])),
|
||
|
(np.array([1.0, -np.inf]), np.array([2.0, np.inf]),
|
||
|
np.array([True, False])),
|
||
|
):
|
||
|
bounds = Bounds(*args)
|
||
|
bounds2 = eval(repr(Bounds(*args)))
|
||
|
assert_array_equal(bounds.lb, bounds2.lb)
|
||
|
assert_array_equal(bounds.ub, bounds2.ub)
|
||
|
assert_array_equal(bounds.keep_feasible, bounds2.keep_feasible)
|
||
|
|
||
|
def test_array(self):
|
||
|
# gh13501
|
||
|
b = Bounds(lb=[0.0, 0.0], ub=[1.0, 1.0])
|
||
|
assert isinstance(b.lb, np.ndarray)
|
||
|
assert isinstance(b.ub, np.ndarray)
|
||
|
|
||
|
def test_defaults(self):
|
||
|
b1 = Bounds()
|
||
|
b2 = Bounds(np.asarray(-np.inf), np.asarray(np.inf))
|
||
|
assert b1.lb == b2.lb
|
||
|
assert b1.ub == b2.ub
|
||
|
|
||
|
def test_input_validation(self):
|
||
|
message = "Lower and upper bounds must be dense arrays."
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
Bounds(sps.coo_array([1, 2]), [1, 2])
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
Bounds([1, 2], sps.coo_array([1, 2]))
|
||
|
|
||
|
message = "`keep_feasible` must be a dense array."
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
Bounds([1, 2], [1, 2], keep_feasible=sps.coo_array([True, True]))
|
||
|
|
||
|
message = "`lb`, `ub`, and `keep_feasible` must be broadcastable."
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
Bounds([1, 2], [1, 2, 3])
|
||
|
|
||
|
def test_residual(self):
|
||
|
bounds = Bounds(-2, 4)
|
||
|
x0 = [-1, 2]
|
||
|
np.testing.assert_allclose(bounds.residual(x0), ([1, 4], [5, 2]))
|
||
|
|
||
|
|
||
|
class TestLinearConstraint:
|
||
|
def test_defaults(self):
|
||
|
A = np.eye(4)
|
||
|
lc = LinearConstraint(A)
|
||
|
lc2 = LinearConstraint(A, -np.inf, np.inf)
|
||
|
assert_array_equal(lc.lb, lc2.lb)
|
||
|
assert_array_equal(lc.ub, lc2.ub)
|
||
|
|
||
|
def test_input_validation(self):
|
||
|
A = np.eye(4)
|
||
|
message = "`lb`, `ub`, and `keep_feasible` must be broadcastable"
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
LinearConstraint(A, [1, 2], [1, 2, 3])
|
||
|
|
||
|
message = "Constraint limits must be dense arrays"
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
LinearConstraint(A, sps.coo_array([1, 2]), [2, 3])
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
LinearConstraint(A, [1, 2], sps.coo_array([2, 3]))
|
||
|
|
||
|
message = "`keep_feasible` must be a dense array"
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
keep_feasible = sps.coo_array([True, True])
|
||
|
LinearConstraint(A, [1, 2], [2, 3], keep_feasible=keep_feasible)
|
||
|
|
||
|
A = np.empty((4, 3, 5))
|
||
|
message = "`A` must have exactly two dimensions."
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
LinearConstraint(A)
|
||
|
|
||
|
def test_residual(self):
|
||
|
A = np.eye(2)
|
||
|
lc = LinearConstraint(A, -2, 4)
|
||
|
x0 = [-1, 2]
|
||
|
np.testing.assert_allclose(lc.residual(x0), ([1, 4], [5, 2]))
|