AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/scipy/optimize/tests/test_cobyla.py

167 lines
5.1 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
import math
import numpy as np
from numpy.testing import assert_allclose, assert_, assert_array_equal
import pytest
from scipy.optimize import fmin_cobyla, minimize, Bounds
class TestCobyla:
def setup_method(self):
self.x0 = [4.95, 0.66]
self.solution = [math.sqrt(25 - (2.0/3)**2), 2.0/3]
self.opts = {'disp': False, 'rhobeg': 1, 'tol': 1e-5,
'maxiter': 100}
def fun(self, x):
return x[0]**2 + abs(x[1])**3
def con1(self, x):
return x[0]**2 + x[1]**2 - 25
def con2(self, x):
return -self.con1(x)
@pytest.mark.xslow(True, reason='not slow, but noisy so only run rarely')
def test_simple(self, capfd):
# use disp=True as smoke test for gh-8118
x = fmin_cobyla(self.fun, self.x0, [self.con1, self.con2], rhobeg=1,
rhoend=1e-5, maxfun=100, disp=True)
assert_allclose(x, self.solution, atol=1e-4)
def test_minimize_simple(self):
class Callback:
def __init__(self):
self.n_calls = 0
self.last_x = None
def __call__(self, x):
self.n_calls += 1
self.last_x = x
callback = Callback()
# Minimize with method='COBYLA'
cons = ({'type': 'ineq', 'fun': self.con1},
{'type': 'ineq', 'fun': self.con2})
sol = minimize(self.fun, self.x0, method='cobyla', constraints=cons,
callback=callback, options=self.opts)
assert_allclose(sol.x, self.solution, atol=1e-4)
assert_(sol.success, sol.message)
assert_(sol.maxcv < 1e-5, sol)
assert_(sol.nfev < 70, sol)
assert_(sol.fun < self.fun(self.solution) + 1e-3, sol)
assert_(sol.nfev == callback.n_calls,
"Callback is not called exactly once for every function eval.")
assert_array_equal(
sol.x,
callback.last_x,
"Last design vector sent to the callback is not equal to returned value.",
)
def test_minimize_constraint_violation(self):
np.random.seed(1234)
pb = np.random.rand(10, 10)
spread = np.random.rand(10)
def p(w):
return pb.dot(w)
def f(w):
return -(w * spread).sum()
def c1(w):
return 500 - abs(p(w)).sum()
def c2(w):
return 5 - abs(p(w).sum())
def c3(w):
return 5 - abs(p(w)).max()
cons = ({'type': 'ineq', 'fun': c1},
{'type': 'ineq', 'fun': c2},
{'type': 'ineq', 'fun': c3})
w0 = np.zeros((10,))
sol = minimize(f, w0, method='cobyla', constraints=cons,
options={'catol': 1e-6})
assert_(sol.maxcv > 1e-6)
assert_(not sol.success)
def test_vector_constraints():
# test that fmin_cobyla and minimize can take a combination
# of constraints, some returning a number and others an array
def fun(x):
return (x[0] - 1)**2 + (x[1] - 2.5)**2
def fmin(x):
return fun(x) - 1
def cons1(x):
a = np.array([[1, -2, 2], [-1, -2, 6], [-1, 2, 2]])
return np.array([a[i, 0] * x[0] + a[i, 1] * x[1] +
a[i, 2] for i in range(len(a))])
def cons2(x):
return x # identity, acts as bounds x > 0
x0 = np.array([2, 0])
cons_list = [fun, cons1, cons2]
xsol = [1.4, 1.7]
fsol = 0.8
# testing fmin_cobyla
sol = fmin_cobyla(fun, x0, cons_list, rhoend=1e-5)
assert_allclose(sol, xsol, atol=1e-4)
sol = fmin_cobyla(fun, x0, fmin, rhoend=1e-5)
assert_allclose(fun(sol), 1, atol=1e-4)
# testing minimize
constraints = [{'type': 'ineq', 'fun': cons} for cons in cons_list]
sol = minimize(fun, x0, constraints=constraints, tol=1e-5)
assert_allclose(sol.x, xsol, atol=1e-4)
assert_(sol.success, sol.message)
assert_allclose(sol.fun, fsol, atol=1e-4)
constraints = {'type': 'ineq', 'fun': fmin}
sol = minimize(fun, x0, constraints=constraints, tol=1e-5)
assert_allclose(sol.fun, 1, atol=1e-4)
class TestBounds:
# Test cobyla support for bounds (only when used via `minimize`)
# Invalid bounds is tested in
# test_optimize.TestOptimizeSimple.test_minimize_invalid_bounds
def test_basic(self):
def f(x):
return np.sum(x**2)
lb = [-1, None, 1, None, -0.5]
ub = [-0.5, -0.5, None, None, -0.5]
bounds = [(a, b) for a, b in zip(lb, ub)]
# these are converted to Bounds internally
res = minimize(f, x0=[1, 2, 3, 4, 5], method='cobyla', bounds=bounds)
ref = [-0.5, -0.5, 1, 0, -0.5]
assert res.success
assert_allclose(res.x, ref, atol=1e-3)
def test_unbounded(self):
def f(x):
return np.sum(x**2)
bounds = Bounds([-np.inf, -np.inf], [np.inf, np.inf])
res = minimize(f, x0=[1, 2], method='cobyla', bounds=bounds)
assert res.success
assert_allclose(res.x, 0, atol=1e-3)
bounds = Bounds([1, -np.inf], [np.inf, np.inf])
res = minimize(f, x0=[1, 2], method='cobyla', bounds=bounds)
assert res.success
assert_allclose(res.x, [1, 0], atol=1e-3)