AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/scipy/optimize/tests/test__shgo.py

1156 lines
39 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
import logging
import sys
import numpy as np
import time
from multiprocessing import Pool
from numpy.testing import assert_allclose, IS_PYPY
import pytest
from pytest import raises as assert_raises, warns
from scipy.optimize import (shgo, Bounds, minimize_scalar, minimize, rosen,
rosen_der, rosen_hess, NonlinearConstraint)
from scipy.optimize._constraints import new_constraint_to_old
from scipy.optimize._shgo import SHGO
class StructTestFunction:
def __init__(self, bounds, expected_x, expected_fun=None,
expected_xl=None, expected_funl=None):
self.bounds = bounds
self.expected_x = expected_x
self.expected_fun = expected_fun
self.expected_xl = expected_xl
self.expected_funl = expected_funl
def wrap_constraints(g):
cons = []
if g is not None:
if not isinstance(g, (tuple, list)):
g = (g,)
else:
pass
for g in g:
cons.append({'type': 'ineq',
'fun': g})
cons = tuple(cons)
else:
cons = None
return cons
class StructTest1(StructTestFunction):
def f(self, x):
return x[0] ** 2 + x[1] ** 2
def g(x):
return -(np.sum(x, axis=0) - 6.0)
cons = wrap_constraints(g)
test1_1 = StructTest1(bounds=[(-1, 6), (-1, 6)],
expected_x=[0, 0])
test1_2 = StructTest1(bounds=[(0, 1), (0, 1)],
expected_x=[0, 0])
test1_3 = StructTest1(bounds=[(None, None), (None, None)],
expected_x=[0, 0])
class StructTest2(StructTestFunction):
"""
Scalar function with several minima to test all minimiser retrievals
"""
def f(self, x):
return (x - 30) * np.sin(x)
def g(x):
return 58 - np.sum(x, axis=0)
cons = wrap_constraints(g)
test2_1 = StructTest2(bounds=[(0, 60)],
expected_x=[1.53567906],
expected_fun=-28.44677132,
# Important: test that funl return is in the correct
# order
expected_xl=np.array([[1.53567906],
[55.01782167],
[7.80894889],
[48.74797493],
[14.07445705],
[42.4913859],
[20.31743841],
[36.28607535],
[26.43039605],
[30.76371366]]),
expected_funl=np.array([-28.44677132, -24.99785984,
-22.16855376, -18.72136195,
-15.89423937, -12.45154942,
-9.63133158, -6.20801301,
-3.43727232, -0.46353338])
)
test2_2 = StructTest2(bounds=[(0, 4.5)],
expected_x=[1.53567906],
expected_fun=[-28.44677132],
expected_xl=np.array([[1.53567906]]),
expected_funl=np.array([-28.44677132])
)
class StructTest3(StructTestFunction):
"""
Hock and Schittkowski 18 problem (HS18). Hoch and Schittkowski (1981)
http://www.ai7.uni-bayreuth.de/test_problem_coll.pdf
Minimize: f = 0.01 * (x_1)**2 + (x_2)**2
Subject to: x_1 * x_2 - 25.0 >= 0,
(x_1)**2 + (x_2)**2 - 25.0 >= 0,
2 <= x_1 <= 50,
0 <= x_2 <= 50.
Approx. Answer:
f([(250)**0.5 , (2.5)**0.5]) = 5.0
"""
# amended to test vectorisation of constraints
def f(self, x):
return 0.01 * (x[0]) ** 2 + (x[1]) ** 2
def g1(x):
return x[0] * x[1] - 25.0
def g2(x):
return x[0] ** 2 + x[1] ** 2 - 25.0
# g = (g1, g2)
# cons = wrap_constraints(g)
def g(x):
return x[0] * x[1] - 25.0, x[0] ** 2 + x[1] ** 2 - 25.0
# this checks that shgo can be sent new-style constraints
__nlc = NonlinearConstraint(g, 0, np.inf)
cons = (__nlc,)
test3_1 = StructTest3(bounds=[(2, 50), (0, 50)],
expected_x=[250 ** 0.5, 2.5 ** 0.5],
expected_fun=5.0
)
class StructTest4(StructTestFunction):
"""
Hock and Schittkowski 11 problem (HS11). Hoch and Schittkowski (1981)
NOTE: Did not find in original reference to HS collection, refer to
Henderson (2015) problem 7 instead. 02.03.2016
"""
def f(self, x):
return ((x[0] - 10) ** 2 + 5 * (x[1] - 12) ** 2 + x[2] ** 4
+ 3 * (x[3] - 11) ** 2 + 10 * x[4] ** 6 + 7 * x[5] ** 2 + x[
6] ** 4
- 4 * x[5] * x[6] - 10 * x[5] - 8 * x[6]
)
def g1(x):
return -(2 * x[0] ** 2 + 3 * x[1] ** 4 + x[2] + 4 * x[3] ** 2
+ 5 * x[4] - 127)
def g2(x):
return -(7 * x[0] + 3 * x[1] + 10 * x[2] ** 2 + x[3] - x[4] - 282.0)
def g3(x):
return -(23 * x[0] + x[1] ** 2 + 6 * x[5] ** 2 - 8 * x[6] - 196)
def g4(x):
return -(4 * x[0] ** 2 + x[1] ** 2 - 3 * x[0] * x[1] + 2 * x[2] ** 2
+ 5 * x[5] - 11 * x[6])
g = (g1, g2, g3, g4)
cons = wrap_constraints(g)
test4_1 = StructTest4(bounds=[(-10, 10), ] * 7,
expected_x=[2.330499, 1.951372, -0.4775414,
4.365726, -0.6244870, 1.038131, 1.594227],
expected_fun=680.6300573
)
class StructTest5(StructTestFunction):
def f(self, x):
return (
-(x[1] + 47.0)*np.sin(np.sqrt(abs(x[0]/2.0 + (x[1] + 47.0))))
- x[0]*np.sin(np.sqrt(abs(x[0] - (x[1] + 47.0))))
)
g = None
cons = wrap_constraints(g)
test5_1 = StructTest5(bounds=[(-512, 512), (-512, 512)],
expected_fun=[-959.64066272085051],
expected_x=[512., 404.23180542])
class StructTestLJ(StructTestFunction):
"""
LennardJones objective function. Used to test symmetry constraints
settings.
"""
def f(self, x, *args):
print(f'x = {x}')
self.N = args[0]
k = int(self.N / 3)
s = 0.0
for i in range(k - 1):
for j in range(i + 1, k):
a = 3 * i
b = 3 * j
xd = x[a] - x[b]
yd = x[a + 1] - x[b + 1]
zd = x[a + 2] - x[b + 2]
ed = xd * xd + yd * yd + zd * zd
ud = ed * ed * ed
if ed > 0.0:
s += (1.0 / ud - 2.0) / ud
return s
g = None
cons = wrap_constraints(g)
N = 6
boundsLJ = list(zip([-4.0] * 6, [4.0] * 6))
testLJ = StructTestLJ(bounds=boundsLJ,
expected_fun=[-1.0],
expected_x=None,
# expected_x=[-2.71247337e-08,
# -2.71247337e-08,
# -2.50000222e+00,
# -2.71247337e-08,
# -2.71247337e-08,
# -1.50000222e+00]
)
class StructTestS(StructTestFunction):
def f(self, x):
return ((x[0] - 0.5) ** 2 + (x[1] - 0.5) ** 2
+ (x[2] - 0.5) ** 2 + (x[3] - 0.5) ** 2)
g = None
cons = wrap_constraints(g)
test_s = StructTestS(bounds=[(0, 2.0), ] * 4,
expected_fun=0.0,
expected_x=np.ones(4) - 0.5
)
class StructTestTable(StructTestFunction):
def f(self, x):
if x[0] == 3.0 and x[1] == 3.0:
return 50
else:
return 100
g = None
cons = wrap_constraints(g)
test_table = StructTestTable(bounds=[(-10, 10), (-10, 10)],
expected_fun=[50],
expected_x=[3.0, 3.0])
class StructTestInfeasible(StructTestFunction):
"""
Test function with no feasible domain.
"""
def f(self, x, *args):
return x[0] ** 2 + x[1] ** 2
def g1(x):
return x[0] + x[1] - 1
def g2(x):
return -(x[0] + x[1] - 1)
def g3(x):
return -x[0] + x[1] - 1
def g4(x):
return -(-x[0] + x[1] - 1)
g = (g1, g2, g3, g4)
cons = wrap_constraints(g)
test_infeasible = StructTestInfeasible(bounds=[(2, 50), (-1, 1)],
expected_fun=None,
expected_x=None
)
@pytest.mark.skip("Not a test")
def run_test(test, args=(), test_atol=1e-5, n=100, iters=None,
callback=None, minimizer_kwargs=None, options=None,
sampling_method='sobol', workers=1):
res = shgo(test.f, test.bounds, args=args, constraints=test.cons,
n=n, iters=iters, callback=callback,
minimizer_kwargs=minimizer_kwargs, options=options,
sampling_method=sampling_method, workers=workers)
print(f'res = {res}')
logging.info(f'res = {res}')
if test.expected_x is not None:
np.testing.assert_allclose(res.x, test.expected_x,
rtol=test_atol,
atol=test_atol)
# (Optional tests)
if test.expected_fun is not None:
np.testing.assert_allclose(res.fun,
test.expected_fun,
atol=test_atol)
if test.expected_xl is not None:
np.testing.assert_allclose(res.xl,
test.expected_xl,
atol=test_atol)
if test.expected_funl is not None:
np.testing.assert_allclose(res.funl,
test.expected_funl,
atol=test_atol)
return
# Base test functions:
class TestShgoSobolTestFunctions:
"""
Global optimisation tests with Sobol sampling:
"""
# Sobol algorithm
def test_f1_1_sobol(self):
"""Multivariate test function 1:
x[0]**2 + x[1]**2 with bounds=[(-1, 6), (-1, 6)]"""
run_test(test1_1)
def test_f1_2_sobol(self):
"""Multivariate test function 1:
x[0]**2 + x[1]**2 with bounds=[(0, 1), (0, 1)]"""
run_test(test1_2)
def test_f1_3_sobol(self):
"""Multivariate test function 1:
x[0]**2 + x[1]**2 with bounds=[(None, None),(None, None)]"""
options = {'disp': True}
run_test(test1_3, options=options)
def test_f2_1_sobol(self):
"""Univariate test function on
f(x) = (x - 30) * sin(x) with bounds=[(0, 60)]"""
run_test(test2_1)
def test_f2_2_sobol(self):
"""Univariate test function on
f(x) = (x - 30) * sin(x) bounds=[(0, 4.5)]"""
run_test(test2_2)
def test_f3_sobol(self):
"""NLP: Hock and Schittkowski problem 18"""
run_test(test3_1)
@pytest.mark.slow
def test_f4_sobol(self):
"""NLP: (High dimensional) Hock and Schittkowski 11 problem (HS11)"""
options = {'infty_constraints': False}
# run_test(test4_1, n=990, options=options)
run_test(test4_1, n=990 * 2, options=options)
def test_f5_1_sobol(self):
"""NLP: Eggholder, multimodal"""
# run_test(test5_1, n=30)
run_test(test5_1, n=60)
def test_f5_2_sobol(self):
"""NLP: Eggholder, multimodal"""
# run_test(test5_1, n=60, iters=5)
run_test(test5_1, n=60, iters=5)
# def test_t911(self):
# """1D tabletop function"""
# run_test(test11_1)
class TestShgoSimplicialTestFunctions:
"""
Global optimisation tests with Simplicial sampling:
"""
def test_f1_1_simplicial(self):
"""Multivariate test function 1:
x[0]**2 + x[1]**2 with bounds=[(-1, 6), (-1, 6)]"""
run_test(test1_1, n=1, sampling_method='simplicial')
def test_f1_2_simplicial(self):
"""Multivariate test function 1:
x[0]**2 + x[1]**2 with bounds=[(0, 1), (0, 1)]"""
run_test(test1_2, n=1, sampling_method='simplicial')
def test_f1_3_simplicial(self):
"""Multivariate test function 1: x[0]**2 + x[1]**2
with bounds=[(None, None),(None, None)]"""
run_test(test1_3, n=5, sampling_method='simplicial')
def test_f2_1_simplicial(self):
"""Univariate test function on
f(x) = (x - 30) * sin(x) with bounds=[(0, 60)]"""
options = {'minimize_every_iter': False}
run_test(test2_1, n=200, iters=7, options=options,
sampling_method='simplicial')
def test_f2_2_simplicial(self):
"""Univariate test function on
f(x) = (x - 30) * sin(x) bounds=[(0, 4.5)]"""
run_test(test2_2, n=1, sampling_method='simplicial')
def test_f3_simplicial(self):
"""NLP: Hock and Schittkowski problem 18"""
run_test(test3_1, n=1, sampling_method='simplicial')
@pytest.mark.slow
def test_f4_simplicial(self):
"""NLP: (High dimensional) Hock and Schittkowski 11 problem (HS11)"""
run_test(test4_1, n=1, sampling_method='simplicial')
def test_lj_symmetry_old(self):
"""LJ: Symmetry-constrained test function"""
options = {'symmetry': True,
'disp': True}
args = (6,) # Number of atoms
run_test(testLJ, args=args, n=300,
options=options, iters=1,
sampling_method='simplicial')
def test_f5_1_lj_symmetry(self):
"""LJ: Symmetry constrained test function"""
options = {'symmetry': [0, ] * 6,
'disp': True}
args = (6,) # No. of atoms
run_test(testLJ, args=args, n=300,
options=options, iters=1,
sampling_method='simplicial')
def test_f5_2_cons_symmetry(self):
"""Symmetry constrained test function"""
options = {'symmetry': [0, 0],
'disp': True}
run_test(test1_1, n=200,
options=options, iters=1,
sampling_method='simplicial')
@pytest.mark.fail_slow(5)
def test_f5_3_cons_symmetry(self):
"""Assymmetrically constrained test function"""
options = {'symmetry': [0, 0, 0, 3],
'disp': True}
run_test(test_s, n=10000,
options=options,
iters=1,
sampling_method='simplicial')
@pytest.mark.skip("Not a test")
def test_f0_min_variance(self):
"""Return a minimum on a perfectly symmetric problem, based on
gh10429"""
avg = 0.5 # Given average value of x
cons = {'type': 'eq', 'fun': lambda x: np.mean(x) - avg}
# Minimize the variance of x under the given constraint
res = shgo(np.var, bounds=6 * [(0, 1)], constraints=cons)
assert res.success
assert_allclose(res.fun, 0, atol=1e-15)
assert_allclose(res.x, 0.5)
@pytest.mark.skip("Not a test")
def test_f0_min_variance_1D(self):
"""Return a minimum on a perfectly symmetric 1D problem, based on
gh10538"""
def fun(x):
return x * (x - 1.0) * (x - 0.5)
bounds = [(0, 1)]
res = shgo(fun, bounds=bounds)
ref = minimize_scalar(fun, bounds=bounds[0])
assert res.success
assert_allclose(res.fun, ref.fun)
assert_allclose(res.x, ref.x, rtol=1e-6)
# Argument test functions
class TestShgoArguments:
def test_1_1_simpl_iter(self):
"""Iterative simplicial sampling on TestFunction 1 (multivariate)"""
run_test(test1_2, n=None, iters=2, sampling_method='simplicial')
def test_1_2_simpl_iter(self):
"""Iterative simplicial on TestFunction 2 (univariate)"""
options = {'minimize_every_iter': False}
run_test(test2_1, n=None, iters=9, options=options,
sampling_method='simplicial')
def test_2_1_sobol_iter(self):
"""Iterative Sobol sampling on TestFunction 1 (multivariate)"""
run_test(test1_2, n=None, iters=1, sampling_method='sobol')
def test_2_2_sobol_iter(self):
"""Iterative Sobol sampling on TestFunction 2 (univariate)"""
res = shgo(test2_1.f, test2_1.bounds, constraints=test2_1.cons,
n=None, iters=1, sampling_method='sobol')
np.testing.assert_allclose(res.x, test2_1.expected_x, rtol=1e-5, atol=1e-5)
np.testing.assert_allclose(res.fun, test2_1.expected_fun, atol=1e-5)
def test_3_1_disp_simplicial(self):
"""Iterative sampling on TestFunction 1 and 2 (multi and univariate)
"""
def callback_func(x):
print("Local minimization callback test")
for test in [test1_1, test2_1]:
shgo(test.f, test.bounds, iters=1,
sampling_method='simplicial',
callback=callback_func, options={'disp': True})
shgo(test.f, test.bounds, n=1, sampling_method='simplicial',
callback=callback_func, options={'disp': True})
def test_3_2_disp_sobol(self):
"""Iterative sampling on TestFunction 1 and 2 (multi and univariate)"""
def callback_func(x):
print("Local minimization callback test")
for test in [test1_1, test2_1]:
shgo(test.f, test.bounds, iters=1, sampling_method='sobol',
callback=callback_func, options={'disp': True})
shgo(test.f, test.bounds, n=1, sampling_method='simplicial',
callback=callback_func, options={'disp': True})
def test_args_gh14589(self):
"""Using `args` used to cause `shgo` to fail; see #14589, #15986,
#16506"""
res = shgo(func=lambda x, y, z: x * z + y, bounds=[(0, 3)], args=(1, 2)
)
ref = shgo(func=lambda x: 2 * x + 1, bounds=[(0, 3)])
assert_allclose(res.fun, ref.fun)
assert_allclose(res.x, ref.x)
@pytest.mark.slow
def test_4_1_known_f_min(self):
"""Test known function minima stopping criteria"""
# Specify known function value
options = {'f_min': test4_1.expected_fun,
'f_tol': 1e-6,
'minimize_every_iter': True}
# TODO: Make default n higher for faster tests
run_test(test4_1, n=None, test_atol=1e-5, options=options,
sampling_method='simplicial')
@pytest.mark.slow
def test_4_2_known_f_min(self):
"""Test Global mode limiting local evaluations"""
options = { # Specify known function value
'f_min': test4_1.expected_fun,
'f_tol': 1e-6,
# Specify number of local iterations to perform
'minimize_every_iter': True,
'local_iter': 1}
run_test(test4_1, n=None, test_atol=1e-5, options=options,
sampling_method='simplicial')
def test_4_4_known_f_min(self):
"""Test Global mode limiting local evaluations for 1D funcs"""
options = { # Specify known function value
'f_min': test2_1.expected_fun,
'f_tol': 1e-6,
# Specify number of local iterations to perform+
'minimize_every_iter': True,
'local_iter': 1,
'infty_constraints': False}
res = shgo(test2_1.f, test2_1.bounds, constraints=test2_1.cons,
n=None, iters=None, options=options,
sampling_method='sobol')
np.testing.assert_allclose(res.x, test2_1.expected_x, rtol=1e-5, atol=1e-5)
def test_5_1_simplicial_argless(self):
"""Test Default simplicial sampling settings on TestFunction 1"""
res = shgo(test1_1.f, test1_1.bounds, constraints=test1_1.cons)
np.testing.assert_allclose(res.x, test1_1.expected_x, rtol=1e-5, atol=1e-5)
def test_5_2_sobol_argless(self):
"""Test Default sobol sampling settings on TestFunction 1"""
res = shgo(test1_1.f, test1_1.bounds, constraints=test1_1.cons,
sampling_method='sobol')
np.testing.assert_allclose(res.x, test1_1.expected_x, rtol=1e-5, atol=1e-5)
def test_6_1_simplicial_max_iter(self):
"""Test that maximum iteration option works on TestFunction 3"""
options = {'max_iter': 2}
res = shgo(test3_1.f, test3_1.bounds, constraints=test3_1.cons,
options=options, sampling_method='simplicial')
np.testing.assert_allclose(res.x, test3_1.expected_x, rtol=1e-5, atol=1e-5)
np.testing.assert_allclose(res.fun, test3_1.expected_fun, atol=1e-5)
def test_6_2_simplicial_min_iter(self):
"""Test that maximum iteration option works on TestFunction 3"""
options = {'min_iter': 2}
res = shgo(test3_1.f, test3_1.bounds, constraints=test3_1.cons,
options=options, sampling_method='simplicial')
np.testing.assert_allclose(res.x, test3_1.expected_x, rtol=1e-5, atol=1e-5)
np.testing.assert_allclose(res.fun, test3_1.expected_fun, atol=1e-5)
def test_7_1_minkwargs(self):
"""Test the minimizer_kwargs arguments for solvers with constraints"""
# Test solvers
for solver in ['COBYLA', 'COBYQA', 'SLSQP']:
# Note that passing global constraints to SLSQP is tested in other
# unittests which run test4_1 normally
minimizer_kwargs = {'method': solver,
'constraints': test3_1.cons}
run_test(test3_1, n=100, test_atol=1e-3,
minimizer_kwargs=minimizer_kwargs,
sampling_method='sobol')
def test_7_2_minkwargs(self):
"""Test the minimizer_kwargs default inits"""
minimizer_kwargs = {'ftol': 1e-5}
options = {'disp': True} # For coverage purposes
SHGO(test3_1.f, test3_1.bounds, constraints=test3_1.cons[0],
minimizer_kwargs=minimizer_kwargs, options=options)
def test_7_3_minkwargs(self):
"""Test minimizer_kwargs arguments for solvers without constraints"""
for solver in ['Nelder-Mead', 'Powell', 'CG', 'BFGS', 'Newton-CG',
'L-BFGS-B', 'TNC', 'dogleg', 'trust-ncg', 'trust-exact',
'trust-krylov']:
def jac(x):
return np.array([2 * x[0], 2 * x[1]]).T
def hess(x):
return np.array([[2, 0], [0, 2]])
minimizer_kwargs = {'method': solver,
'jac': jac,
'hess': hess}
logging.info(f"Solver = {solver}")
logging.info("=" * 100)
run_test(test1_1, n=100, test_atol=1e-3,
minimizer_kwargs=minimizer_kwargs,
sampling_method='sobol')
def test_8_homology_group_diff(self):
options = {'minhgrd': 1,
'minimize_every_iter': True}
run_test(test1_1, n=None, iters=None, options=options,
sampling_method='simplicial')
def test_9_cons_g(self):
"""Test single function constraint passing"""
SHGO(test3_1.f, test3_1.bounds, constraints=test3_1.cons[0])
@pytest.mark.xfail(IS_PYPY and sys.platform == 'win32',
reason="Failing and fix in PyPy not planned (see gh-18632)")
def test_10_finite_time(self):
"""Test single function constraint passing"""
options = {'maxtime': 1e-15}
def f(x):
time.sleep(1e-14)
return 0.0
res = shgo(f, test1_1.bounds, iters=5, options=options)
# Assert that only 1 rather than 5 requested iterations ran:
assert res.nit == 1
def test_11_f_min_0(self):
"""Test to cover the case where f_lowest == 0"""
options = {'f_min': 0.0,
'disp': True}
res = shgo(test1_2.f, test1_2.bounds, n=10, iters=None,
options=options, sampling_method='sobol')
np.testing.assert_equal(0, res.x[0])
np.testing.assert_equal(0, res.x[1])
# @nottest
@pytest.mark.skip(reason="no way of currently testing this")
def test_12_sobol_inf_cons(self):
"""Test to cover the case where f_lowest == 0"""
# TODO: This test doesn't cover anything new, it is unknown what the
# original test was intended for as it was never complete. Delete or
# replace in the future.
options = {'maxtime': 1e-15,
'f_min': 0.0}
res = shgo(test1_2.f, test1_2.bounds, n=1, iters=None,
options=options, sampling_method='sobol')
np.testing.assert_equal(0.0, res.fun)
def test_13_high_sobol(self):
"""Test init of high-dimensional sobol sequences"""
def f(x):
return 0
bounds = [(None, None), ] * 41
SHGOc = SHGO(f, bounds, sampling_method='sobol')
# SHGOc.sobol_points(2, 50)
SHGOc.sampling_function(2, 50)
def test_14_local_iter(self):
"""Test limited local iterations for a pseudo-global mode"""
options = {'local_iter': 4}
run_test(test5_1, n=60, options=options)
def test_15_min_every_iter(self):
"""Test minimize every iter options and cover function cache"""
options = {'minimize_every_iter': True}
run_test(test1_1, n=1, iters=7, options=options,
sampling_method='sobol')
def test_16_disp_bounds_minimizer(self, capsys):
"""Test disp=True with minimizers that do not support bounds """
options = {'disp': True}
minimizer_kwargs = {'method': 'nelder-mead'}
run_test(test1_2, sampling_method='simplicial',
options=options, minimizer_kwargs=minimizer_kwargs)
def test_17_custom_sampling(self):
"""Test the functionality to add custom sampling methods to shgo"""
def sample(n, d):
return np.random.uniform(size=(n, d))
run_test(test1_1, n=30, sampling_method=sample)
def test_18_bounds_class(self):
# test that new and old bounds yield same result
def f(x):
return np.square(x).sum()
lb = [-6., 1., -5.]
ub = [-1., 3., 5.]
bounds_old = list(zip(lb, ub))
bounds_new = Bounds(lb, ub)
res_old_bounds = shgo(f, bounds_old)
res_new_bounds = shgo(f, bounds_new)
assert res_new_bounds.nfev == res_old_bounds.nfev
assert res_new_bounds.message == res_old_bounds.message
assert res_new_bounds.success == res_old_bounds.success
x_opt = np.array([-1., 1., 0.])
np.testing.assert_allclose(res_new_bounds.x, x_opt)
np.testing.assert_allclose(res_new_bounds.x, res_old_bounds.x)
@pytest.mark.fail_slow(5)
def test_19_parallelization(self):
"""Test the functionality to add custom sampling methods to shgo"""
with Pool(2) as p:
run_test(test1_1, n=30, workers=p.map) # Constrained
run_test(test1_1, n=30, workers=map) # Constrained
with Pool(2) as p:
run_test(test_s, n=30, workers=p.map) # Unconstrained
run_test(test_s, n=30, workers=map) # Unconstrained
def test_20_constrained_args(self):
"""Test that constraints can be passed to arguments"""
def eggholder(x):
return (
-(x[1] + 47.0)*np.sin(np.sqrt(abs(x[0] / 2.0 + (x[1] + 47.0))))
- x[0]*np.sin(np.sqrt(abs(x[0] - (x[1] + 47.0))))
)
def f(x): # (cattle-feed)
return 24.55 * x[0] + 26.75 * x[1] + 39 * x[2] + 40.50 * x[3]
bounds = [(0, 1.0), ] * 4
def g1_modified(x, i):
return i * 2.3 * x[0] + i * 5.6 * x[1] + 11.1 * x[2] + 1.3 * x[
3] - 5 # >=0
def g2(x):
return (
12*x[0] + 11.9*x[1] + 41.8*x[2] + 52.1*x[3] - 21
- 1.645*np.sqrt(
0.28*x[0]**2 + 0.19*x[1]**2 + 20.5*x[2]**2 + 0.62*x[3]**2
)
) # >=0
def h1(x):
return x[0] + x[1] + x[2] + x[3] - 1 # == 0
cons = ({'type': 'ineq', 'fun': g1_modified, "args": (0,)},
{'type': 'ineq', 'fun': g2},
{'type': 'eq', 'fun': h1})
shgo(f, bounds, n=300, iters=1, constraints=cons)
# using constrain with arguments AND sampling method sobol
shgo(f, bounds, n=300, iters=1, constraints=cons,
sampling_method='sobol')
def test_21_1_jac_true(self):
"""Test that shgo can handle objective functions that return the
gradient alongside the objective value. Fixes gh-13547"""
# previous
def func(x):
return np.sum(np.power(x, 2)), 2 * x
shgo(
func,
bounds=[[-1, 1], [1, 2]],
n=100, iters=5,
sampling_method="sobol",
minimizer_kwargs={'method': 'SLSQP', 'jac': True}
)
# new
def func(x):
return np.sum(x ** 2), 2 * x
bounds = [[-1, 1], [1, 2], [-1, 1], [1, 2], [0, 3]]
res = shgo(func, bounds=bounds, sampling_method="sobol",
minimizer_kwargs={'method': 'SLSQP', 'jac': True})
ref = minimize(func, x0=[1, 1, 1, 1, 1], bounds=bounds,
jac=True)
assert res.success
assert_allclose(res.fun, ref.fun)
assert_allclose(res.x, ref.x, atol=1e-15)
@pytest.mark.parametrize('derivative', ['jac', 'hess', 'hessp'])
def test_21_2_derivative_options(self, derivative):
"""shgo used to raise an error when passing `options` with 'jac'
# see gh-12963. check that this is resolved
"""
def objective(x):
return 3 * x[0] * x[0] + 2 * x[0] + 5
def gradient(x):
return 6 * x[0] + 2
def hess(x):
return 6
def hessp(x, p):
return 6 * p
derivative_funcs = {'jac': gradient, 'hess': hess, 'hessp': hessp}
options = {derivative: derivative_funcs[derivative]}
minimizer_kwargs = {'method': 'trust-constr'}
bounds = [(-100, 100)]
res = shgo(objective, bounds, minimizer_kwargs=minimizer_kwargs,
options=options)
ref = minimize(objective, x0=[0], bounds=bounds, **minimizer_kwargs,
**options)
assert res.success
np.testing.assert_allclose(res.fun, ref.fun)
np.testing.assert_allclose(res.x, ref.x)
def test_21_3_hess_options_rosen(self):
"""Ensure the Hessian gets passed correctly to the local minimizer
routine. Previous report gh-14533.
"""
bounds = [(0, 1.6), (0, 1.6), (0, 1.4), (0, 1.4), (0, 1.4)]
options = {'jac': rosen_der, 'hess': rosen_hess}
minimizer_kwargs = {'method': 'Newton-CG'}
res = shgo(rosen, bounds, minimizer_kwargs=minimizer_kwargs,
options=options)
ref = minimize(rosen, np.zeros(5), method='Newton-CG',
**options)
assert res.success
assert_allclose(res.fun, ref.fun)
assert_allclose(res.x, ref.x, atol=1e-15)
def test_21_arg_tuple_sobol(self):
"""shgo used to raise an error when passing `args` with Sobol sampling
# see gh-12114. check that this is resolved"""
def fun(x, k):
return x[0] ** k
constraints = ({'type': 'ineq', 'fun': lambda x: x[0] - 1})
bounds = [(0, 10)]
res = shgo(fun, bounds, args=(1,), constraints=constraints,
sampling_method='sobol')
ref = minimize(fun, np.zeros(1), bounds=bounds, args=(1,),
constraints=constraints)
assert res.success
assert_allclose(res.fun, ref.fun)
assert_allclose(res.x, ref.x)
# Failure test functions
class TestShgoFailures:
def test_1_maxiter(self):
"""Test failure on insufficient iterations"""
options = {'maxiter': 2}
res = shgo(test4_1.f, test4_1.bounds, n=2, iters=None,
options=options, sampling_method='sobol')
np.testing.assert_equal(False, res.success)
# np.testing.assert_equal(4, res.nfev)
np.testing.assert_equal(4, res.tnev)
def test_2_sampling(self):
"""Rejection of unknown sampling method"""
assert_raises(ValueError, shgo, test1_1.f, test1_1.bounds,
sampling_method='not_Sobol')
def test_3_1_no_min_pool_sobol(self):
"""Check that the routine stops when no minimiser is found
after maximum specified function evaluations"""
options = {'maxfev': 10,
# 'maxev': 10,
'disp': True}
res = shgo(test_table.f, test_table.bounds, n=3, options=options,
sampling_method='sobol')
np.testing.assert_equal(False, res.success)
# np.testing.assert_equal(9, res.nfev)
np.testing.assert_equal(12, res.nfev)
def test_3_2_no_min_pool_simplicial(self):
"""Check that the routine stops when no minimiser is found
after maximum specified sampling evaluations"""
options = {'maxev': 10,
'disp': True}
res = shgo(test_table.f, test_table.bounds, n=3, options=options,
sampling_method='simplicial')
np.testing.assert_equal(False, res.success)
def test_4_1_bound_err(self):
"""Specified bounds ub > lb"""
bounds = [(6, 3), (3, 5)]
assert_raises(ValueError, shgo, test1_1.f, bounds)
def test_4_2_bound_err(self):
"""Specified bounds are of the form (lb, ub)"""
bounds = [(3, 5, 5), (3, 5)]
assert_raises(ValueError, shgo, test1_1.f, bounds)
def test_5_1_1_infeasible_sobol(self):
"""Ensures the algorithm terminates on infeasible problems
after maxev is exceeded. Use infty constraints option"""
options = {'maxev': 100,
'disp': True}
res = shgo(test_infeasible.f, test_infeasible.bounds,
constraints=test_infeasible.cons, n=100, options=options,
sampling_method='sobol')
np.testing.assert_equal(False, res.success)
def test_5_1_2_infeasible_sobol(self):
"""Ensures the algorithm terminates on infeasible problems
after maxev is exceeded. Do not use infty constraints option"""
options = {'maxev': 100,
'disp': True,
'infty_constraints': False}
res = shgo(test_infeasible.f, test_infeasible.bounds,
constraints=test_infeasible.cons, n=100, options=options,
sampling_method='sobol')
np.testing.assert_equal(False, res.success)
def test_5_2_infeasible_simplicial(self):
"""Ensures the algorithm terminates on infeasible problems
after maxev is exceeded."""
options = {'maxev': 1000,
'disp': False}
res = shgo(test_infeasible.f, test_infeasible.bounds,
constraints=test_infeasible.cons, n=100, options=options,
sampling_method='simplicial')
np.testing.assert_equal(False, res.success)
def test_6_1_lower_known_f_min(self):
"""Test Global mode limiting local evaluations with f* too high"""
options = { # Specify known function value
'f_min': test2_1.expected_fun + 2.0,
'f_tol': 1e-6,
# Specify number of local iterations to perform+
'minimize_every_iter': True,
'local_iter': 1,
'infty_constraints': False}
args = (test2_1.f, test2_1.bounds)
kwargs = {'constraints': test2_1.cons,
'n': None,
'iters': None,
'options': options,
'sampling_method': 'sobol'
}
warns(UserWarning, shgo, *args, **kwargs)
def test(self):
from scipy.optimize import rosen, shgo
bounds = [(0, 2), (0, 2), (0, 2), (0, 2), (0, 2)]
def fun(x):
fun.nfev += 1
return rosen(x)
fun.nfev = 0
result = shgo(fun, bounds)
print(result.x, result.fun, fun.nfev) # 50
# Returns
class TestShgoReturns:
def test_1_nfev_simplicial(self):
bounds = [(0, 2), (0, 2), (0, 2), (0, 2), (0, 2)]
def fun(x):
fun.nfev += 1
return rosen(x)
fun.nfev = 0
result = shgo(fun, bounds)
np.testing.assert_equal(fun.nfev, result.nfev)
def test_1_nfev_sobol(self):
bounds = [(0, 2), (0, 2), (0, 2), (0, 2), (0, 2)]
def fun(x):
fun.nfev += 1
return rosen(x)
fun.nfev = 0
result = shgo(fun, bounds, sampling_method='sobol')
np.testing.assert_equal(fun.nfev, result.nfev)
def test_vector_constraint():
# gh15514
def quad(x):
x = np.asarray(x)
return [np.sum(x ** 2)]
nlc = NonlinearConstraint(quad, [2.2], [3])
oldc = new_constraint_to_old(nlc, np.array([1.0, 1.0]))
res = shgo(rosen, [(0, 10), (0, 10)], constraints=oldc, sampling_method='sobol')
assert np.all(np.sum((res.x)**2) >= 2.2)
assert np.all(np.sum((res.x) ** 2) <= 3.0)
assert res.success
@pytest.mark.filterwarnings("ignore:delta_grad")
def test_trust_constr():
def quad(x):
x = np.asarray(x)
return [np.sum(x ** 2)]
nlc = NonlinearConstraint(quad, [2.6], [3])
minimizer_kwargs = {'method': 'trust-constr'}
# note that we don't supply the constraints in minimizer_kwargs,
# so if the final result obeys the constraints we know that shgo
# passed them on to 'trust-constr'
res = shgo(
rosen,
[(0, 10), (0, 10)],
constraints=nlc,
sampling_method='sobol',
minimizer_kwargs=minimizer_kwargs
)
assert np.all(np.sum((res.x)**2) >= 2.6)
assert np.all(np.sum((res.x) ** 2) <= 3.0)
assert res.success
def test_equality_constraints():
# gh16260
bounds = [(0.9, 4.0)] * 2 # Constrain probabilities to 0 and 1.
def faulty(x):
return x[0] + x[1]
nlc = NonlinearConstraint(faulty, 3.9, 3.9)
res = shgo(rosen, bounds=bounds, constraints=nlc)
assert_allclose(np.sum(res.x), 3.9)
def faulty(x):
return x[0] + x[1] - 3.9
constraints = {'type': 'eq', 'fun': faulty}
res = shgo(rosen, bounds=bounds, constraints=constraints)
assert_allclose(np.sum(res.x), 3.9)
bounds = [(0, 1.0)] * 4
# sum of variable should equal 1.
def faulty(x):
return x[0] + x[1] + x[2] + x[3] - 1
# options = {'minimize_every_iter': True, 'local_iter':10}
constraints = {'type': 'eq', 'fun': faulty}
res = shgo(
lambda x: - np.prod(x),
bounds=bounds,
constraints=constraints,
sampling_method='sobol'
)
assert_allclose(np.sum(res.x), 1.0)
def test_gh16971():
def cons(x):
return np.sum(x**2) - 0
c = {'fun': cons, 'type': 'ineq'}
minimizer_kwargs = {
'method': 'COBYLA',
'options': {'rhobeg': 5, 'tol': 5e-1, 'catol': 0.05}
}
s = SHGO(
rosen, [(0, 10)]*2, constraints=c, minimizer_kwargs=minimizer_kwargs
)
assert s.minimizer_kwargs['method'].lower() == 'cobyla'
assert s.minimizer_kwargs['options']['catol'] == 0.05