228 lines
6.1 KiB
Plaintext
228 lines
6.1 KiB
Plaintext
|
Metadata-Version: 2.1
|
||
|
Name: pure_eval
|
||
|
Version: 0.2.3
|
||
|
Summary: Safely evaluate AST nodes without side effects
|
||
|
Home-page: http://github.com/alexmojaki/pure_eval
|
||
|
Author: Alex Hall
|
||
|
Author-email: alex.mojaki@gmail.com
|
||
|
License: MIT
|
||
|
Classifier: Intended Audience :: Developers
|
||
|
Classifier: Programming Language :: Python :: 3.7
|
||
|
Classifier: Programming Language :: Python :: 3.8
|
||
|
Classifier: Programming Language :: Python :: 3.9
|
||
|
Classifier: Programming Language :: Python :: 3.10
|
||
|
Classifier: Programming Language :: Python :: 3.11
|
||
|
Classifier: Programming Language :: Python :: 3.12
|
||
|
Classifier: Programming Language :: Python :: 3.13
|
||
|
Classifier: License :: OSI Approved :: MIT License
|
||
|
Classifier: Operating System :: OS Independent
|
||
|
Description-Content-Type: text/markdown
|
||
|
License-File: LICENSE.txt
|
||
|
Provides-Extra: tests
|
||
|
Requires-Dist: pytest ; extra == 'tests'
|
||
|
|
||
|
# `pure_eval`
|
||
|
|
||
|
[![Build Status](https://travis-ci.org/alexmojaki/pure_eval.svg?branch=master)](https://travis-ci.org/alexmojaki/pure_eval) [![Coverage Status](https://coveralls.io/repos/github/alexmojaki/pure_eval/badge.svg?branch=master)](https://coveralls.io/github/alexmojaki/pure_eval?branch=master) [![Supports Python versions 3.7+](https://img.shields.io/pypi/pyversions/pure_eval.svg)](https://pypi.python.org/pypi/pure_eval)
|
||
|
|
||
|
This is a Python package that lets you safely evaluate certain AST nodes without triggering arbitrary code that may have unwanted side effects.
|
||
|
|
||
|
It can be installed from PyPI:
|
||
|
|
||
|
pip install pure_eval
|
||
|
|
||
|
To demonstrate usage, suppose we have an object defined as follows:
|
||
|
|
||
|
```python
|
||
|
class Rectangle:
|
||
|
def __init__(self, width, height):
|
||
|
self.width = width
|
||
|
self.height = height
|
||
|
|
||
|
@property
|
||
|
def area(self):
|
||
|
print("Calculating area...")
|
||
|
return self.width * self.height
|
||
|
|
||
|
|
||
|
rect = Rectangle(3, 5)
|
||
|
```
|
||
|
|
||
|
Given the `rect` object, we want to evaluate whatever expressions we can in this source code:
|
||
|
|
||
|
```python
|
||
|
source = "(rect.width, rect.height, rect.area)"
|
||
|
```
|
||
|
|
||
|
This library works with the AST, so let's parse the source code and peek inside:
|
||
|
|
||
|
```python
|
||
|
import ast
|
||
|
|
||
|
tree = ast.parse(source)
|
||
|
the_tuple = tree.body[0].value
|
||
|
for node in the_tuple.elts:
|
||
|
print(ast.dump(node))
|
||
|
```
|
||
|
|
||
|
Output:
|
||
|
|
||
|
```python
|
||
|
Attribute(value=Name(id='rect', ctx=Load()), attr='width', ctx=Load())
|
||
|
Attribute(value=Name(id='rect', ctx=Load()), attr='height', ctx=Load())
|
||
|
Attribute(value=Name(id='rect', ctx=Load()), attr='area', ctx=Load())
|
||
|
```
|
||
|
|
||
|
Now to actually use the library. First construct an Evaluator:
|
||
|
|
||
|
```python
|
||
|
from pure_eval import Evaluator
|
||
|
|
||
|
evaluator = Evaluator({"rect": rect})
|
||
|
```
|
||
|
|
||
|
The argument to `Evaluator` should be a mapping from variable names to their values. Or if you have access to the stack frame where `rect` is defined, you can instead use:
|
||
|
|
||
|
```python
|
||
|
evaluator = Evaluator.from_frame(frame)
|
||
|
```
|
||
|
|
||
|
Now to evaluate some nodes, using `evaluator[node]`:
|
||
|
|
||
|
```python
|
||
|
print("rect.width:", evaluator[the_tuple.elts[0]])
|
||
|
print("rect:", evaluator[the_tuple.elts[0].value])
|
||
|
```
|
||
|
|
||
|
Output:
|
||
|
|
||
|
```
|
||
|
rect.width: 3
|
||
|
rect: <__main__.Rectangle object at 0x105b0dd30>
|
||
|
```
|
||
|
|
||
|
OK, but you could have done the same thing with `eval`. The useful part is that it will refuse to evaluate the property `rect.area` because that would trigger unknown code. If we try, it'll raise a `CannotEval` exception.
|
||
|
|
||
|
```python
|
||
|
from pure_eval import CannotEval
|
||
|
|
||
|
try:
|
||
|
print("rect.area:", evaluator[the_tuple.elts[2]]) # fails
|
||
|
except CannotEval as e:
|
||
|
print(e) # prints CannotEval
|
||
|
```
|
||
|
|
||
|
To find all the expressions that can be evaluated in a tree:
|
||
|
|
||
|
```python
|
||
|
for node, value in evaluator.find_expressions(tree):
|
||
|
print(ast.dump(node), value)
|
||
|
```
|
||
|
|
||
|
Output:
|
||
|
|
||
|
```python
|
||
|
Attribute(value=Name(id='rect', ctx=Load()), attr='width', ctx=Load()) 3
|
||
|
Attribute(value=Name(id='rect', ctx=Load()), attr='height', ctx=Load()) 5
|
||
|
Name(id='rect', ctx=Load()) <__main__.Rectangle object at 0x105568d30>
|
||
|
Name(id='rect', ctx=Load()) <__main__.Rectangle object at 0x105568d30>
|
||
|
Name(id='rect', ctx=Load()) <__main__.Rectangle object at 0x105568d30>
|
||
|
```
|
||
|
|
||
|
Note that this includes `rect` three times, once for each appearance in the source code. Since all these nodes are equivalent, we can group them together:
|
||
|
|
||
|
```python
|
||
|
from pure_eval import group_expressions
|
||
|
|
||
|
for nodes, values in group_expressions(evaluator.find_expressions(tree)):
|
||
|
print(len(nodes), "nodes with value:", values)
|
||
|
```
|
||
|
|
||
|
Output:
|
||
|
|
||
|
```
|
||
|
1 nodes with value: 3
|
||
|
1 nodes with value: 5
|
||
|
3 nodes with value: <__main__.Rectangle object at 0x10d374d30>
|
||
|
```
|
||
|
|
||
|
If we want to list all the expressions in a tree, we may want to filter out certain expressions whose values are obvious. For example, suppose we have a function `foo`:
|
||
|
|
||
|
```python
|
||
|
def foo():
|
||
|
pass
|
||
|
```
|
||
|
|
||
|
If we refer to `foo` by its name as usual, then that's not interesting:
|
||
|
|
||
|
```python
|
||
|
from pure_eval import is_expression_interesting
|
||
|
|
||
|
node = ast.parse('foo').body[0].value
|
||
|
print(ast.dump(node))
|
||
|
print(is_expression_interesting(node, foo))
|
||
|
```
|
||
|
|
||
|
Output:
|
||
|
|
||
|
```python
|
||
|
Name(id='foo', ctx=Load())
|
||
|
False
|
||
|
```
|
||
|
|
||
|
But if we refer to it by a different name, then it's interesting:
|
||
|
|
||
|
```python
|
||
|
node = ast.parse('bar').body[0].value
|
||
|
print(ast.dump(node))
|
||
|
print(is_expression_interesting(node, foo))
|
||
|
```
|
||
|
|
||
|
Output:
|
||
|
|
||
|
```python
|
||
|
Name(id='bar', ctx=Load())
|
||
|
True
|
||
|
```
|
||
|
|
||
|
In general `is_expression_interesting` returns False for the following values:
|
||
|
- Literals (e.g. `123`, `'abc'`, `[1, 2, 3]`, `{'a': (), 'b': ([1, 2], [3])}`)
|
||
|
- Variables or attributes whose name is equal to the value's `__name__`, such as `foo` above or `self.foo` if it was a method.
|
||
|
- Builtins (e.g. `len`) referred to by their usual name.
|
||
|
|
||
|
To make things easier, you can combine finding expressions, grouping them, and filtering out the obvious ones with:
|
||
|
|
||
|
```python
|
||
|
evaluator.interesting_expressions_grouped(root)
|
||
|
```
|
||
|
|
||
|
To get the source code of an AST node, I recommend [asttokens](https://github.com/gristlabs/asttokens).
|
||
|
|
||
|
Here's a complete example that brings it all together:
|
||
|
|
||
|
```python
|
||
|
from asttokens import ASTTokens
|
||
|
from pure_eval import Evaluator
|
||
|
|
||
|
source = """
|
||
|
x = 1
|
||
|
d = {x: 2}
|
||
|
y = d[x]
|
||
|
"""
|
||
|
|
||
|
names = {}
|
||
|
exec(source, names)
|
||
|
atok = ASTTokens(source, parse=True)
|
||
|
for nodes, value in Evaluator(names).interesting_expressions_grouped(atok.tree):
|
||
|
print(atok.get_text(nodes[0]), "=", value)
|
||
|
```
|
||
|
|
||
|
Output:
|
||
|
|
||
|
```python
|
||
|
x = 1
|
||
|
d = {1: 2}
|
||
|
y = 2
|
||
|
d[x] = 2
|
||
|
```
|