651 lines
15 KiB
Python
651 lines
15 KiB
Python
|
"""
|
||
|
Wrapper functions to more user-friendly calling of certain math functions
|
||
|
whose output data-type is different than the input data-type in certain
|
||
|
domains of the input.
|
||
|
|
||
|
For example, for functions like `log` with branch cuts, the versions in this
|
||
|
module provide the mathematically valid answers in the complex plane::
|
||
|
|
||
|
>>> import math
|
||
|
>>> np.emath.log(-math.exp(1)) == (1+1j*math.pi)
|
||
|
True
|
||
|
|
||
|
Similarly, `sqrt`, other base logarithms, `power` and trig functions are
|
||
|
correctly handled. See their respective docstrings for specific examples.
|
||
|
|
||
|
Functions
|
||
|
---------
|
||
|
|
||
|
.. autosummary::
|
||
|
:toctree: generated/
|
||
|
|
||
|
sqrt
|
||
|
log
|
||
|
log2
|
||
|
logn
|
||
|
log10
|
||
|
power
|
||
|
arccos
|
||
|
arcsin
|
||
|
arctanh
|
||
|
|
||
|
"""
|
||
|
import numpy._core.numeric as nx
|
||
|
import numpy._core.numerictypes as nt
|
||
|
from numpy._core.numeric import asarray, any
|
||
|
from numpy._core.overrides import array_function_dispatch
|
||
|
from numpy.lib._type_check_impl import isreal
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
'sqrt', 'log', 'log2', 'logn', 'log10', 'power', 'arccos', 'arcsin',
|
||
|
'arctanh'
|
||
|
]
|
||
|
|
||
|
|
||
|
_ln2 = nx.log(2.0)
|
||
|
|
||
|
|
||
|
def _tocomplex(arr):
|
||
|
"""Convert its input `arr` to a complex array.
|
||
|
|
||
|
The input is returned as a complex array of the smallest type that will fit
|
||
|
the original data: types like single, byte, short, etc. become csingle,
|
||
|
while others become cdouble.
|
||
|
|
||
|
A copy of the input is always made.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arr : array
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
array
|
||
|
An array with the same input data as the input but in complex form.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
|
||
|
First, consider an input of type short:
|
||
|
|
||
|
>>> a = np.array([1,2,3],np.short)
|
||
|
|
||
|
>>> ac = np.lib.scimath._tocomplex(a); ac
|
||
|
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
|
||
|
|
||
|
>>> ac.dtype
|
||
|
dtype('complex64')
|
||
|
|
||
|
If the input is of type double, the output is correspondingly of the
|
||
|
complex double type as well:
|
||
|
|
||
|
>>> b = np.array([1,2,3],np.double)
|
||
|
|
||
|
>>> bc = np.lib.scimath._tocomplex(b); bc
|
||
|
array([1.+0.j, 2.+0.j, 3.+0.j])
|
||
|
|
||
|
>>> bc.dtype
|
||
|
dtype('complex128')
|
||
|
|
||
|
Note that even if the input was complex to begin with, a copy is still
|
||
|
made, since the astype() method always copies:
|
||
|
|
||
|
>>> c = np.array([1,2,3],np.csingle)
|
||
|
|
||
|
>>> cc = np.lib.scimath._tocomplex(c); cc
|
||
|
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
|
||
|
|
||
|
>>> c *= 2; c
|
||
|
array([2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64)
|
||
|
|
||
|
>>> cc
|
||
|
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
|
||
|
"""
|
||
|
if issubclass(arr.dtype.type, (nt.single, nt.byte, nt.short, nt.ubyte,
|
||
|
nt.ushort, nt.csingle)):
|
||
|
return arr.astype(nt.csingle)
|
||
|
else:
|
||
|
return arr.astype(nt.cdouble)
|
||
|
|
||
|
|
||
|
def _fix_real_lt_zero(x):
|
||
|
"""Convert `x` to complex if it has real, negative components.
|
||
|
|
||
|
Otherwise, output is just the array version of the input (via asarray).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
array
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> np.lib.scimath._fix_real_lt_zero([1,2])
|
||
|
array([1, 2])
|
||
|
|
||
|
>>> np.lib.scimath._fix_real_lt_zero([-1,2])
|
||
|
array([-1.+0.j, 2.+0.j])
|
||
|
|
||
|
"""
|
||
|
x = asarray(x)
|
||
|
if any(isreal(x) & (x < 0)):
|
||
|
x = _tocomplex(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def _fix_int_lt_zero(x):
|
||
|
"""Convert `x` to double if it has real, negative components.
|
||
|
|
||
|
Otherwise, output is just the array version of the input (via asarray).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
array
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> np.lib.scimath._fix_int_lt_zero([1,2])
|
||
|
array([1, 2])
|
||
|
|
||
|
>>> np.lib.scimath._fix_int_lt_zero([-1,2])
|
||
|
array([-1., 2.])
|
||
|
"""
|
||
|
x = asarray(x)
|
||
|
if any(isreal(x) & (x < 0)):
|
||
|
x = x * 1.0
|
||
|
return x
|
||
|
|
||
|
|
||
|
def _fix_real_abs_gt_1(x):
|
||
|
"""Convert `x` to complex if it has real components x_i with abs(x_i)>1.
|
||
|
|
||
|
Otherwise, output is just the array version of the input (via asarray).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
array
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> np.lib.scimath._fix_real_abs_gt_1([0,1])
|
||
|
array([0, 1])
|
||
|
|
||
|
>>> np.lib.scimath._fix_real_abs_gt_1([0,2])
|
||
|
array([0.+0.j, 2.+0.j])
|
||
|
"""
|
||
|
x = asarray(x)
|
||
|
if any(isreal(x) & (abs(x) > 1)):
|
||
|
x = _tocomplex(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def _unary_dispatcher(x):
|
||
|
return (x,)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_unary_dispatcher)
|
||
|
def sqrt(x):
|
||
|
"""
|
||
|
Compute the square root of x.
|
||
|
|
||
|
For negative input elements, a complex value is returned
|
||
|
(unlike `numpy.sqrt` which returns NaN).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
The input value(s).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray or scalar
|
||
|
The square root of `x`. If `x` was a scalar, so is `out`,
|
||
|
otherwise an array is returned.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.sqrt
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
For real, non-negative inputs this works just like `numpy.sqrt`:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
|
||
|
>>> np.emath.sqrt(1)
|
||
|
1.0
|
||
|
>>> np.emath.sqrt([1, 4])
|
||
|
array([1., 2.])
|
||
|
|
||
|
But it automatically handles negative inputs:
|
||
|
|
||
|
>>> np.emath.sqrt(-1)
|
||
|
1j
|
||
|
>>> np.emath.sqrt([-1,4])
|
||
|
array([0.+1.j, 2.+0.j])
|
||
|
|
||
|
Different results are expected because:
|
||
|
floating point 0.0 and -0.0 are distinct.
|
||
|
|
||
|
For more control, explicitly use complex() as follows:
|
||
|
|
||
|
>>> np.emath.sqrt(complex(-4.0, 0.0))
|
||
|
2j
|
||
|
>>> np.emath.sqrt(complex(-4.0, -0.0))
|
||
|
-2j
|
||
|
"""
|
||
|
x = _fix_real_lt_zero(x)
|
||
|
return nx.sqrt(x)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_unary_dispatcher)
|
||
|
def log(x):
|
||
|
"""
|
||
|
Compute the natural logarithm of `x`.
|
||
|
|
||
|
Return the "principal value" (for a description of this, see `numpy.log`)
|
||
|
of :math:`log_e(x)`. For real `x > 0`, this is a real number (``log(0)``
|
||
|
returns ``-inf`` and ``log(np.inf)`` returns ``inf``). Otherwise, the
|
||
|
complex principle value is returned.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
The value(s) whose log is (are) required.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray or scalar
|
||
|
The log of the `x` value(s). If `x` was a scalar, so is `out`,
|
||
|
otherwise an array is returned.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.log
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For a log() that returns ``NAN`` when real `x < 0`, use `numpy.log`
|
||
|
(note, however, that otherwise `numpy.log` and this `log` are identical,
|
||
|
i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, and,
|
||
|
notably, the complex principle value if ``x.imag != 0``).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> np.emath.log(np.exp(1))
|
||
|
1.0
|
||
|
|
||
|
Negative arguments are handled "correctly" (recall that
|
||
|
``exp(log(x)) == x`` does *not* hold for real ``x < 0``):
|
||
|
|
||
|
>>> np.emath.log(-np.exp(1)) == (1 + np.pi * 1j)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
x = _fix_real_lt_zero(x)
|
||
|
return nx.log(x)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_unary_dispatcher)
|
||
|
def log10(x):
|
||
|
"""
|
||
|
Compute the logarithm base 10 of `x`.
|
||
|
|
||
|
Return the "principal value" (for a description of this, see
|
||
|
`numpy.log10`) of :math:`log_{10}(x)`. For real `x > 0`, this
|
||
|
is a real number (``log10(0)`` returns ``-inf`` and ``log10(np.inf)``
|
||
|
returns ``inf``). Otherwise, the complex principle value is returned.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like or scalar
|
||
|
The value(s) whose log base 10 is (are) required.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray or scalar
|
||
|
The log base 10 of the `x` value(s). If `x` was a scalar, so is `out`,
|
||
|
otherwise an array object is returned.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.log10
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For a log10() that returns ``NAN`` when real `x < 0`, use `numpy.log10`
|
||
|
(note, however, that otherwise `numpy.log10` and this `log10` are
|
||
|
identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`,
|
||
|
and, notably, the complex principle value if ``x.imag != 0``).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
|
||
|
(We set the printing precision so the example can be auto-tested)
|
||
|
|
||
|
>>> np.set_printoptions(precision=4)
|
||
|
|
||
|
>>> np.emath.log10(10**1)
|
||
|
1.0
|
||
|
|
||
|
>>> np.emath.log10([-10**1, -10**2, 10**2])
|
||
|
array([1.+1.3644j, 2.+1.3644j, 2.+0.j ])
|
||
|
|
||
|
"""
|
||
|
x = _fix_real_lt_zero(x)
|
||
|
return nx.log10(x)
|
||
|
|
||
|
|
||
|
def _logn_dispatcher(n, x):
|
||
|
return (n, x,)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_logn_dispatcher)
|
||
|
def logn(n, x):
|
||
|
"""
|
||
|
Take log base n of x.
|
||
|
|
||
|
If `x` contains negative inputs, the answer is computed and returned in the
|
||
|
complex domain.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : array_like
|
||
|
The integer base(s) in which the log is taken.
|
||
|
x : array_like
|
||
|
The value(s) whose log base `n` is (are) required.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray or scalar
|
||
|
The log base `n` of the `x` value(s). If `x` was a scalar, so is
|
||
|
`out`, otherwise an array is returned.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> np.set_printoptions(precision=4)
|
||
|
|
||
|
>>> np.emath.logn(2, [4, 8])
|
||
|
array([2., 3.])
|
||
|
>>> np.emath.logn(2, [-4, -8, 8])
|
||
|
array([2.+4.5324j, 3.+4.5324j, 3.+0.j ])
|
||
|
|
||
|
"""
|
||
|
x = _fix_real_lt_zero(x)
|
||
|
n = _fix_real_lt_zero(n)
|
||
|
return nx.log(x)/nx.log(n)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_unary_dispatcher)
|
||
|
def log2(x):
|
||
|
"""
|
||
|
Compute the logarithm base 2 of `x`.
|
||
|
|
||
|
Return the "principal value" (for a description of this, see
|
||
|
`numpy.log2`) of :math:`log_2(x)`. For real `x > 0`, this is
|
||
|
a real number (``log2(0)`` returns ``-inf`` and ``log2(np.inf)`` returns
|
||
|
``inf``). Otherwise, the complex principle value is returned.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
The value(s) whose log base 2 is (are) required.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray or scalar
|
||
|
The log base 2 of the `x` value(s). If `x` was a scalar, so is `out`,
|
||
|
otherwise an array is returned.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.log2
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For a log2() that returns ``NAN`` when real `x < 0`, use `numpy.log2`
|
||
|
(note, however, that otherwise `numpy.log2` and this `log2` are
|
||
|
identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`,
|
||
|
and, notably, the complex principle value if ``x.imag != 0``).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
We set the printing precision so the example can be auto-tested:
|
||
|
|
||
|
>>> np.set_printoptions(precision=4)
|
||
|
|
||
|
>>> np.emath.log2(8)
|
||
|
3.0
|
||
|
>>> np.emath.log2([-4, -8, 8])
|
||
|
array([2.+4.5324j, 3.+4.5324j, 3.+0.j ])
|
||
|
|
||
|
"""
|
||
|
x = _fix_real_lt_zero(x)
|
||
|
return nx.log2(x)
|
||
|
|
||
|
|
||
|
def _power_dispatcher(x, p):
|
||
|
return (x, p)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_power_dispatcher)
|
||
|
def power(x, p):
|
||
|
"""
|
||
|
Return x to the power p, (x**p).
|
||
|
|
||
|
If `x` contains negative values, the output is converted to the
|
||
|
complex domain.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
The input value(s).
|
||
|
p : array_like of ints
|
||
|
The power(s) to which `x` is raised. If `x` contains multiple values,
|
||
|
`p` has to either be a scalar, or contain the same number of values
|
||
|
as `x`. In the latter case, the result is
|
||
|
``x[0]**p[0], x[1]**p[1], ...``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray or scalar
|
||
|
The result of ``x**p``. If `x` and `p` are scalars, so is `out`,
|
||
|
otherwise an array is returned.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.power
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> np.set_printoptions(precision=4)
|
||
|
|
||
|
>>> np.emath.power(2, 2)
|
||
|
4
|
||
|
|
||
|
>>> np.emath.power([2, 4], 2)
|
||
|
array([ 4, 16])
|
||
|
|
||
|
>>> np.emath.power([2, 4], -2)
|
||
|
array([0.25 , 0.0625])
|
||
|
|
||
|
>>> np.emath.power([-2, 4], 2)
|
||
|
array([ 4.-0.j, 16.+0.j])
|
||
|
|
||
|
>>> np.emath.power([2, 4], [2, 4])
|
||
|
array([ 4, 256])
|
||
|
|
||
|
"""
|
||
|
x = _fix_real_lt_zero(x)
|
||
|
p = _fix_int_lt_zero(p)
|
||
|
return nx.power(x, p)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_unary_dispatcher)
|
||
|
def arccos(x):
|
||
|
"""
|
||
|
Compute the inverse cosine of x.
|
||
|
|
||
|
Return the "principal value" (for a description of this, see
|
||
|
`numpy.arccos`) of the inverse cosine of `x`. For real `x` such that
|
||
|
`abs(x) <= 1`, this is a real number in the closed interval
|
||
|
:math:`[0, \\pi]`. Otherwise, the complex principle value is returned.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like or scalar
|
||
|
The value(s) whose arccos is (are) required.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray or scalar
|
||
|
The inverse cosine(s) of the `x` value(s). If `x` was a scalar, so
|
||
|
is `out`, otherwise an array object is returned.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.arccos
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For an arccos() that returns ``NAN`` when real `x` is not in the
|
||
|
interval ``[-1,1]``, use `numpy.arccos`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> np.set_printoptions(precision=4)
|
||
|
|
||
|
>>> np.emath.arccos(1) # a scalar is returned
|
||
|
0.0
|
||
|
|
||
|
>>> np.emath.arccos([1,2])
|
||
|
array([0.-0.j , 0.-1.317j])
|
||
|
|
||
|
"""
|
||
|
x = _fix_real_abs_gt_1(x)
|
||
|
return nx.arccos(x)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_unary_dispatcher)
|
||
|
def arcsin(x):
|
||
|
"""
|
||
|
Compute the inverse sine of x.
|
||
|
|
||
|
Return the "principal value" (for a description of this, see
|
||
|
`numpy.arcsin`) of the inverse sine of `x`. For real `x` such that
|
||
|
`abs(x) <= 1`, this is a real number in the closed interval
|
||
|
:math:`[-\\pi/2, \\pi/2]`. Otherwise, the complex principle value is
|
||
|
returned.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like or scalar
|
||
|
The value(s) whose arcsin is (are) required.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray or scalar
|
||
|
The inverse sine(s) of the `x` value(s). If `x` was a scalar, so
|
||
|
is `out`, otherwise an array object is returned.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.arcsin
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For an arcsin() that returns ``NAN`` when real `x` is not in the
|
||
|
interval ``[-1,1]``, use `numpy.arcsin`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> np.set_printoptions(precision=4)
|
||
|
|
||
|
>>> np.emath.arcsin(0)
|
||
|
0.0
|
||
|
|
||
|
>>> np.emath.arcsin([0,1])
|
||
|
array([0. , 1.5708])
|
||
|
|
||
|
"""
|
||
|
x = _fix_real_abs_gt_1(x)
|
||
|
return nx.arcsin(x)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_unary_dispatcher)
|
||
|
def arctanh(x):
|
||
|
"""
|
||
|
Compute the inverse hyperbolic tangent of `x`.
|
||
|
|
||
|
Return the "principal value" (for a description of this, see
|
||
|
`numpy.arctanh`) of ``arctanh(x)``. For real `x` such that
|
||
|
``abs(x) < 1``, this is a real number. If `abs(x) > 1`, or if `x` is
|
||
|
complex, the result is complex. Finally, `x = 1` returns``inf`` and
|
||
|
``x=-1`` returns ``-inf``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
The value(s) whose arctanh is (are) required.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray or scalar
|
||
|
The inverse hyperbolic tangent(s) of the `x` value(s). If `x` was
|
||
|
a scalar so is `out`, otherwise an array is returned.
|
||
|
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.arctanh
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For an arctanh() that returns ``NAN`` when real `x` is not in the
|
||
|
interval ``(-1,1)``, use `numpy.arctanh` (this latter, however, does
|
||
|
return +/-inf for ``x = +/-1``).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> np.set_printoptions(precision=4)
|
||
|
|
||
|
>>> np.emath.arctanh(0.5)
|
||
|
0.5493061443340549
|
||
|
|
||
|
>>> from numpy.testing import suppress_warnings
|
||
|
>>> with suppress_warnings() as sup:
|
||
|
... sup.filter(RuntimeWarning)
|
||
|
... np.emath.arctanh(np.eye(2))
|
||
|
array([[inf, 0.],
|
||
|
[ 0., inf]])
|
||
|
>>> np.emath.arctanh([1j])
|
||
|
array([0.+0.7854j])
|
||
|
|
||
|
"""
|
||
|
x = _fix_real_abs_gt_1(x)
|
||
|
return nx.arctanh(x)
|