114 lines
4.0 KiB
Python
114 lines
4.0 KiB
Python
|
from fontTools.varLib.models import VariationModel, normalizeValue, piecewiseLinearMap
|
||
|
|
||
|
|
||
|
def Location(loc):
|
||
|
return tuple(sorted(loc.items()))
|
||
|
|
||
|
|
||
|
class VariableScalar:
|
||
|
"""A scalar with different values at different points in the designspace."""
|
||
|
|
||
|
def __init__(self, location_value={}):
|
||
|
self.values = {}
|
||
|
self.axes = {}
|
||
|
for location, value in location_value.items():
|
||
|
self.add_value(location, value)
|
||
|
|
||
|
def __repr__(self):
|
||
|
items = []
|
||
|
for location, value in self.values.items():
|
||
|
loc = ",".join(["%s=%i" % (ax, loc) for ax, loc in location])
|
||
|
items.append("%s:%i" % (loc, value))
|
||
|
return "(" + (" ".join(items)) + ")"
|
||
|
|
||
|
@property
|
||
|
def does_vary(self):
|
||
|
values = list(self.values.values())
|
||
|
return any(v != values[0] for v in values[1:])
|
||
|
|
||
|
@property
|
||
|
def axes_dict(self):
|
||
|
if not self.axes:
|
||
|
raise ValueError(
|
||
|
".axes must be defined on variable scalar before interpolating"
|
||
|
)
|
||
|
return {ax.axisTag: ax for ax in self.axes}
|
||
|
|
||
|
def _normalized_location(self, location):
|
||
|
location = self.fix_location(location)
|
||
|
normalized_location = {}
|
||
|
for axtag in location.keys():
|
||
|
if axtag not in self.axes_dict:
|
||
|
raise ValueError("Unknown axis %s in %s" % (axtag, location))
|
||
|
axis = self.axes_dict[axtag]
|
||
|
normalized_location[axtag] = normalizeValue(
|
||
|
location[axtag], (axis.minValue, axis.defaultValue, axis.maxValue)
|
||
|
)
|
||
|
|
||
|
return Location(normalized_location)
|
||
|
|
||
|
def fix_location(self, location):
|
||
|
location = dict(location)
|
||
|
for tag, axis in self.axes_dict.items():
|
||
|
if tag not in location:
|
||
|
location[tag] = axis.defaultValue
|
||
|
return location
|
||
|
|
||
|
def add_value(self, location, value):
|
||
|
if self.axes:
|
||
|
location = self.fix_location(location)
|
||
|
|
||
|
self.values[Location(location)] = value
|
||
|
|
||
|
def fix_all_locations(self):
|
||
|
self.values = {
|
||
|
Location(self.fix_location(l)): v for l, v in self.values.items()
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def default(self):
|
||
|
self.fix_all_locations()
|
||
|
key = Location({ax.axisTag: ax.defaultValue for ax in self.axes})
|
||
|
if key not in self.values:
|
||
|
raise ValueError("Default value could not be found")
|
||
|
# I *guess* we could interpolate one, but I don't know how.
|
||
|
return self.values[key]
|
||
|
|
||
|
def value_at_location(self, location, model_cache=None, avar=None):
|
||
|
loc = Location(location)
|
||
|
if loc in self.values.keys():
|
||
|
return self.values[loc]
|
||
|
values = list(self.values.values())
|
||
|
loc = dict(self._normalized_location(loc))
|
||
|
return self.model(model_cache, avar).interpolateFromMasters(loc, values)
|
||
|
|
||
|
def model(self, model_cache=None, avar=None):
|
||
|
if model_cache is not None:
|
||
|
key = tuple(self.values.keys())
|
||
|
if key in model_cache:
|
||
|
return model_cache[key]
|
||
|
locations = [dict(self._normalized_location(k)) for k in self.values.keys()]
|
||
|
if avar is not None:
|
||
|
mapping = avar.segments
|
||
|
locations = [
|
||
|
{
|
||
|
k: piecewiseLinearMap(v, mapping[k]) if k in mapping else v
|
||
|
for k, v in location.items()
|
||
|
}
|
||
|
for location in locations
|
||
|
]
|
||
|
m = VariationModel(locations)
|
||
|
if model_cache is not None:
|
||
|
model_cache[key] = m
|
||
|
return m
|
||
|
|
||
|
def get_deltas_and_supports(self, model_cache=None, avar=None):
|
||
|
values = list(self.values.values())
|
||
|
return self.model(model_cache, avar).getDeltasAndSupports(values)
|
||
|
|
||
|
def add_to_variation_store(self, store_builder, model_cache=None, avar=None):
|
||
|
deltas, supports = self.get_deltas_and_supports(model_cache, avar)
|
||
|
store_builder.setSupports(supports)
|
||
|
index = store_builder.storeDeltas(deltas)
|
||
|
return int(self.default), index
|