1590 lines
70 KiB
Python
1590 lines
70 KiB
Python
|
"""
|
||
|
News for state space models
|
||
|
|
||
|
Author: Chad Fulton
|
||
|
License: BSD-3
|
||
|
"""
|
||
|
from statsmodels.compat.pandas import FUTURE_STACK
|
||
|
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
|
||
|
from statsmodels.iolib.summary import Summary
|
||
|
from statsmodels.iolib.table import SimpleTable
|
||
|
from statsmodels.iolib.tableformatting import fmt_params
|
||
|
|
||
|
|
||
|
class NewsResults:
|
||
|
"""
|
||
|
Impacts of data revisions and news on estimates of variables of interest
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
news_results : SimpleNamespace instance
|
||
|
Results from `KalmanSmoother.news`.
|
||
|
model : MLEResults
|
||
|
The results object associated with the model from which the NewsResults
|
||
|
was generated.
|
||
|
updated : MLEResults
|
||
|
The results object associated with the model containing the updated
|
||
|
dataset.
|
||
|
previous : MLEResults
|
||
|
The results object associated with the model containing the previous
|
||
|
dataset.
|
||
|
impacted_variable : str, list, array, or slice, optional
|
||
|
Observation variable label or slice of labels specifying particular
|
||
|
impacted variables to display in output. The impacted variable(s)
|
||
|
describe the variables that were *affected* by the news. If you do not
|
||
|
know the labels for the variables, check the `endog_names` attribute of
|
||
|
the model instance.
|
||
|
tolerance : float, optional
|
||
|
The numerical threshold for determining zero impact. Default is that
|
||
|
any impact less than 1e-10 is assumed to be zero.
|
||
|
row_labels : iterable
|
||
|
Row labels (often dates) for the impacts of the revisions and news.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
total_impacts : pd.DataFrame
|
||
|
Updates to forecasts of impacted variables from both news and data
|
||
|
revisions, E[y^i | post] - E[y^i | previous].
|
||
|
update_impacts : pd.DataFrame
|
||
|
Updates to forecasts of impacted variables from the news,
|
||
|
E[y^i | post] - E[y^i | revisions] where y^i are the impacted variables
|
||
|
of interest.
|
||
|
revision_impacts : pd.DataFrame
|
||
|
Updates to forecasts of impacted variables from all data revisions,
|
||
|
E[y^i | revisions] - E[y^i | previous].
|
||
|
news : pd.DataFrame
|
||
|
The unexpected component of the updated data,
|
||
|
E[y^u | post] - E[y^u | revisions] where y^u are the updated variables.
|
||
|
weights : pd.DataFrame
|
||
|
Weights describing the effect of news on variables of interest.
|
||
|
revisions : pd.DataFrame
|
||
|
The revisions between the current and previously observed data, for
|
||
|
revisions for which detailed impacts were computed.
|
||
|
revisions_all : pd.DataFrame
|
||
|
The revisions between the current and previously observed data,
|
||
|
y^r_{revised} - y^r_{previous} where y^r are the revised variables.
|
||
|
revision_weights : pd.DataFrame
|
||
|
Weights describing the effect of revisions on variables of interest,
|
||
|
for revisions for which detailed impacts were computed.
|
||
|
revision_weights_all : pd.DataFrame
|
||
|
Weights describing the effect of revisions on variables of interest,
|
||
|
with a new entry that includes NaNs for the revisions for which
|
||
|
detailed impacts were not computed.
|
||
|
update_forecasts : pd.DataFrame
|
||
|
Forecasts based on the previous dataset of the variables that were
|
||
|
updated, E[y^u | previous].
|
||
|
update_realized : pd.DataFrame
|
||
|
Actual observed data associated with the variables that were
|
||
|
updated, y^u
|
||
|
revisions_details_start : int
|
||
|
Integer index of first period in which detailed revision impacts were
|
||
|
computed.
|
||
|
revision_detailed_impacts : pd.DataFrame
|
||
|
Updates to forecasts of impacted variables from data revisions with
|
||
|
detailed impacts, E[y^i | revisions] - E[y^i | grouped revisions].
|
||
|
revision_grouped_impacts : pd.DataFrame
|
||
|
Updates to forecasts of impacted variables from data revisions that
|
||
|
were grouped together, E[y^i | grouped revisions] - E[y^i | previous].
|
||
|
revised_prev : pd.DataFrame
|
||
|
Previously observed data associated with the variables that were
|
||
|
revised, for revisions for which detailed impacts were computed.
|
||
|
revised_prev_all : pd.DataFrame
|
||
|
Previously observed data associated with the variables that were
|
||
|
revised, y^r_{previous}
|
||
|
revised : pd.DataFrame
|
||
|
Currently observed data associated with the variables that were
|
||
|
revised, for revisions for which detailed impacts were computed.
|
||
|
revised_all : pd.DataFrame
|
||
|
Currently observed data associated with the variables that were
|
||
|
revised, y^r_{revised}
|
||
|
prev_impacted_forecasts : pd.DataFrame
|
||
|
Previous forecast of the variables of interest, E[y^i | previous].
|
||
|
post_impacted_forecasts : pd.DataFrame
|
||
|
Forecast of the variables of interest after taking into account both
|
||
|
revisions and updates, E[y^i | post].
|
||
|
revisions_iloc : pd.DataFrame
|
||
|
The integer locations of the data revisions in the dataset.
|
||
|
revisions_ix : pd.DataFrame
|
||
|
The label-based locations of the data revisions in the dataset.
|
||
|
revisions_iloc_detailed : pd.DataFrame
|
||
|
The integer locations of the data revisions in the dataset for which
|
||
|
detailed impacts were computed.
|
||
|
revisions_ix_detailed : pd.DataFrame
|
||
|
The label-based locations of the data revisions in the dataset for
|
||
|
which detailed impacts were computed.
|
||
|
updates_iloc : pd.DataFrame
|
||
|
The integer locations of the updated data points.
|
||
|
updates_ix : pd.DataFrame
|
||
|
The label-based locations of updated data points.
|
||
|
state_index : array_like
|
||
|
Index of state variables used to compute impacts.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Bańbura, Marta, and Michele Modugno.
|
||
|
"Maximum likelihood estimation of factor models on datasets with
|
||
|
arbitrary pattern of missing data."
|
||
|
Journal of Applied Econometrics 29, no. 1 (2014): 133-160.
|
||
|
.. [2] Bańbura, Marta, Domenico Giannone, and Lucrezia Reichlin.
|
||
|
"Nowcasting."
|
||
|
The Oxford Handbook of Economic Forecasting. July 8, 2011.
|
||
|
.. [3] Bańbura, Marta, Domenico Giannone, Michele Modugno, and Lucrezia
|
||
|
Reichlin.
|
||
|
"Now-casting and the real-time data flow."
|
||
|
In Handbook of economic forecasting, vol. 2, pp. 195-237.
|
||
|
Elsevier, 2013.
|
||
|
"""
|
||
|
def __init__(self, news_results, model, updated, previous,
|
||
|
impacted_variable=None, tolerance=1e-10, row_labels=None):
|
||
|
# Note: `model` will be the same as one of `revised` or `previous`, but
|
||
|
# we need to save it as self.model so that the `predict_dates`, which
|
||
|
# were generated by the `_get_prediction_index` call, will be available
|
||
|
# for use by the base wrapping code.
|
||
|
self.model = model
|
||
|
self.updated = updated
|
||
|
self.previous = previous
|
||
|
self.news_results = news_results
|
||
|
self._impacted_variable = impacted_variable
|
||
|
self._tolerance = tolerance
|
||
|
self.row_labels = row_labels
|
||
|
self.params = [] # required for `summary` to work
|
||
|
|
||
|
self.endog_names = self.updated.model.endog_names
|
||
|
self.k_endog = len(self.endog_names)
|
||
|
|
||
|
self.n_revisions = len(self.news_results.revisions_ix)
|
||
|
self.n_revisions_detailed = len(self.news_results.revisions_details)
|
||
|
self.n_revisions_grouped = len(self.news_results.revisions_grouped)
|
||
|
|
||
|
index = self.updated.model._index
|
||
|
columns = np.atleast_1d(self.endog_names)
|
||
|
|
||
|
# E[y^i | post]
|
||
|
self.post_impacted_forecasts = pd.DataFrame(
|
||
|
news_results.post_impacted_forecasts.T,
|
||
|
index=self.row_labels, columns=columns).rename_axis(
|
||
|
index='impact date', columns='impacted variable')
|
||
|
# E[y^i | previous]
|
||
|
self.prev_impacted_forecasts = pd.DataFrame(
|
||
|
news_results.prev_impacted_forecasts.T,
|
||
|
index=self.row_labels, columns=columns).rename_axis(
|
||
|
index='impact date', columns='impacted variable')
|
||
|
# E[y^i | post] - E[y^i | revisions]
|
||
|
self.update_impacts = pd.DataFrame(
|
||
|
news_results.update_impacts,
|
||
|
index=self.row_labels, columns=columns).rename_axis(
|
||
|
index='impact date', columns='impacted variable')
|
||
|
# E[y^i | revisions] - E[y^i | grouped revisions]
|
||
|
self.revision_detailed_impacts = pd.DataFrame(
|
||
|
news_results.revision_detailed_impacts,
|
||
|
index=self.row_labels,
|
||
|
columns=columns,
|
||
|
dtype=float,
|
||
|
).rename_axis(index="impact date", columns="impacted variable")
|
||
|
# E[y^i | revisions] - E[y^i | previous]
|
||
|
self.revision_impacts = pd.DataFrame(
|
||
|
news_results.revision_impacts,
|
||
|
index=self.row_labels,
|
||
|
columns=columns,
|
||
|
dtype=float,
|
||
|
).rename_axis(index="impact date", columns="impacted variable")
|
||
|
# E[y^i | grouped revisions] - E[y^i | previous]
|
||
|
self.revision_grouped_impacts = (
|
||
|
self.revision_impacts
|
||
|
- self.revision_detailed_impacts.fillna(0))
|
||
|
if self.n_revisions_grouped == 0:
|
||
|
self.revision_grouped_impacts.loc[:] = 0
|
||
|
|
||
|
# E[y^i | post] - E[y^i | previous]
|
||
|
self.total_impacts = (self.post_impacted_forecasts -
|
||
|
self.prev_impacted_forecasts)
|
||
|
|
||
|
# Indices of revisions and updates
|
||
|
self.revisions_details_start = news_results.revisions_details_start
|
||
|
|
||
|
self.revisions_iloc = pd.DataFrame(
|
||
|
list(zip(*news_results.revisions_ix)),
|
||
|
index=['revision date', 'revised variable']).T
|
||
|
iloc = self.revisions_iloc
|
||
|
if len(iloc) > 0:
|
||
|
self.revisions_ix = pd.DataFrame({
|
||
|
'revision date': index[iloc['revision date']],
|
||
|
'revised variable': columns[iloc['revised variable']]})
|
||
|
else:
|
||
|
self.revisions_ix = iloc.copy()
|
||
|
|
||
|
mask = iloc['revision date'] >= self.revisions_details_start
|
||
|
self.revisions_iloc_detailed = self.revisions_iloc[mask]
|
||
|
self.revisions_ix_detailed = self.revisions_ix[mask]
|
||
|
|
||
|
self.updates_iloc = pd.DataFrame(
|
||
|
list(zip(*news_results.updates_ix)),
|
||
|
index=['update date', 'updated variable']).T
|
||
|
iloc = self.updates_iloc
|
||
|
if len(iloc) > 0:
|
||
|
self.updates_ix = pd.DataFrame({
|
||
|
'update date': index[iloc['update date']],
|
||
|
'updated variable': columns[iloc['updated variable']]})
|
||
|
else:
|
||
|
self.updates_ix = iloc.copy()
|
||
|
|
||
|
# Index of the state variables used
|
||
|
self.state_index = news_results.state_index
|
||
|
|
||
|
# Wrap forecasts and forecasts errors
|
||
|
r_ix_all = pd.MultiIndex.from_arrays([
|
||
|
self.revisions_ix['revision date'],
|
||
|
self.revisions_ix['revised variable']])
|
||
|
r_ix = pd.MultiIndex.from_arrays([
|
||
|
self.revisions_ix_detailed['revision date'],
|
||
|
self.revisions_ix_detailed['revised variable']])
|
||
|
u_ix = pd.MultiIndex.from_arrays([
|
||
|
self.updates_ix['update date'],
|
||
|
self.updates_ix['updated variable']])
|
||
|
|
||
|
# E[y^u | post] - E[y^u | revisions]
|
||
|
if news_results.news is None:
|
||
|
self.news = pd.Series([], index=u_ix, name='news',
|
||
|
dtype=model.params.dtype)
|
||
|
else:
|
||
|
self.news = pd.Series(news_results.news, index=u_ix, name='news')
|
||
|
# Revisions to data (y^r_{revised} - y^r_{previous})
|
||
|
if news_results.revisions_all is None:
|
||
|
self.revisions_all = pd.Series([], index=r_ix_all, name='revision',
|
||
|
dtype=model.params.dtype)
|
||
|
else:
|
||
|
self.revisions_all = pd.Series(news_results.revisions_all,
|
||
|
index=r_ix_all, name='revision')
|
||
|
# Revisions to data (y^r_{revised} - y^r_{previous}) for which detailed
|
||
|
# impacts were computed
|
||
|
if news_results.revisions is None:
|
||
|
self.revisions = pd.Series([], index=r_ix, name='revision',
|
||
|
dtype=model.params.dtype)
|
||
|
else:
|
||
|
self.revisions = pd.Series(news_results.revisions,
|
||
|
index=r_ix, name='revision')
|
||
|
# E[y^u | revised]
|
||
|
if news_results.update_forecasts is None:
|
||
|
self.update_forecasts = pd.Series([], index=u_ix,
|
||
|
dtype=model.params.dtype)
|
||
|
else:
|
||
|
self.update_forecasts = pd.Series(
|
||
|
news_results.update_forecasts, index=u_ix)
|
||
|
# y^r_{revised}
|
||
|
if news_results.revised_all is None:
|
||
|
self.revised_all = pd.Series([], index=r_ix_all,
|
||
|
dtype=model.params.dtype,
|
||
|
name='revised')
|
||
|
else:
|
||
|
self.revised_all = pd.Series(news_results.revised_all,
|
||
|
index=r_ix_all, name='revised')
|
||
|
# y^r_{revised} for which detailed impacts were computed
|
||
|
if news_results.revised is None:
|
||
|
self.revised = pd.Series([], index=r_ix, dtype=model.params.dtype,
|
||
|
name='revised')
|
||
|
else:
|
||
|
self.revised = pd.Series(news_results.revised, index=r_ix,
|
||
|
name='revised')
|
||
|
# y^r_{previous}
|
||
|
if news_results.revised_prev_all is None:
|
||
|
self.revised_prev_all = pd.Series([], index=r_ix_all,
|
||
|
dtype=model.params.dtype)
|
||
|
else:
|
||
|
self.revised_prev_all = pd.Series(
|
||
|
news_results.revised_prev_all, index=r_ix_all)
|
||
|
# y^r_{previous} for which detailed impacts were computed
|
||
|
if news_results.revised_prev is None:
|
||
|
self.revised_prev = pd.Series([], index=r_ix,
|
||
|
dtype=model.params.dtype)
|
||
|
else:
|
||
|
self.revised_prev = pd.Series(
|
||
|
news_results.revised_prev, index=r_ix)
|
||
|
# y^u
|
||
|
if news_results.update_realized is None:
|
||
|
self.update_realized = pd.Series([], index=u_ix,
|
||
|
dtype=model.params.dtype)
|
||
|
else:
|
||
|
self.update_realized = pd.Series(
|
||
|
news_results.update_realized, index=u_ix)
|
||
|
cols = pd.MultiIndex.from_product([self.row_labels, columns])
|
||
|
# reshaped version of gain matrix E[y A'] E[A A']^{-1}
|
||
|
if len(self.updates_iloc):
|
||
|
weights = news_results.gain.reshape(
|
||
|
len(cols), len(u_ix))
|
||
|
else:
|
||
|
weights = np.zeros((len(cols), len(u_ix)))
|
||
|
self.weights = pd.DataFrame(weights, index=cols, columns=u_ix).T
|
||
|
self.weights.columns.names = ['impact date', 'impacted variable']
|
||
|
|
||
|
# reshaped version of revision_weights
|
||
|
if self.n_revisions_detailed > 0:
|
||
|
revision_weights = news_results.revision_weights.reshape(
|
||
|
len(cols), len(r_ix))
|
||
|
else:
|
||
|
revision_weights = np.zeros((len(cols), len(r_ix)))
|
||
|
self.revision_weights = pd.DataFrame(
|
||
|
revision_weights, index=cols, columns=r_ix).T
|
||
|
self.revision_weights.columns.names = [
|
||
|
'impact date', 'impacted variable']
|
||
|
|
||
|
self.revision_weights_all = self.revision_weights.reindex(
|
||
|
self.revised_all.index)
|
||
|
|
||
|
@property
|
||
|
def impacted_variable(self):
|
||
|
return self._impacted_variable
|
||
|
|
||
|
@impacted_variable.setter
|
||
|
def impacted_variable(self, value):
|
||
|
self._impacted_variable = value
|
||
|
|
||
|
@property
|
||
|
def tolerance(self):
|
||
|
return self._tolerance
|
||
|
|
||
|
@tolerance.setter
|
||
|
def tolerance(self, value):
|
||
|
self._tolerance = value
|
||
|
|
||
|
@property
|
||
|
def data_revisions(self):
|
||
|
"""
|
||
|
Revisions to data points that existed in the previous dataset
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
data_revisions : pd.DataFrame
|
||
|
Index is as MultiIndex consisting of `revision date` and
|
||
|
`revised variable`. The columns are:
|
||
|
|
||
|
- `observed (prev)`: the value of the data as it was observed
|
||
|
in the previous dataset.
|
||
|
- `revised`: the revised value of the data, as it is observed
|
||
|
in the new dataset
|
||
|
- `detailed impacts computed`: whether or not detailed impacts have
|
||
|
been computed in these NewsResults for this revision
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
data_updates
|
||
|
"""
|
||
|
# Save revisions data
|
||
|
data = pd.concat([
|
||
|
self.revised_all.rename('revised'),
|
||
|
self.revised_prev_all.rename('observed (prev)')
|
||
|
], axis=1).sort_index()
|
||
|
data['detailed impacts computed'] = (
|
||
|
self.revised_all.index.isin(self.revised.index))
|
||
|
return data
|
||
|
|
||
|
@property
|
||
|
def data_updates(self):
|
||
|
"""
|
||
|
Updated data; new entries that did not exist in the previous dataset
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
data_updates : pd.DataFrame
|
||
|
Index is as MultiIndex consisting of `update date` and
|
||
|
`updated variable`. The columns are:
|
||
|
|
||
|
- `forecast (prev)`: the previous forecast of the new entry,
|
||
|
based on the information available in the previous dataset
|
||
|
(recall that for these updated data points, the previous dataset
|
||
|
had no observed value for them at all)
|
||
|
- `observed`: the value of the new entry, as it is observed in the
|
||
|
new dataset
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
data_revisions
|
||
|
"""
|
||
|
data = pd.concat([
|
||
|
self.update_realized.rename('observed'),
|
||
|
self.update_forecasts.rename('forecast (prev)')
|
||
|
], axis=1).sort_index()
|
||
|
return data
|
||
|
|
||
|
@property
|
||
|
def details_by_impact(self):
|
||
|
"""
|
||
|
Details of forecast revisions from news, organized by impacts first
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
details : pd.DataFrame
|
||
|
Index is as MultiIndex consisting of:
|
||
|
|
||
|
- `impact date`: the date of the impact on the variable of interest
|
||
|
- `impacted variable`: the variable that is being impacted
|
||
|
- `update date`: the date of the data update, that results in
|
||
|
`news` that impacts the forecast of variables of interest
|
||
|
- `updated variable`: the variable being updated, that results in
|
||
|
`news` that impacts the forecast of variables of interest
|
||
|
|
||
|
The columns are:
|
||
|
|
||
|
- `forecast (prev)`: the previous forecast of the new entry,
|
||
|
based on the information available in the previous dataset
|
||
|
- `observed`: the value of the new entry, as it is observed in the
|
||
|
new dataset
|
||
|
- `news`: the news associated with the update (this is just the
|
||
|
forecast error: `observed` - `forecast (prev)`)
|
||
|
- `weight`: the weight describing how the `news` effects the
|
||
|
forecast of the variable of interest
|
||
|
- `impact`: the impact of the `news` on the forecast of the
|
||
|
variable of interest
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This table decomposes updated forecasts of variables of interest from
|
||
|
the `news` associated with each updated datapoint from the new data
|
||
|
release.
|
||
|
|
||
|
This table does not summarize the impacts or show the effect of
|
||
|
revisions. That information can be found in the `impacts` or
|
||
|
`revision_details_by_impact` tables.
|
||
|
|
||
|
This form of the details table is organized so that the impacted
|
||
|
dates / variables are first in the index. This is convenient for
|
||
|
slicing by impacted variables / dates to view the details of data
|
||
|
updates for a particular variable or date.
|
||
|
|
||
|
However, since the `forecast (prev)` and `observed` columns have a lot
|
||
|
of duplication, printing the entire table gives a result that is less
|
||
|
easy to parse than that produced by the `details_by_update` property.
|
||
|
`details_by_update` contains the same information but is organized to
|
||
|
be more convenient for displaying the entire table of detailed updates.
|
||
|
At the same time, `details_by_update` is less convenient for
|
||
|
subsetting.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
details_by_update
|
||
|
revision_details_by_update
|
||
|
impacts
|
||
|
"""
|
||
|
s = self.weights.stack(level=[0, 1], **FUTURE_STACK)
|
||
|
df = s.rename('weight').to_frame()
|
||
|
if len(self.updates_iloc):
|
||
|
df['forecast (prev)'] = self.update_forecasts
|
||
|
df['observed'] = self.update_realized
|
||
|
df['news'] = self.news
|
||
|
df['impact'] = df['news'] * df['weight']
|
||
|
else:
|
||
|
df['forecast (prev)'] = []
|
||
|
df['observed'] = []
|
||
|
df['news'] = []
|
||
|
df['impact'] = []
|
||
|
df = df[['observed', 'forecast (prev)', 'news', 'weight', 'impact']]
|
||
|
df = df.reorder_levels([2, 3, 0, 1]).sort_index()
|
||
|
|
||
|
if self.impacted_variable is not None and len(df) > 0:
|
||
|
df = df.loc[np.s_[:, self.impacted_variable], :]
|
||
|
|
||
|
mask = np.abs(df['impact']) > self.tolerance
|
||
|
return df[mask]
|
||
|
|
||
|
@property
|
||
|
def _revision_grouped_impacts(self):
|
||
|
s = self.revision_grouped_impacts.stack(**FUTURE_STACK)
|
||
|
df = s.rename('impact').to_frame()
|
||
|
df = df.reindex(['revision date', 'revised variable', 'impact'],
|
||
|
axis=1)
|
||
|
if self.revisions_details_start > 0:
|
||
|
df['revision date'] = (
|
||
|
self.updated.model._index[self.revisions_details_start - 1])
|
||
|
df['revised variable'] = 'all prior revisions'
|
||
|
df = (df.set_index(['revision date', 'revised variable'], append=True)
|
||
|
.reorder_levels([2, 3, 0, 1]))
|
||
|
return df
|
||
|
|
||
|
@property
|
||
|
def revision_details_by_impact(self):
|
||
|
"""
|
||
|
Details of forecast revisions from revised data, organized by impacts
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
details : pd.DataFrame
|
||
|
Index is as MultiIndex consisting of:
|
||
|
|
||
|
- `impact date`: the date of the impact on the variable of interest
|
||
|
- `impacted variable`: the variable that is being impacted
|
||
|
- `revision date`: the date of the data revision, that results in
|
||
|
`revision` that impacts the forecast of variables of interest
|
||
|
- `revised variable`: the variable being revised, that results in
|
||
|
`news` that impacts the forecast of variables of interest
|
||
|
|
||
|
The columns are:
|
||
|
|
||
|
- `observed (prev)`: the previous value of the observation, as it
|
||
|
was given in the previous dataset
|
||
|
- `revised`: the value of the revised entry, as it is observed in
|
||
|
the new dataset
|
||
|
- `revision`: the revision (this is `revised` - `observed (prev)`)
|
||
|
- `weight`: the weight describing how the `revision` effects the
|
||
|
forecast of the variable of interest
|
||
|
- `impact`: the impact of the `revision` on the forecast of the
|
||
|
variable of interest
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This table decomposes updated forecasts of variables of interest from
|
||
|
the `revision` associated with each revised datapoint from the new data
|
||
|
release.
|
||
|
|
||
|
This table does not summarize the impacts or show the effect of
|
||
|
new datapoints. That information can be found in the
|
||
|
`impacts` or `details_by_impact` tables.
|
||
|
|
||
|
Grouped impacts are shown in this table, with a "revision date" equal
|
||
|
to the last period prior to which detailed revisions were computed and
|
||
|
with "revised variable" set to the string "all prior revisions". For
|
||
|
these rows, all columns except "impact" will be set to NaNs.
|
||
|
|
||
|
This form of the details table is organized so that the impacted
|
||
|
dates / variables are first in the index. This is convenient for
|
||
|
slicing by impacted variables / dates to view the details of data
|
||
|
updates for a particular variable or date.
|
||
|
|
||
|
However, since the `observed (prev)` and `revised` columns have a lot
|
||
|
of duplication, printing the entire table gives a result that is less
|
||
|
easy to parse than that produced by the `details_by_revision` property.
|
||
|
`details_by_revision` contains the same information but is organized to
|
||
|
be more convenient for displaying the entire table of detailed
|
||
|
revisions. At the same time, `details_by_revision` is less convenient
|
||
|
for subsetting.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
details_by_revision
|
||
|
details_by_impact
|
||
|
impacts
|
||
|
"""
|
||
|
weights = self.revision_weights.stack(level=[0, 1], **FUTURE_STACK)
|
||
|
df = pd.concat([
|
||
|
self.revised.reindex(weights.index),
|
||
|
self.revised_prev.rename('observed (prev)').reindex(weights.index),
|
||
|
self.revisions.reindex(weights.index),
|
||
|
weights.rename('weight'),
|
||
|
(self.revisions.reindex(weights.index) * weights).rename('impact'),
|
||
|
], axis=1)
|
||
|
|
||
|
if self.n_revisions_grouped > 0:
|
||
|
df = pd.concat([df, self._revision_grouped_impacts])
|
||
|
# Explicitly set names for compatibility with pandas=1.2.5
|
||
|
df.index = df.index.set_names(
|
||
|
['revision date', 'revised variable',
|
||
|
'impact date', 'impacted variable'])
|
||
|
|
||
|
df = df.reorder_levels([2, 3, 0, 1]).sort_index()
|
||
|
|
||
|
if self.impacted_variable is not None and len(df) > 0:
|
||
|
df = df.loc[np.s_[:, self.impacted_variable], :]
|
||
|
|
||
|
mask = np.abs(df['impact']) > self.tolerance
|
||
|
return df[mask]
|
||
|
|
||
|
@property
|
||
|
def details_by_update(self):
|
||
|
"""
|
||
|
Details of forecast revisions from news, organized by updates first
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
details : pd.DataFrame
|
||
|
Index is as MultiIndex consisting of:
|
||
|
|
||
|
- `update date`: the date of the data update, that results in
|
||
|
`news` that impacts the forecast of variables of interest
|
||
|
- `updated variable`: the variable being updated, that results in
|
||
|
`news` that impacts the forecast of variables of interest
|
||
|
- `forecast (prev)`: the previous forecast of the new entry,
|
||
|
based on the information available in the previous dataset
|
||
|
- `observed`: the value of the new entry, as it is observed in the
|
||
|
new dataset
|
||
|
- `impact date`: the date of the impact on the variable of interest
|
||
|
- `impacted variable`: the variable that is being impacted
|
||
|
|
||
|
The columns are:
|
||
|
|
||
|
- `news`: the news associated with the update (this is just the
|
||
|
forecast error: `observed` - `forecast (prev)`)
|
||
|
- `weight`: the weight describing how the `news` affects the
|
||
|
forecast of the variable of interest
|
||
|
- `impact`: the impact of the `news` on the forecast of the
|
||
|
variable of interest
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This table decomposes updated forecasts of variables of interest from
|
||
|
the `news` associated with each updated datapoint from the new data
|
||
|
release.
|
||
|
|
||
|
This table does not summarize the impacts or show the effect of
|
||
|
revisions. That information can be found in the `impacts` table.
|
||
|
|
||
|
This form of the details table is organized so that the updated
|
||
|
dates / variables are first in the index, and in this table the index
|
||
|
also contains the forecasts and observed values of the updates. This is
|
||
|
convenient for displaying the entire table of detailed updates because
|
||
|
it allows sparsifying duplicate entries.
|
||
|
|
||
|
However, since it includes forecasts and observed values in the index
|
||
|
of the table, it is not convenient for subsetting by the variable of
|
||
|
interest. Instead, the `details_by_impact` property is organized to
|
||
|
make slicing by impacted variables / dates easy. This allows, for
|
||
|
example, viewing the details of data updates on a particular variable
|
||
|
or date of interest.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
details_by_impact
|
||
|
impacts
|
||
|
"""
|
||
|
s = self.weights.stack(level=[0, 1], **FUTURE_STACK)
|
||
|
df = s.rename('weight').to_frame()
|
||
|
if len(self.updates_iloc):
|
||
|
df['forecast (prev)'] = self.update_forecasts
|
||
|
df['observed'] = self.update_realized
|
||
|
df['news'] = self.news
|
||
|
df['impact'] = df['news'] * df['weight']
|
||
|
else:
|
||
|
df['forecast (prev)'] = []
|
||
|
df['observed'] = []
|
||
|
df['news'] = []
|
||
|
df['impact'] = []
|
||
|
df = df[['forecast (prev)', 'observed', 'news',
|
||
|
'weight', 'impact']]
|
||
|
df = df.reset_index()
|
||
|
keys = ['update date', 'updated variable', 'observed',
|
||
|
'forecast (prev)', 'impact date', 'impacted variable']
|
||
|
df.index = pd.MultiIndex.from_arrays([df[key] for key in keys])
|
||
|
details = df.drop(keys, axis=1).sort_index()
|
||
|
|
||
|
if self.impacted_variable is not None and len(df) > 0:
|
||
|
details = details.loc[
|
||
|
np.s_[:, :, :, :, :, self.impacted_variable], :]
|
||
|
|
||
|
mask = np.abs(details['impact']) > self.tolerance
|
||
|
return details[mask]
|
||
|
|
||
|
@property
|
||
|
def revision_details_by_update(self):
|
||
|
"""
|
||
|
Details of forecast revisions from revisions, organized by updates
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
details : pd.DataFrame
|
||
|
Index is as MultiIndex consisting of:
|
||
|
|
||
|
- `revision date`: the date of the data revision, that results in
|
||
|
`revision` that impacts the forecast of variables of interest
|
||
|
- `revised variable`: the variable being revised, that results in
|
||
|
`news` that impacts the forecast of variables of interest
|
||
|
- `observed (prev)`: the previous value of the observation, as it
|
||
|
was given in the previous dataset
|
||
|
- `revised`: the value of the revised entry, as it is observed in
|
||
|
the new dataset
|
||
|
- `impact date`: the date of the impact on the variable of interest
|
||
|
- `impacted variable`: the variable that is being impacted
|
||
|
|
||
|
The columns are:
|
||
|
|
||
|
- `revision`: the revision (this is `revised` - `observed (prev)`)
|
||
|
- `weight`: the weight describing how the `revision` affects the
|
||
|
forecast of the variable of interest
|
||
|
- `impact`: the impact of the `revision` on the forecast of the
|
||
|
variable of interest
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This table decomposes updated forecasts of variables of interest from
|
||
|
the `revision` associated with each revised datapoint from the new data
|
||
|
release.
|
||
|
|
||
|
This table does not summarize the impacts or show the effect of
|
||
|
new datapoints, see `details_by_update` instead.
|
||
|
|
||
|
Grouped impacts are shown in this table, with a "revision date" equal
|
||
|
to the last period prior to which detailed revisions were computed and
|
||
|
with "revised variable" set to the string "all prior revisions". For
|
||
|
these rows, all columns except "impact" will be set to NaNs.
|
||
|
|
||
|
This form of the details table is organized so that the revision
|
||
|
dates / variables are first in the index, and in this table the index
|
||
|
also contains the previously observed and revised values. This is
|
||
|
convenient for displaying the entire table of detailed revisions
|
||
|
because it allows sparsifying duplicate entries.
|
||
|
|
||
|
However, since it includes previous observations and revisions in the
|
||
|
index of the table, it is not convenient for subsetting by the variable
|
||
|
of interest. Instead, the `revision_details_by_impact` property is
|
||
|
organized to make slicing by impacted variables / dates easy. This
|
||
|
allows, for example, viewing the details of data revisions on a
|
||
|
particular variable or date of interest.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
details_by_impact
|
||
|
impacts
|
||
|
"""
|
||
|
weights = self.revision_weights.stack(level=[0, 1], **FUTURE_STACK)
|
||
|
|
||
|
df = pd.concat([
|
||
|
self.revised_prev.rename('observed (prev)').reindex(weights.index),
|
||
|
self.revised.reindex(weights.index),
|
||
|
self.revisions.reindex(weights.index),
|
||
|
weights.rename('weight'),
|
||
|
(self.revisions.reindex(weights.index) * weights).rename('impact'),
|
||
|
], axis=1)
|
||
|
|
||
|
if self.n_revisions_grouped > 0:
|
||
|
df = pd.concat([df, self._revision_grouped_impacts])
|
||
|
# Explicitly set names for compatibility with pandas=1.2.5
|
||
|
df.index = df.index.set_names(
|
||
|
['revision date', 'revised variable',
|
||
|
'impact date', 'impacted variable'])
|
||
|
|
||
|
details = (df.set_index(['observed (prev)', 'revised'], append=True)
|
||
|
.reorder_levels([
|
||
|
'revision date', 'revised variable', 'revised',
|
||
|
'observed (prev)', 'impact date',
|
||
|
'impacted variable'])
|
||
|
.sort_index())
|
||
|
|
||
|
if self.impacted_variable is not None and len(df) > 0:
|
||
|
details = details.loc[
|
||
|
np.s_[:, :, :, :, :, self.impacted_variable], :]
|
||
|
|
||
|
mask = np.abs(details['impact']) > self.tolerance
|
||
|
return details[mask]
|
||
|
|
||
|
@property
|
||
|
def impacts(self):
|
||
|
"""
|
||
|
Impacts from news and revisions on all dates / variables of interest
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
impacts : pd.DataFrame
|
||
|
Index is as MultiIndex consisting of:
|
||
|
|
||
|
- `impact date`: the date of the impact on the variable of interest
|
||
|
- `impacted variable`: the variable that is being impacted
|
||
|
|
||
|
The columns are:
|
||
|
|
||
|
- `estimate (prev)`: the previous estimate / forecast of the
|
||
|
date / variable of interest.
|
||
|
- `impact of revisions`: the impact of all data revisions on
|
||
|
the estimate of the date / variable of interest.
|
||
|
- `impact of news`: the impact of all news on the estimate of
|
||
|
the date / variable of interest.
|
||
|
- `total impact`: the total impact of both revisions and news on
|
||
|
the estimate of the date / variable of interest.
|
||
|
- `estimate (new)`: the new estimate / forecast of the
|
||
|
date / variable of interest after taking into account the effects
|
||
|
of the revisions and news.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This table decomposes updated forecasts of variables of interest into
|
||
|
the overall effect from revisions and news.
|
||
|
|
||
|
This table does not break down the detail by the updated
|
||
|
dates / variables. That information can be found in the
|
||
|
`details_by_impact` `details_by_update` tables.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
details_by_impact
|
||
|
details_by_update
|
||
|
"""
|
||
|
# Summary of impacts
|
||
|
impacts = pd.concat([
|
||
|
self.prev_impacted_forecasts.unstack().rename('estimate (prev)'),
|
||
|
self.revision_impacts.unstack().rename('impact of revisions'),
|
||
|
self.update_impacts.unstack().rename('impact of news'),
|
||
|
self.post_impacted_forecasts.unstack().rename('estimate (new)')],
|
||
|
axis=1)
|
||
|
impacts['impact of revisions'] = (
|
||
|
impacts['impact of revisions'].astype(float).fillna(0))
|
||
|
impacts['impact of news'] = (
|
||
|
impacts['impact of news'].astype(float).fillna(0))
|
||
|
impacts['total impact'] = (impacts['impact of revisions'] +
|
||
|
impacts['impact of news'])
|
||
|
impacts = impacts.reorder_levels([1, 0]).sort_index()
|
||
|
impacts.index.names = ['impact date', 'impacted variable']
|
||
|
impacts = impacts[['estimate (prev)', 'impact of revisions',
|
||
|
'impact of news', 'total impact', 'estimate (new)']]
|
||
|
|
||
|
if self.impacted_variable is not None:
|
||
|
impacts = impacts.loc[np.s_[:, self.impacted_variable], :]
|
||
|
|
||
|
tmp = np.abs(impacts[['impact of revisions', 'impact of news']])
|
||
|
mask = (tmp > self.tolerance).any(axis=1)
|
||
|
|
||
|
return impacts[mask]
|
||
|
|
||
|
def summary_impacts(self, impact_date=None, impacted_variable=None,
|
||
|
groupby='impact date', show_revisions_columns=None,
|
||
|
sparsify=True, float_format='%.2f'):
|
||
|
"""
|
||
|
Create summary table with detailed impacts from news; by date, variable
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
impact_date : int, str, datetime, list, array, or slice, optional
|
||
|
Observation index label or slice of labels specifying particular
|
||
|
impact periods to display. The impact date(s) describe the periods
|
||
|
in which impacted variables were *affected* by the news. If this
|
||
|
argument is given, the output table will only show this impact date
|
||
|
or dates. Note that this argument is passed to the Pandas `loc`
|
||
|
accessor, and so it should correspond to the labels of the model's
|
||
|
index. If the model was created with data in a list or numpy array,
|
||
|
then these labels will be zero-indexes observation integers.
|
||
|
impacted_variable : str, list, array, or slice, optional
|
||
|
Observation variable label or slice of labels specifying particular
|
||
|
impacted variables to display. The impacted variable(s) describe
|
||
|
the variables that were *affected* by the news. If you do not know
|
||
|
the labels for the variables, check the `endog_names` attribute of
|
||
|
the model instance.
|
||
|
groupby : {impact date, impacted date}
|
||
|
The primary variable for grouping results in the impacts table. The
|
||
|
default is to group by update date.
|
||
|
show_revisions_columns : bool, optional
|
||
|
If set to False, the impacts table will not show the impacts from
|
||
|
data revisions or the total impacts. Default is to show the
|
||
|
revisions and totals columns if any revisions were made and
|
||
|
otherwise to hide them.
|
||
|
sparsify : bool, optional, default True
|
||
|
Set to False for the table to include every one of the multiindex
|
||
|
keys at each row.
|
||
|
float_format : str, optional
|
||
|
Formatter format string syntax for converting numbers to strings.
|
||
|
Default is '%.2f'.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
impacts_table : SimpleTable
|
||
|
Table describing total impacts from both revisions and news. See
|
||
|
the documentation for the `impacts` attribute for more details
|
||
|
about the index and columns.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
impacts
|
||
|
"""
|
||
|
# Squeeze for univariate models
|
||
|
if impacted_variable is None and self.k_endog == 1:
|
||
|
impacted_variable = self.endog_names[0]
|
||
|
|
||
|
# Default is to only show the revisions columns if there were any
|
||
|
# revisions (otherwise it would just be a column of zeros)
|
||
|
if show_revisions_columns is None:
|
||
|
show_revisions_columns = self.n_revisions > 0
|
||
|
|
||
|
# Select only the variables / dates of interest
|
||
|
s = list(np.s_[:, :])
|
||
|
if impact_date is not None:
|
||
|
s[0] = np.s_[impact_date]
|
||
|
if impacted_variable is not None:
|
||
|
s[1] = np.s_[impacted_variable]
|
||
|
s = tuple(s)
|
||
|
impacts = self.impacts.loc[s, :]
|
||
|
|
||
|
# Make the first index level the groupby level
|
||
|
groupby = groupby.lower()
|
||
|
if groupby in ['impacted variable', 'impacted_variable']:
|
||
|
impacts.index = impacts.index.swaplevel(1, 0)
|
||
|
elif groupby not in ['impact date', 'impact_date']:
|
||
|
raise ValueError('Invalid groupby for impacts table. Valid options'
|
||
|
' are "impact date" or "impacted variable".'
|
||
|
f'Got "{groupby}".')
|
||
|
impacts = impacts.sort_index()
|
||
|
|
||
|
# Drop the non-groupby level if there's only one value
|
||
|
tmp_index = impacts.index.remove_unused_levels()
|
||
|
k_vars = len(tmp_index.levels[1])
|
||
|
removed_level = None
|
||
|
if sparsify and k_vars == 1:
|
||
|
name = tmp_index.names[1]
|
||
|
value = tmp_index.levels[1][0]
|
||
|
removed_level = f'{name} = {value}'
|
||
|
impacts.index = tmp_index.droplevel(1)
|
||
|
try:
|
||
|
impacts = impacts.map(
|
||
|
lambda num: '' if pd.isnull(num) else float_format % num)
|
||
|
except AttributeError:
|
||
|
impacts = impacts.applymap(
|
||
|
lambda num: '' if pd.isnull(num) else float_format % num)
|
||
|
impacts = impacts.reset_index()
|
||
|
try:
|
||
|
impacts.iloc[:, 0] = impacts.iloc[:, 0].map(str)
|
||
|
except AttributeError:
|
||
|
impacts.iloc[:, 0] = impacts.iloc[:, 0].applymap(str)
|
||
|
else:
|
||
|
impacts = impacts.reset_index()
|
||
|
try:
|
||
|
impacts.iloc[:, :2] = impacts.iloc[:, :2].map(str)
|
||
|
impacts.iloc[:, 2:] = impacts.iloc[:, 2:].map(
|
||
|
lambda num: '' if pd.isnull(num) else float_format % num)
|
||
|
except AttributeError:
|
||
|
impacts.iloc[:, :2] = impacts.iloc[:, :2].applymap(str)
|
||
|
impacts.iloc[:, 2:] = impacts.iloc[:, 2:].applymap(
|
||
|
lambda num: '' if pd.isnull(num) else float_format % num)
|
||
|
# Sparsify the groupby column
|
||
|
if sparsify and groupby in impacts:
|
||
|
mask = impacts[groupby] == impacts[groupby].shift(1)
|
||
|
tmp = impacts.loc[mask, groupby]
|
||
|
if len(tmp) > 0:
|
||
|
impacts.loc[mask, groupby] = ''
|
||
|
|
||
|
# Drop revisions and totals columns if applicable
|
||
|
if not show_revisions_columns:
|
||
|
impacts.drop(['impact of revisions', 'total impact'], axis=1,
|
||
|
inplace=True)
|
||
|
|
||
|
params_data = impacts.values
|
||
|
params_header = impacts.columns.tolist()
|
||
|
params_stubs = None
|
||
|
|
||
|
title = 'Impacts'
|
||
|
if removed_level is not None:
|
||
|
join = 'on' if groupby == 'date' else 'for'
|
||
|
title += f' {join} [{removed_level}]'
|
||
|
impacts_table = SimpleTable(
|
||
|
params_data, params_header, params_stubs,
|
||
|
txt_fmt=fmt_params, title=title)
|
||
|
|
||
|
return impacts_table
|
||
|
|
||
|
def summary_details(self, source='news', impact_date=None,
|
||
|
impacted_variable=None, update_date=None,
|
||
|
updated_variable=None, groupby='update date',
|
||
|
sparsify=True, float_format='%.2f',
|
||
|
multiple_tables=False):
|
||
|
"""
|
||
|
Create summary table with detailed impacts; by date, variable
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
source : {news, revisions}
|
||
|
The source of impacts to summarize. Default is "news".
|
||
|
impact_date : int, str, datetime, list, array, or slice, optional
|
||
|
Observation index label or slice of labels specifying particular
|
||
|
impact periods to display. The impact date(s) describe the periods
|
||
|
in which impacted variables were *affected* by the news. If this
|
||
|
argument is given, the output table will only show this impact date
|
||
|
or dates. Note that this argument is passed to the Pandas `loc`
|
||
|
accessor, and so it should correspond to the labels of the model's
|
||
|
index. If the model was created with data in a list or numpy array,
|
||
|
then these labels will be zero-indexes observation integers.
|
||
|
impacted_variable : str, list, array, or slice, optional
|
||
|
Observation variable label or slice of labels specifying particular
|
||
|
impacted variables to display. The impacted variable(s) describe
|
||
|
the variables that were *affected* by the news. If you do not know
|
||
|
the labels for the variables, check the `endog_names` attribute of
|
||
|
the model instance.
|
||
|
update_date : int, str, datetime, list, array, or slice, optional
|
||
|
Observation index label or slice of labels specifying particular
|
||
|
updated periods to display. The updated date(s) describe the
|
||
|
periods in which the new data points were available that generated
|
||
|
the news). See the note on `impact_date` for details about what
|
||
|
these labels are.
|
||
|
updated_variable : str, list, array, or slice, optional
|
||
|
Observation variable label or slice of labels specifying particular
|
||
|
updated variables to display. The updated variable(s) describe the
|
||
|
variables that were *affected* by the news. If you do not know the
|
||
|
labels for the variables, check the `endog_names` attribute of the
|
||
|
model instance.
|
||
|
groupby : {update date, updated date, impact date, impacted date}
|
||
|
The primary variable for grouping results in the details table. The
|
||
|
default is to group by update date.
|
||
|
sparsify : bool, optional, default True
|
||
|
Set to False for the table to include every one of the multiindex
|
||
|
keys at each row.
|
||
|
float_format : str, optional
|
||
|
Formatter format string syntax for converting numbers to strings.
|
||
|
Default is '%.2f'.
|
||
|
multiple_tables : bool, optional
|
||
|
If set to True, this function will return a list of tables, one
|
||
|
table for each of the unique `groupby` levels. Default is False,
|
||
|
in which case this function returns a single table.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
details_table : SimpleTable or list of SimpleTable
|
||
|
Table or list of tables describing how the news from each update
|
||
|
(i.e. news from a particular variable / date) translates into
|
||
|
changes to the forecasts of each impacted variable variable / date.
|
||
|
|
||
|
This table contains information about the updates and about the
|
||
|
impacts. Updates are newly observed datapoints that were not
|
||
|
available in the previous results set. Each update leads to news,
|
||
|
and the news may cause changes in the forecasts of the impacted
|
||
|
variables. The amount that a particular piece of news (from an
|
||
|
update to some variable at some date) impacts a variable at some
|
||
|
date depends on weights that can be computed from the model
|
||
|
results.
|
||
|
|
||
|
The data contained in this table that refer to updates are:
|
||
|
|
||
|
- `update date` : The date at which a new datapoint was added.
|
||
|
- `updated variable` : The variable for which a new datapoint was
|
||
|
added.
|
||
|
- `forecast (prev)` : The value that had been forecast by the
|
||
|
previous model for the given updated variable and date.
|
||
|
- `observed` : The observed value of the new datapoint.
|
||
|
- `news` : The news is the difference between the observed value
|
||
|
and the previously forecast value for a given updated variable
|
||
|
and date.
|
||
|
|
||
|
The data contained in this table that refer to impacts are:
|
||
|
|
||
|
- `impact date` : A date associated with an impact.
|
||
|
- `impacted variable` : A variable that was impacted by the news.
|
||
|
- `weight` : The weight of news from a given `update date` and
|
||
|
`update variable` on a given `impacted variable` at a given
|
||
|
`impact date`.
|
||
|
- `impact` : The revision to the smoothed estimate / forecast of
|
||
|
the impacted variable at the impact date based specifically on
|
||
|
the news generated by the `updated variable` at the
|
||
|
`update date`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
details_by_impact
|
||
|
details_by_update
|
||
|
"""
|
||
|
# Squeeze for univariate models
|
||
|
if self.k_endog == 1:
|
||
|
if impacted_variable is None:
|
||
|
impacted_variable = self.endog_names[0]
|
||
|
if updated_variable is None:
|
||
|
updated_variable = self.endog_names[0]
|
||
|
|
||
|
# Select only the variables / dates of interest
|
||
|
s = list(np.s_[:, :, :, :, :, :])
|
||
|
if impact_date is not None:
|
||
|
s[0] = np.s_[impact_date]
|
||
|
if impacted_variable is not None:
|
||
|
s[1] = np.s_[impacted_variable]
|
||
|
if update_date is not None:
|
||
|
s[2] = np.s_[update_date]
|
||
|
if updated_variable is not None:
|
||
|
s[3] = np.s_[updated_variable]
|
||
|
s = tuple(s)
|
||
|
|
||
|
if source == 'news':
|
||
|
details = self.details_by_impact.loc[s, :]
|
||
|
columns = {
|
||
|
'current': 'observed',
|
||
|
'prev': 'forecast (prev)',
|
||
|
'update date': 'update date',
|
||
|
'updated variable': 'updated variable',
|
||
|
'news': 'news',
|
||
|
}
|
||
|
elif source == 'revisions':
|
||
|
details = self.revision_details_by_impact.loc[s, :]
|
||
|
columns = {
|
||
|
'current': 'revised',
|
||
|
'prev': 'observed (prev)',
|
||
|
'update date': 'revision date',
|
||
|
'updated variable': 'revised variable',
|
||
|
'news': 'revision',
|
||
|
}
|
||
|
else:
|
||
|
raise ValueError(f'Invalid `source`: {source}. Must be "news" or'
|
||
|
' "revisions".')
|
||
|
|
||
|
# Make the first index level the groupby level
|
||
|
groupby = groupby.lower().replace('_', ' ')
|
||
|
groupby_overall = 'impact'
|
||
|
levels_order = [0, 1, 2, 3]
|
||
|
if groupby == 'update date':
|
||
|
levels_order = [2, 3, 0, 1]
|
||
|
groupby_overall = 'update'
|
||
|
elif groupby == 'updated variable':
|
||
|
levels_order = [3, 2, 1, 0]
|
||
|
groupby_overall = 'update'
|
||
|
elif groupby == 'impacted variable':
|
||
|
levels_order = [1, 0, 3, 2]
|
||
|
elif groupby != 'impact date':
|
||
|
raise ValueError('Invalid groupby for details table. Valid options'
|
||
|
' are "update date", "updated variable",'
|
||
|
' "impact date",or "impacted variable".'
|
||
|
f' Got "{groupby}".')
|
||
|
details.index = (details.index.reorder_levels(levels_order)
|
||
|
.remove_unused_levels())
|
||
|
details = details.sort_index()
|
||
|
|
||
|
# If our overall group-by is `update`, move forecast (prev) and
|
||
|
# observed into the index
|
||
|
base_levels = [0, 1, 2, 3]
|
||
|
if groupby_overall == 'update':
|
||
|
details.set_index([columns['current'], columns['prev']],
|
||
|
append=True, inplace=True)
|
||
|
details.index = details.index.reorder_levels([0, 1, 4, 5, 2, 3])
|
||
|
base_levels = [0, 1, 4, 5]
|
||
|
|
||
|
# Drop the non-groupby levels if there's only one value
|
||
|
tmp_index = details.index.remove_unused_levels()
|
||
|
n_levels = len(tmp_index.levels)
|
||
|
k_level_values = [len(tmp_index.levels[i]) for i in range(n_levels)]
|
||
|
removed_levels = []
|
||
|
if sparsify:
|
||
|
for i in sorted(base_levels)[::-1][:-1]:
|
||
|
if k_level_values[i] == 1:
|
||
|
name = tmp_index.names[i]
|
||
|
value = tmp_index.levels[i][0]
|
||
|
can_drop = (
|
||
|
(name == columns['update date']
|
||
|
and update_date is not None) or
|
||
|
(name == columns['updated variable']
|
||
|
and updated_variable is not None) or
|
||
|
(name == 'impact date'
|
||
|
and impact_date is not None) or
|
||
|
(name == 'impacted variable'
|
||
|
and (impacted_variable is not None or
|
||
|
self.impacted_variable is not None)))
|
||
|
if can_drop or not multiple_tables:
|
||
|
removed_levels.insert(0, f'{name} = {value}')
|
||
|
details.index = tmp_index = tmp_index.droplevel(i)
|
||
|
|
||
|
# Move everything to columns
|
||
|
details = details.reset_index()
|
||
|
|
||
|
# Function for formatting numbers
|
||
|
def str_format(num, mark_ones=False, mark_zeroes=False):
|
||
|
if pd.isnull(num):
|
||
|
out = ''
|
||
|
elif mark_ones and np.abs(1 - num) < self.tolerance:
|
||
|
out = '1.0'
|
||
|
elif mark_zeroes and np.abs(num) < self.tolerance:
|
||
|
out = '0'
|
||
|
else:
|
||
|
out = float_format % num
|
||
|
return out
|
||
|
|
||
|
# Function to create the table
|
||
|
def create_table(details, removed_levels):
|
||
|
# Convert everything to strings
|
||
|
for key in [columns['current'], columns['prev'], columns['news'],
|
||
|
'weight', 'impact']:
|
||
|
if key in details:
|
||
|
args = (
|
||
|
# mark_ones
|
||
|
True if key in ['weight'] else False,
|
||
|
# mark_zeroes
|
||
|
True if key in ['weight', 'impact'] else False)
|
||
|
details[key] = details[key].apply(str_format, args=args)
|
||
|
for key in [columns['update date'], 'impact date']:
|
||
|
if key in details:
|
||
|
details[key] = details[key].apply(str)
|
||
|
|
||
|
# Sparsify index columns
|
||
|
if sparsify:
|
||
|
sparsify_cols = [columns['update date'],
|
||
|
columns['updated variable'], 'impact date',
|
||
|
'impacted variable']
|
||
|
data_cols = [columns['current'], columns['prev']]
|
||
|
if groupby_overall == 'update':
|
||
|
# Put data columns first, since we need to do an additional
|
||
|
# check based on the other columns before sparsifying
|
||
|
sparsify_cols = data_cols + sparsify_cols
|
||
|
|
||
|
for key in sparsify_cols:
|
||
|
if key in details:
|
||
|
mask = details[key] == details[key].shift(1)
|
||
|
if key in data_cols:
|
||
|
if columns['update date'] in details:
|
||
|
tmp = details[columns['update date']]
|
||
|
mask &= tmp == tmp.shift(1)
|
||
|
if columns['updated variable'] in details:
|
||
|
tmp = details[columns['updated variable']]
|
||
|
mask &= tmp == tmp.shift(1)
|
||
|
details.loc[mask, key] = ''
|
||
|
|
||
|
params_data = details.values
|
||
|
params_header = [str(x) for x in details.columns.tolist()]
|
||
|
params_stubs = None
|
||
|
|
||
|
title = f"Details of {source}"
|
||
|
if len(removed_levels):
|
||
|
title += ' for [' + ', '.join(removed_levels) + ']'
|
||
|
return SimpleTable(params_data, params_header, params_stubs,
|
||
|
txt_fmt=fmt_params, title=title)
|
||
|
|
||
|
if multiple_tables:
|
||
|
details_table = []
|
||
|
for item in details[columns[groupby]].unique():
|
||
|
mask = details[columns[groupby]] == item
|
||
|
item_details = details[mask].drop(columns[groupby], axis=1)
|
||
|
item_removed_levels = (
|
||
|
[f'{columns[groupby]} = {item}'] + removed_levels)
|
||
|
details_table.append(create_table(item_details,
|
||
|
item_removed_levels))
|
||
|
else:
|
||
|
details_table = create_table(details, removed_levels)
|
||
|
|
||
|
return details_table
|
||
|
|
||
|
def summary_revisions(self, sparsify=True):
|
||
|
"""
|
||
|
Create summary table showing revisions to the previous results' data
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sparsify : bool, optional, default True
|
||
|
Set to False for the table to include every one of the multiindex
|
||
|
keys at each row.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
revisions_table : SimpleTable
|
||
|
Table showing revisions to the previous results' data. Columns are:
|
||
|
|
||
|
- `revision date` : date associated with a revised data point
|
||
|
- `revised variable` : variable that was revised at `revision date`
|
||
|
- `observed (prev)` : the observed value prior to the revision
|
||
|
- `revised` : the new value after the revision
|
||
|
- `revision` : the new value after the revision
|
||
|
- `detailed impacts computed` : whether detailed impacts were
|
||
|
computed for this revision
|
||
|
"""
|
||
|
data = pd.merge(
|
||
|
self.data_revisions, self.revisions_all, left_index=True,
|
||
|
right_index=True).sort_index().reset_index()
|
||
|
data = data[['revision date', 'revised variable', 'observed (prev)',
|
||
|
'revision', 'detailed impacts computed']]
|
||
|
try:
|
||
|
data[['revision date', 'revised variable']] = (
|
||
|
data[['revision date', 'revised variable']].map(str))
|
||
|
data.iloc[:, 2:-1] = data.iloc[:, 2:-1].map(
|
||
|
lambda num: '' if pd.isnull(num) else '%.2f' % num)
|
||
|
except AttributeError:
|
||
|
data[['revision date', 'revised variable']] = (
|
||
|
data[['revision date', 'revised variable']].applymap(str))
|
||
|
data.iloc[:, 2:-1] = data.iloc[:, 2:-1].applymap(
|
||
|
lambda num: '' if pd.isnull(num) else '%.2f' % num)
|
||
|
|
||
|
# Sparsify the date column
|
||
|
if sparsify:
|
||
|
mask = data['revision date'] == data['revision date'].shift(1)
|
||
|
data.loc[mask, 'revision date'] = ''
|
||
|
|
||
|
params_data = data.values
|
||
|
params_header = data.columns.tolist()
|
||
|
params_stubs = None
|
||
|
|
||
|
title = 'Revisions to dataset:'
|
||
|
revisions_table = SimpleTable(
|
||
|
params_data, params_header, params_stubs,
|
||
|
txt_fmt=fmt_params, title=title)
|
||
|
|
||
|
return revisions_table
|
||
|
|
||
|
def summary_news(self, sparsify=True):
|
||
|
"""
|
||
|
Create summary table showing news from new data since previous results
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sparsify : bool, optional, default True
|
||
|
Set to False for the table to include every one of the multiindex
|
||
|
keys at each row.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
updates_table : SimpleTable
|
||
|
Table showing new datapoints that were not in the previous results'
|
||
|
data. Columns are:
|
||
|
|
||
|
- `update date` : date associated with a new data point.
|
||
|
- `updated variable` : variable for which new data was added at
|
||
|
`update date`.
|
||
|
- `forecast (prev)` : the forecast value for the updated variable
|
||
|
at the update date in the previous results object (i.e. prior to
|
||
|
the data being available).
|
||
|
- `observed` : the observed value of the new datapoint.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
data_updates
|
||
|
"""
|
||
|
data = pd.merge(
|
||
|
self.data_updates, self.news, left_index=True,
|
||
|
right_index=True).sort_index().reset_index()
|
||
|
try:
|
||
|
data[['update date', 'updated variable']] = (
|
||
|
data[['update date', 'updated variable']].map(str))
|
||
|
data.iloc[:, 2:] = data.iloc[:, 2:].map(
|
||
|
lambda num: '' if pd.isnull(num) else '%.2f' % num)
|
||
|
except AttributeError:
|
||
|
data[['update date', 'updated variable']] = (
|
||
|
data[['update date', 'updated variable']].applymap(str))
|
||
|
data.iloc[:, 2:] = data.iloc[:, 2:].applymap(
|
||
|
lambda num: '' if pd.isnull(num) else '%.2f' % num)
|
||
|
|
||
|
# Sparsify the date column
|
||
|
if sparsify:
|
||
|
mask = data['update date'] == data['update date'].shift(1)
|
||
|
data.loc[mask, 'update date'] = ''
|
||
|
|
||
|
params_data = data.values
|
||
|
params_header = data.columns.tolist()
|
||
|
params_stubs = None
|
||
|
|
||
|
title = 'News from updated observations:'
|
||
|
updates_table = SimpleTable(
|
||
|
params_data, params_header, params_stubs,
|
||
|
txt_fmt=fmt_params, title=title)
|
||
|
|
||
|
return updates_table
|
||
|
|
||
|
def summary(self, impact_date=None, impacted_variable=None,
|
||
|
update_date=None, updated_variable=None,
|
||
|
revision_date=None, revised_variable=None,
|
||
|
impacts_groupby='impact date', details_groupby='update date',
|
||
|
show_revisions_columns=None, sparsify=True,
|
||
|
include_details_tables=None, include_revisions_tables=False,
|
||
|
float_format='%.2f'):
|
||
|
"""
|
||
|
Create summary tables describing news and impacts
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
impact_date : int, str, datetime, list, array, or slice, optional
|
||
|
Observation index label or slice of labels specifying particular
|
||
|
impact periods to display. The impact date(s) describe the periods
|
||
|
in which impacted variables were *affected* by the news. If this
|
||
|
argument is given, the impact and details tables will only show
|
||
|
this impact date or dates. Note that this argument is passed to the
|
||
|
Pandas `loc` accessor, and so it should correspond to the labels of
|
||
|
the model's index. If the model was created with data in a list or
|
||
|
numpy array, then these labels will be zero-indexes observation
|
||
|
integers.
|
||
|
impacted_variable : str, list, array, or slice, optional
|
||
|
Observation variable label or slice of labels specifying particular
|
||
|
impacted variables to display. The impacted variable(s) describe
|
||
|
the variables that were *affected* by the news. If you do not know
|
||
|
the labels for the variables, check the `endog_names` attribute of
|
||
|
the model instance.
|
||
|
update_date : int, str, datetime, list, array, or slice, optional
|
||
|
Observation index label or slice of labels specifying particular
|
||
|
updated periods to display. The updated date(s) describe the
|
||
|
periods in which the new data points were available that generated
|
||
|
the news). See the note on `impact_date` for details about what
|
||
|
these labels are.
|
||
|
updated_variable : str, list, array, or slice, optional
|
||
|
Observation variable label or slice of labels specifying particular
|
||
|
updated variables to display. The updated variable(s) describe the
|
||
|
variables that newly added in the updated dataset and which
|
||
|
generated the news. If you do not know the labels for the
|
||
|
variables, check the `endog_names` attribute of the model instance.
|
||
|
revision_date : int, str, datetime, list, array, or slice, optional
|
||
|
Observation index label or slice of labels specifying particular
|
||
|
revision periods to display. The revision date(s) describe the
|
||
|
periods in which the data points were revised. See the note on
|
||
|
`impact_date` for details about what these labels are.
|
||
|
revised_variable : str, list, array, or slice, optional
|
||
|
Observation variable label or slice of labels specifying particular
|
||
|
revised variables to display. The updated variable(s) describe the
|
||
|
variables that were *revised*. If you do not know the labels for
|
||
|
the variables, check the `endog_names` attribute of the model
|
||
|
instance.
|
||
|
impacts_groupby : {impact date, impacted date}
|
||
|
The primary variable for grouping results in the impacts table. The
|
||
|
default is to group by update date.
|
||
|
details_groupby : str
|
||
|
One of "update date", "updated date", "impact date", or
|
||
|
"impacted date". The primary variable for grouping results in the
|
||
|
details table. Only used if the details tables are included. The
|
||
|
default is to group by update date.
|
||
|
show_revisions_columns : bool, optional
|
||
|
If set to False, the impacts table will not show the impacts from
|
||
|
data revisions or the total impacts. Default is to show the
|
||
|
revisions and totals columns if any revisions were made and
|
||
|
otherwise to hide them.
|
||
|
sparsify : bool, optional, default True
|
||
|
Set to False for the table to include every one of the multiindex
|
||
|
keys at each row.
|
||
|
include_details_tables : bool, optional
|
||
|
If set to True, the summary will show tables describing the details
|
||
|
of how news from specific updates translate into specific impacts.
|
||
|
These tables can be very long, particularly in cases where there
|
||
|
were many updates and in multivariate models. The default is to
|
||
|
show detailed tables only for univariate models.
|
||
|
include_revisions_tables : bool, optional
|
||
|
If set to True, the summary will show tables describing the
|
||
|
revisions and updates that lead to impacts on variables of
|
||
|
interest.
|
||
|
float_format : str, optional
|
||
|
Formatter format string syntax for converting numbers to strings.
|
||
|
Default is '%.2f'.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
summary_tables : Summary
|
||
|
Summary tables describing news and impacts. Basic tables include:
|
||
|
|
||
|
- A table with general information about the sample.
|
||
|
- A table describing the impacts of revisions and news.
|
||
|
- Tables describing revisions in the dataset since the previous
|
||
|
results set (unless `include_revisions_tables=False`).
|
||
|
|
||
|
In univariate models or if `include_details_tables=True`, one or
|
||
|
more tables will additionally be included describing the details
|
||
|
of how news from specific updates translate into specific impacts.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
summary_impacts
|
||
|
summary_details
|
||
|
summary_revisions
|
||
|
summary_updates
|
||
|
"""
|
||
|
# Default for include_details_tables
|
||
|
if include_details_tables is None:
|
||
|
include_details_tables = (self.k_endog == 1)
|
||
|
|
||
|
# Model specification results
|
||
|
model = self.model.model
|
||
|
title = 'News'
|
||
|
|
||
|
def get_sample(model):
|
||
|
if model._index_dates:
|
||
|
mask = ~np.isnan(model.endog).all(axis=1)
|
||
|
ix = model._index[mask]
|
||
|
d = ix[0]
|
||
|
sample = ['%s' % d]
|
||
|
d = ix[-1]
|
||
|
sample += ['- ' + '%s' % d]
|
||
|
else:
|
||
|
sample = [str(0), ' - ' + str(model.nobs)]
|
||
|
|
||
|
return sample
|
||
|
previous_sample = get_sample(self.previous.model)
|
||
|
revised_sample = get_sample(self.updated.model)
|
||
|
|
||
|
# Standardize the model name as a list of str
|
||
|
model_name = model.__class__.__name__
|
||
|
|
||
|
# Top summary table
|
||
|
top_left = [('Model:', [model_name]),
|
||
|
('Date:', None),
|
||
|
('Time:', None)]
|
||
|
if self.state_index is not None:
|
||
|
k_states_used = len(self.state_index)
|
||
|
if k_states_used != self.model.model.k_states:
|
||
|
top_left.append(('# of included states:', [k_states_used]))
|
||
|
|
||
|
top_right = [
|
||
|
('Original sample:', [previous_sample[0]]),
|
||
|
('', [previous_sample[1]]),
|
||
|
('Update through:', [revised_sample[1][2:]]),
|
||
|
('# of revisions:', [len(self.revisions_ix)]),
|
||
|
('# of new datapoints:', [len(self.updates_ix)])]
|
||
|
|
||
|
summary = Summary()
|
||
|
self.model.endog_names = self.model.model.endog_names
|
||
|
summary.add_table_2cols(self, gleft=top_left, gright=top_right,
|
||
|
title=title)
|
||
|
table_ix = 1
|
||
|
|
||
|
# Impact table
|
||
|
summary.tables.insert(table_ix, self.summary_impacts(
|
||
|
impact_date=impact_date, impacted_variable=impacted_variable,
|
||
|
groupby=impacts_groupby,
|
||
|
show_revisions_columns=show_revisions_columns, sparsify=sparsify,
|
||
|
float_format=float_format))
|
||
|
table_ix += 1
|
||
|
|
||
|
# News table
|
||
|
if len(self.updates_iloc) > 0:
|
||
|
summary.tables.insert(
|
||
|
table_ix, self.summary_news(sparsify=sparsify))
|
||
|
table_ix += 1
|
||
|
|
||
|
# Detail tables
|
||
|
multiple_tables = (self.k_endog > 1)
|
||
|
details_tables = self.summary_details(
|
||
|
source='news',
|
||
|
impact_date=impact_date, impacted_variable=impacted_variable,
|
||
|
update_date=update_date, updated_variable=updated_variable,
|
||
|
groupby=details_groupby, sparsify=sparsify,
|
||
|
float_format=float_format, multiple_tables=multiple_tables)
|
||
|
if not multiple_tables:
|
||
|
details_tables = [details_tables]
|
||
|
|
||
|
if include_details_tables:
|
||
|
for table in details_tables:
|
||
|
summary.tables.insert(table_ix, table)
|
||
|
table_ix += 1
|
||
|
|
||
|
# Revisions
|
||
|
if include_revisions_tables and self.n_revisions > 0:
|
||
|
summary.tables.insert(
|
||
|
table_ix, self.summary_revisions(sparsify=sparsify))
|
||
|
table_ix += 1
|
||
|
|
||
|
# Revision detail tables
|
||
|
revision_details_tables = self.summary_details(
|
||
|
source='revisions',
|
||
|
impact_date=impact_date, impacted_variable=impacted_variable,
|
||
|
update_date=revision_date, updated_variable=revised_variable,
|
||
|
groupby=details_groupby, sparsify=sparsify,
|
||
|
float_format=float_format, multiple_tables=multiple_tables)
|
||
|
if not multiple_tables:
|
||
|
revision_details_tables = [revision_details_tables]
|
||
|
|
||
|
if include_details_tables:
|
||
|
for table in revision_details_tables:
|
||
|
summary.tables.insert(table_ix, table)
|
||
|
table_ix += 1
|
||
|
|
||
|
return summary
|
||
|
|
||
|
def get_details(self, include_revisions=True, include_updates=True):
|
||
|
details = []
|
||
|
if include_updates:
|
||
|
details.append(self.details_by_impact.rename(
|
||
|
columns={'forecast (prev)': 'previous'}))
|
||
|
if include_revisions:
|
||
|
tmp = self.revision_details_by_impact.rename_axis(
|
||
|
index={'revision date': 'update date',
|
||
|
'revised variable': 'updated variable'})
|
||
|
tmp = tmp.rename(columns={'revised': 'observed',
|
||
|
'observed (prev)': 'previous',
|
||
|
'revision': 'news'})
|
||
|
details.append(tmp)
|
||
|
if not (include_updates or include_revisions):
|
||
|
details.append(self.details_by_impact.rename(
|
||
|
columns={'forecast (prev)': 'previous'}).iloc[:0])
|
||
|
|
||
|
return pd.concat(details)
|
||
|
|
||
|
def get_impacts(self, groupby=None, include_revisions=True,
|
||
|
include_updates=True):
|
||
|
details = self.get_details(include_revisions=include_revisions,
|
||
|
include_updates=include_updates)
|
||
|
|
||
|
impacts = details['impact'].unstack(['impact date',
|
||
|
'impacted variable'])
|
||
|
|
||
|
if groupby is not None:
|
||
|
impacts = (impacts.unstack('update date')
|
||
|
.groupby(groupby).sum(min_count=1)
|
||
|
.stack('update date')
|
||
|
.swaplevel()
|
||
|
.sort_index())
|
||
|
|
||
|
return impacts
|