905 lines
52 KiB
Python
905 lines
52 KiB
Python
|
# Copyright (c) 2011, Roger Lew [see LICENSE.txt]
|
||
|
# This software is funded in part by NIH Grant P20 RR016454.
|
||
|
|
||
|
"""
|
||
|
Implementation of Gleason's (1999) non-iterative upper quantile
|
||
|
studentized range approximation.
|
||
|
|
||
|
According to Gleason this method should be more accurate than the
|
||
|
AS190 FORTRAN algorithm of Lund and Lund (1983) and works from .5
|
||
|
<= p <= .999 (The AS190 only works from .9 <= p <= .99).
|
||
|
|
||
|
It is more efficient then the Copenhaver & Holland (1988) algorithm
|
||
|
(used by the _qtukey_ R function) although it requires storing the A
|
||
|
table in memory. (q distribution) approximations in Python.
|
||
|
|
||
|
see:
|
||
|
Gleason, J. R. (1999). An accurate, non-iterative approximation
|
||
|
for studentized range quantiles. Computational Statistics &
|
||
|
Data Analysis, (31), 147-158.
|
||
|
|
||
|
Gleason, J. R. (1998). A table of quantile points of the
|
||
|
Studentized range distribution.
|
||
|
http://www.stata.com/stb/stb46/dm64/sturng.pdf
|
||
|
"""
|
||
|
from statsmodels.compat.python import lrange
|
||
|
import math
|
||
|
import scipy.stats
|
||
|
import numpy as np
|
||
|
|
||
|
from scipy.optimize import fminbound
|
||
|
|
||
|
inf = np.inf
|
||
|
|
||
|
__version__ = '0.2.3'
|
||
|
|
||
|
# changelog
|
||
|
# 0.1 - initial release
|
||
|
# 0.1.1 - vectorized
|
||
|
# 0.2 - psturng added
|
||
|
# 0.2.1 - T, R generation script relegated to make_tbls.py
|
||
|
# 0.2.2
|
||
|
# - select_points refactored for performance to select_ps and
|
||
|
# select_vs
|
||
|
# - pysturng tester added.
|
||
|
# 0.2.3 - uses np.inf and np.isinf
|
||
|
|
||
|
# Gleason's table was derived using least square estimation on the tabled
|
||
|
# r values for combinations of p and v. In total there are 206
|
||
|
# estimates over p-values of .5, .75, .9, .95, .975, .99, .995,
|
||
|
# and .999, and over v (degrees of freedom) of (1) - 20, 24, 30, 40,
|
||
|
# 60, 120, and inf. combinations with p < .95 do not have coefficients
|
||
|
# for v = 1. Hence the parentheses. These coefficients allow us to
|
||
|
# form f-hat. f-hat with the inverse t transform of tinv(p,v) yields
|
||
|
# a fairly accurate estimate of the studentized range distribution
|
||
|
# across a wide range of values. According to Gleason this method
|
||
|
# should be more accurate than algorithm AS190 of Lund and Lund (1983)
|
||
|
# and work across a wider range of values (The AS190 only works
|
||
|
# from .9 <= p <= .99). R's qtukey algorithm was used to add tables
|
||
|
# at .675, .8, and .85. These aid approximations when p < .9.
|
||
|
#
|
||
|
# The code that generated this table is called make_tbls.py and is
|
||
|
# located in version control.
|
||
|
A = {(0.1, 2.0): [-2.2485085243379075, -1.5641014278923464, 0.55942294426816752, -0.060006608853883377],
|
||
|
(0.1, 3.0): [-2.2061105943901564, -1.8415406600571855, 0.61880788039834955, -0.062217093661209831],
|
||
|
(0.1, 4.0): [-2.1686691786678178, -2.008196172372553, 0.65010084431947401, -0.06289005500114471],
|
||
|
(0.1, 5.0): [-2.145077200277393, -2.112454843879346, 0.66701240582821342, -0.062993502233654797],
|
||
|
(0.1, 6.0): [-2.0896098049743155, -2.2400004934286497, 0.70088523391700142, -0.065907568563272748],
|
||
|
(0.1, 7.0): [-2.0689296655661584, -2.3078445479584873, 0.71577374609418909, -0.067081034249350552],
|
||
|
(0.1, 8.0): [-2.0064956480711262, -2.437400413087452, 0.76297532367415266, -0.072805518121505458],
|
||
|
(0.1, 9.0): [-2.3269477513436061, -2.0469494712773089, 0.60662518717720593, -0.054887108437009016],
|
||
|
(0.1, 10.0): [-2.514024350177229, -1.8261187841127482, 0.51674358077906746, -0.044590425150963633],
|
||
|
(0.1, 11.0): [-2.5130181309130828, -1.8371718595995694, 0.51336701694862252, -0.043761825829092445],
|
||
|
(0.1, 12.0): [-2.5203508109278823, -1.8355687130611862, 0.5063486549107169, -0.042646205063108261],
|
||
|
(0.1, 13.0): [-2.5142536438310477, -1.8496969402776282, 0.50616991367764153, -0.042378379905665363],
|
||
|
(0.1, 14.0): [-2.3924634153781352, -2.013859173066078, 0.56421893251638688, -0.048716888109540266],
|
||
|
(0.1, 15.0): [-2.3573552940582574, -2.0576676976224362, 0.57424068771143233, -0.049367487649225841],
|
||
|
(0.1, 16.0): [-2.3046427483044871, -2.1295959138627993, 0.59778272657680553, -0.051864829216301617],
|
||
|
(0.1, 17.0): [-2.2230551072316125, -2.2472837435427127, 0.64255758243215211, -0.057186665209197643],
|
||
|
(0.1, 18.0): [-2.3912859179716897, -2.0350604070641269, 0.55924788749333332, -0.047729331835226464],
|
||
|
(0.1, 19.0): [-2.4169773092220623, -2.0048217969339146, 0.54493039319748915, -0.045991241346224065],
|
||
|
(0.1, 20.0): [-2.4264087194660751, -1.9916614057049267, 0.53583555139648154, -0.04463049934517662],
|
||
|
(0.1, 24.0): [-2.3969903132061869, -2.0252941869225345, 0.53428382141200137, -0.043116495567779786],
|
||
|
(0.1, 30.0): [-2.2509922780354623, -2.2309248956124894, 0.60748041324937263, -0.051427415888817322],
|
||
|
(0.1, 40.0): [-2.1310090183854946, -2.3908466074610564, 0.65844375382323217, -0.05676653804036895],
|
||
|
(0.1, 60.0): [-1.9240060179027036, -2.6685751031012233, 0.75678826647453024, -0.067938584352398995],
|
||
|
(0.1, 120.0): [-1.9814895487030182, -2.5962051736978373, 0.71793969041292693, -0.063126863201511618],
|
||
|
(0.1, inf): [-1.913410267066703, -2.6947367328724732, 0.74742335122750592, -0.06660897234304515],
|
||
|
(0.5, 2.0): [-0.88295935738770648, -0.1083576698911433, 0.035214966839394388, -0.0028576288978276461],
|
||
|
(0.5, 3.0): [-0.89085829205846834, -0.10255696422201063, 0.033613638666631696, -0.0027101699918520737],
|
||
|
(0.5, 4.0): [-0.89627345339338116, -0.099072524607668286, 0.032657774808907684, -0.0026219007698204916],
|
||
|
(0.5, 5.0): [-0.89959145511941052, -0.097272836582026817, 0.032236187675182958, -0.0025911555217019663],
|
||
|
(0.5, 6.0): [-0.89959428735702474, -0.098176292411106647, 0.032590766960226995, -0.0026319890073613164],
|
||
|
(0.5, 7.0): [-0.90131491102863937, -0.097135907620296544, 0.032304124993269533, -0.0026057965808244125],
|
||
|
(0.5, 8.0): [-0.90292500599432901, -0.096047500971337962, 0.032030946615574568, -0.0025848748659053891],
|
||
|
(0.5, 9.0): [-0.90385598607803697, -0.095390771554571888, 0.031832651111105899, -0.0025656060219315991],
|
||
|
(0.5, 10.0): [-0.90562524936125388, -0.093954488089771915, 0.031414451048323286, -0.0025257834705432031],
|
||
|
(0.5, 11.0): [-0.90420347371173826, -0.095851656370277288, 0.0321150356209743, -0.0026055056400093451],
|
||
|
(0.5, 12.0): [-0.90585973471757664, -0.094449306296728028, 0.031705945923210958, -0.0025673330195780191],
|
||
|
(0.5, 13.0): [-0.90555437067293054, -0.094792991050780248, 0.031826594964571089, -0.0025807109129488545],
|
||
|
(0.5, 14.0): [-0.90652756604388762, -0.093792156994564738, 0.031468966328889042, -0.0025395175361083741],
|
||
|
(0.5, 15.0): [-0.90642323700400085, -0.094173017520487984, 0.031657517378893905, -0.0025659271829033877],
|
||
|
(0.5, 16.0): [-0.90716338636685234, -0.093785178083820434, 0.031630091949657997, -0.0025701459247416637],
|
||
|
(0.5, 17.0): [-0.90790133816769714, -0.093001147638638884, 0.031376863944487084, -0.002545143621663892],
|
||
|
(0.5, 18.0): [-0.9077432927051563, -0.093343516378180599, 0.031518139662395313, -0.0025613906133277178],
|
||
|
(0.5, 19.0): [-0.90789499456490286, -0.09316964789456067, 0.031440782366342901, -0.0025498353345867453],
|
||
|
(0.5, 20.0): [-0.90842707861030725, -0.092696016476608592, 0.031296040311388329, -0.0025346963982742186],
|
||
|
(0.5, 24.0): [-0.9083281347135469, -0.092959308144970776, 0.031464063190077093, -0.0025611384271086285],
|
||
|
(0.5, 30.0): [-0.90857624050016828, -0.093043139391980514, 0.031578791729341332, -0.0025766595412777147],
|
||
|
(0.5, 40.0): [-0.91034085045438684, -0.091978035738914568, 0.031451631000052639, -0.0025791418103733297],
|
||
|
(0.5, 60.0): [-0.91084356681030032, -0.091452675572423425, 0.031333147984820044, -0.0025669786958144843],
|
||
|
(0.5, 120.0): [-0.90963649561463833, -0.093414563261352349, 0.032215602703677425, -0.0026704024780441257],
|
||
|
(0.5, inf): [-0.91077157500981665, -0.092899220350334571, 0.032230422399363315, -0.0026696941964372916],
|
||
|
(0.675, 2.0): [-0.67231521026565144, -0.097083624030663451, 0.027991378901661649, -0.0021425184069845558],
|
||
|
(0.675, 3.0): [-0.65661724764645824, -0.08147195494632696, 0.02345732427073333, -0.0017448570400999351],
|
||
|
(0.675, 4.0): [-0.65045677697461124, -0.071419073399450431, 0.020741962576852499, -0.0015171262565892491],
|
||
|
(0.675, 5.0): [-0.64718875357808325, -0.064720611425218344, 0.019053450246546449, -0.0013836232986228711],
|
||
|
(0.675, 6.0): [-0.64523003702018655, -0.059926313672731824, 0.017918997181483924, -0.0012992250285556828],
|
||
|
(0.675, 7.0): [-0.64403313148478836, -0.056248191513784476, 0.017091446791293721, -0.0012406558789511822],
|
||
|
(0.675, 8.0): [-0.64325095865764359, -0.053352543126426684, 0.016471879286491072, -0.0011991839050964099],
|
||
|
(0.675, 9.0): [-0.64271152754911653, -0.051023769620449078, 0.01599799600547195, -0.0011693637984597086],
|
||
|
(0.675, 10.0): [-0.64232244408502626, -0.049118327462884373, 0.015629704966568955, -0.0011477775513952285],
|
||
|
(0.675, 11.0): [-0.64203897854353564, -0.047524627960277892, 0.015334801262767227, -0.0011315057284007177],
|
||
|
(0.675, 12.0): [-0.64180344973512771, -0.046205907576003291, 0.015108290595438166, -0.0011207364514518488],
|
||
|
(0.675, 13.0): [-0.64162086456823342, -0.045076099336874231, 0.0149226565346125, -0.0011126140690497352],
|
||
|
(0.675, 14.0): [-0.64146906480198984, -0.044108523550512715, 0.014772954218646743, -0.0011069708562369386],
|
||
|
(0.675, 15.0): [-0.64133915151966603, -0.043273370927039825, 0.014651691599222836, -0.0011032216539514398],
|
||
|
(0.675, 16.0): [-0.64123237842752079, -0.042538925012463868, 0.014549992487506169, -0.0011005633864334021],
|
||
|
(0.675, 17.0): [-0.64113034037536609, -0.041905699463005854, 0.014470805560767184, -0.0010995286436738471],
|
||
|
(0.675, 18.0): [-0.64104137391561256, -0.041343885546229336, 0.014404563657113593, -0.0010991304223377683],
|
||
|
(0.675, 19.0): [-0.64096064882827297, -0.04084569291139839, 0.014350159655133801, -0.0010993656711121901],
|
||
|
(0.675, 20.0): [-0.64088647405089572, -0.040402175957178085, 0.014305769823654429, -0.0011001304776712105],
|
||
|
(0.675, 24.0): [-0.64063763965937837, -0.039034716348048545, 0.014196703837251648, -0.0011061961945598175],
|
||
|
(0.675, 30.0): [-0.64034987716294889, -0.037749651156941719, 0.014147040999127263, -0.0011188251352919833],
|
||
|
(0.675, 40.0): [-0.6399990514713938, -0.036583307574857803, 0.014172070700846548, -0.0011391004138624943],
|
||
|
(0.675, 60.0): [-0.63955586202430248, -0.035576938958184395, 0.014287299153378865, -0.0011675811805794236],
|
||
|
(0.675, 120.0): [-0.63899242674778622, -0.034763757512388853, 0.014500726912982405, -0.0012028491454427466],
|
||
|
(0.675, inf): [-0.63832682579247613, -0.034101476695520404, 0.014780921043580184, -0.0012366204114216408],
|
||
|
(0.75, 2.0): [-0.60684073638504454, -0.096375192078057031, 0.026567529471304554, -0.0019963228971914488],
|
||
|
(0.75, 3.0): [-0.57986144519102656, -0.078570292718034881, 0.021280637925009449, -0.0015329306898533772],
|
||
|
(0.75, 4.0): [-0.56820771686193594, -0.0668113563896649, 0.018065284051059189, -0.0012641485481533648],
|
||
|
(0.75, 5.0): [-0.56175292435740221, -0.058864526929603825, 0.016046735025708799, -0.0011052560286524044],
|
||
|
(0.75, 6.0): [-0.55773449282066356, -0.053136923269827351, 0.014684258167069347, -0.0010042826823561605],
|
||
|
(0.75, 7.0): [-0.55509524598867332, -0.048752649191139405, 0.013696566605823626, -0.00093482210003133898],
|
||
|
(0.75, 8.0): [-0.55324993686191515, -0.045305558708724644, 0.012959681992062138, -0.00088583541601696021],
|
||
|
(0.75, 9.0): [-0.55189259054026196, -0.042539819902381634, 0.012398791106424769, -0.00085083962241435827],
|
||
|
(0.75, 10.0): [-0.55085384656956893, -0.040281425755686585, 0.01196442242722482, -0.00082560322161492677],
|
||
|
(0.75, 11.0): [-0.55003198103541273, -0.038410176100193948, 0.011623294239447784, -0.00080732975034320073],
|
||
|
(0.75, 12.0): [-0.54936541596319177, -0.036838543267887103, 0.011351822637895701, -0.0007940703654926442],
|
||
|
(0.75, 13.0): [-0.54881015972753833, -0.035506710625568455, 0.011134691307865171, -0.0007846360016355809],
|
||
|
(0.75, 14.0): [-0.54834094346071949, -0.034364790609906569, 0.010958873929274728, -0.00077796645357008291],
|
||
|
(0.75, 15.0): [-0.54793602418304255, -0.033379237455748029, 0.010816140998057593, -0.00077344175064785099],
|
||
|
(0.75, 16.0): [-0.54758347689728037, -0.032520569145898917, 0.010699240399358219, -0.00077050847328596678],
|
||
|
(0.75, 17.0): [-0.54727115963795303, -0.031769277192927527, 0.010603749751170481, -0.0007688642392748113],
|
||
|
(0.75, 18.0): [-0.54699351808826535, -0.031105476267880995, 0.010524669113016114, -0.00076810656837464093],
|
||
|
(0.75, 19.0): [-0.54674357626419079, -0.030516967201954001, 0.010459478822937069, -0.00076808652582440037],
|
||
|
(0.75, 20.0): [-0.54651728378950126, -0.029992319199769232, 0.010405694998386575, -0.0007686417223966138],
|
||
|
(0.75, 24.0): [-0.54578309546828363, -0.028372628574010936, 0.010269939602271542, -0.00077427370647261838],
|
||
|
(0.75, 30.0): [-0.54501246434397554, -0.026834887880579802, 0.010195603314317611, -0.00078648615954105515],
|
||
|
(0.75, 40.0): [-0.54418127442022624, -0.025413224488871379, 0.010196455193836855, -0.00080610785749523739],
|
||
|
(0.75, 60.0): [-0.543265189207915, -0.024141961069146383, 0.010285001019536088, -0.00083332193364294587],
|
||
|
(0.75, 120.0): [-0.54224757817994806, -0.023039071833948214, 0.010463365295636302, -0.00086612828539477918],
|
||
|
(0.75, inf): [-0.54114579815367159, -0.02206592527426093, 0.01070374099737127, -0.00089726564005122183],
|
||
|
(0.8, 2.0): [-0.56895274046831146, -0.096326255190541957, 0.025815915364208686, -0.0019136561019354845],
|
||
|
(0.8, 3.0): [-0.5336038380862278, -0.077585191014876181, 0.020184759265389905, -0.0014242746007323785],
|
||
|
(0.8, 4.0): [-0.51780274285934258, -0.064987738443608709, 0.016713309796866204, -0.001135379856633562],
|
||
|
(0.8, 5.0): [-0.50894361222268403, -0.056379186603362705, 0.014511270339773345, -0.00096225604117493205],
|
||
|
(0.8, 6.0): [-0.50335153028630408, -0.050168860294790812, 0.01302807093593626, -0.00085269812692536306],
|
||
|
(0.8, 7.0): [-0.49960934380896432, -0.045417333787806033, 0.011955593330247398, -0.00077759605604250882],
|
||
|
(0.8, 8.0): [-0.49694518248979763, -0.041689151516021969, 0.011158986677273709, -0.00072497430103953366],
|
||
|
(0.8, 9.0): [-0.4949559974898507, -0.038702217132906024, 0.010554360004521268, -0.0006875213117164109],
|
||
|
(0.8, 10.0): [-0.49341407910162483, -0.036266788741325398, 0.010087354421936092, -0.00066060835062865602],
|
||
|
(0.8, 11.0): [-0.49218129312493897, -0.034252403643273498, 0.0097218584838579536, -0.00064123459335201907],
|
||
|
(0.8, 12.0): [-0.49117223957112183, -0.032563269730499021, 0.0094318583096021404, -0.00062725253852419032],
|
||
|
(0.8, 13.0): [-0.49032781145131277, -0.031132495018324432, 0.0091999762562792898, -0.0006172944366003854],
|
||
|
(0.8, 14.0): [-0.48961049628464259, -0.029906921170494854, 0.009012451847823854, -0.00061026211968669543],
|
||
|
(0.8, 15.0): [-0.48899069793054922, -0.028849609914548158, 0.0088602820002619594, -0.00060548991575179055],
|
||
|
(0.8, 16.0): [-0.48844921216636505, -0.027929790075266154, 0.00873599263877896, -0.00060242119796859379],
|
||
|
(0.8, 17.0): [-0.48797119683309537, -0.027123634910159868, 0.0086338139869481887, -0.00060061821593399998],
|
||
|
(0.8, 18.0): [-0.48754596864745836, -0.026411968723496961, 0.0085493196604705755, -0.00059977083160833624],
|
||
|
(0.8, 19.0): [-0.48716341805691843, -0.025781422230819986, 0.0084796655915025769, -0.00059970031758323466],
|
||
|
(0.8, 20.0): [-0.48681739197185547, -0.025219629852198749, 0.0084221844254287765, -0.00060023212822886711],
|
||
|
(0.8, 24.0): [-0.48570639629281365, -0.023480608772518948, 0.008274490561114187, -0.000605681105792215],
|
||
|
(0.8, 30.0): [-0.48455867067770253, -0.021824655071720423, 0.0081888502974720567, -0.00061762126933785633],
|
||
|
(0.8, 40.0): [-0.48335478729267423, -0.020279958998363389, 0.0081765095914194709, -0.00063657117129829635],
|
||
|
(0.8, 60.0): [-0.48207351944996679, -0.018875344346672228, 0.0082473997191472338, -0.00066242478479277243],
|
||
|
(0.8, 120.0): [-0.48070356185330182, -0.017621686995755746, 0.0084009638803223801, -0.00069300383808949318],
|
||
|
(0.8, inf): [-0.47926687718713606, -0.016476575352367202, 0.0086097059646591811, -0.00072160843492730911],
|
||
|
(0.85, 2.0): [-0.53366806986381743, -0.098288178252723263, 0.026002333446289064, -0.0019567144268844896],
|
||
|
(0.85, 3.0): [-0.48995919239619989, -0.077312722648418056, 0.019368984865418108, -0.0013449670192265796],
|
||
|
(0.85, 4.0): [-0.46956079162382858, -0.063818518513946695, 0.015581608910696544, -0.0010264315084377606],
|
||
|
(0.85, 5.0): [-0.45790853796153624, -0.054680511194530226, 0.013229852432203093, -0.00084248430847535898],
|
||
|
(0.85, 6.0): [-0.4505070841695738, -0.048050936682873302, 0.011636407582714191, -0.00072491480033529815],
|
||
|
(0.85, 7.0): [-0.44548337477336181, -0.042996612516383016, 0.010493052959891263, -0.00064528784792153239],
|
||
|
(0.85, 8.0): [-0.44186624932664148, -0.039040005821657585, 0.0096479530794160544, -0.00058990874360967567],
|
||
|
(0.85, 9.0): [-0.43914118689812259, -0.035875693030752713, 0.0090088804130628187, -0.00055071480339399694],
|
||
|
(0.85, 10.0): [-0.43701255390953769, -0.033300997407157376, 0.0085172159355344848, -0.00052272770799695464],
|
||
|
(0.85, 11.0): [-0.43530109064899053, -0.031174742038490313, 0.0081335619868386066, -0.00050268353809787927],
|
||
|
(0.85, 12.0): [-0.43389220376610071, -0.02939618314990838, 0.007830626267772851, -0.00048836431712678222],
|
||
|
(0.85, 13.0): [-0.43271026958463166, -0.027890759135246888, 0.0075886916668632936, -0.00047819339710596971],
|
||
|
(0.85, 14.0): [-0.43170230265007209, -0.026604156062396189, 0.0073939099688705547, -0.00047109996854335419],
|
||
|
(0.85, 15.0): [-0.43083160459377423, -0.025494228911600785, 0.0072358738657550868, -0.00046630677052262481],
|
||
|
(0.85, 16.0): [-0.4300699280587239, -0.024529612608808794, 0.0071069227026219683, -0.00046323869860941791],
|
||
|
(0.85, 17.0): [-0.42939734931902857, -0.023685025616054269, 0.0070011541609695891, -0.00046147954942994158],
|
||
|
(0.85, 18.0): [-0.42879829041505324, -0.022940655682782165, 0.006914006369119409, -0.00046070877994711774],
|
||
|
(0.85, 19.0): [-0.42826119448419875, -0.022280181781634649, 0.0068417746905826433, -0.00046066841214091982],
|
||
|
(0.85, 20.0): [-0.42777654887094479, -0.021690909076747832, 0.0067817408643717969, -0.00046118620289068032],
|
||
|
(0.85, 24.0): [-0.42622450033640852, -0.019869646711890065, 0.0066276799593494029, -0.00046668820637553747],
|
||
|
(0.85, 30.0): [-0.42463810443233418, -0.018130114737381745, 0.0065344613060499164, -0.00047835583417510423],
|
||
|
(0.85, 40.0): [-0.42299917804589382, -0.016498222901308417, 0.0065120558343578407, -0.00049656043685325469],
|
||
|
(0.85, 60.0): [-0.42129387265810464, -0.014992121475265813, 0.0065657795990087635, -0.00052069705640687698],
|
||
|
(0.85, 120.0): [-0.41951580476366368, -0.013615722489371183, 0.0066923911275726814, -0.00054846911649167492],
|
||
|
(0.85, inf): [-0.41768751825428968, -0.012327525092266726, 0.0068664920569562592, -0.00057403720261753539],
|
||
|
(0.9, 1.0): [-0.65851063279096722, -0.126716242078905, 0.036318801917603061, -0.002901283222928193],
|
||
|
(0.9, 2.0): [-0.50391945369829139, -0.096996108021146235, 0.024726437623473398, -0.0017901399938303017],
|
||
|
(0.9, 3.0): [-0.44799791843058734, -0.077180370333307199, 0.018584042055594469, -0.0012647038118363408],
|
||
|
(0.9, 4.0): [-0.42164091756145167, -0.063427071006287514, 0.014732203755741392, -0.00094904174117957688],
|
||
|
(0.9, 5.0): [-0.40686856251221754, -0.053361940054842398, 0.012041802076025801, -0.00072960198292410612],
|
||
|
(0.9, 6.0): [-0.39669926026535285, -0.046951517438004242, 0.010546647213094956, -0.00062621198002366064],
|
||
|
(0.9, 7.0): [-0.39006553675807426, -0.04169480606532109, 0.0093687546601737195, -0.00054648695713273862],
|
||
|
(0.9, 8.0): [-0.38570205067061908, -0.037083910859179794, 0.0083233218526375836, -0.00047177586974035451],
|
||
|
(0.9, 9.0): [-0.38190737267892938, -0.034004585655388865, 0.0077531991574119183, -0.00044306547308527872],
|
||
|
(0.9, 10.0): [-0.37893272918125737, -0.031394677600916979, 0.0072596802503533536, -0.0004160518834299966],
|
||
|
(0.9, 11.0): [-0.37692512492705132, -0.028780793403136471, 0.0066937909049060379, -0.00037420010136784526],
|
||
|
(0.9, 12.0): [-0.37506345200129187, -0.026956483290567372, 0.0064147730707776523, -0.00036595383207062906],
|
||
|
(0.9, 13.0): [-0.37339516122383209, -0.02543949524844704, 0.0061760656530197187, -0.00035678737379179527],
|
||
|
(0.9, 14.0): [-0.37216979891087842, -0.02396347606956644, 0.0059263234465969641, -0.0003439784452550796],
|
||
|
(0.9, 15.0): [-0.371209456600122, -0.022696132732654414, 0.0057521677184623147, -0.00033961108561770848],
|
||
|
(0.9, 16.0): [-0.36958924377983338, -0.022227885445863002, 0.0057691706799383926, -0.00035042762538099682],
|
||
|
(0.9, 17.0): [-0.36884224719083203, -0.021146977888668726, 0.0055957928269732716, -0.00034283810412697531],
|
||
|
(0.9, 18.0): [-0.36803087186793326, -0.020337731477576542, 0.0054655378095212759, -0.00033452966946535248],
|
||
|
(0.9, 19.0): [-0.3676700404163355, -0.019370115848857467, 0.0053249296207149655, -0.00032975528909580403],
|
||
|
(0.9, 20.0): [-0.36642276267188811, -0.019344251412284838, 0.0054454968582897528, -0.00034868111677540948],
|
||
|
(0.9, 24.0): [-0.36450650753755193, -0.017284255499990679, 0.0052337500059176749, -0.00034898202845747288],
|
||
|
(0.9, 30.0): [-0.36251868940168608, -0.015358560437631397, 0.0050914299956134786, -0.00035574528891633978],
|
||
|
(0.9, 40.0): [-0.36008886676510943, -0.014016835682905486, 0.0051930835959111514, -0.00038798316011984165],
|
||
|
(0.9, 60.0): [-0.35825590690268061, -0.011991568926537646, 0.0050632208542414191, -0.00039090198974493085],
|
||
|
(0.9, 120.0): [-0.35543612237284411, -0.011074403997811812, 0.0053504570752765162, -0.00043647137428074178],
|
||
|
(0.9, inf): [-0.35311806343057167, -0.0096254020092145353, 0.0054548591208177181, -0.00045343916634968493],
|
||
|
(0.95, 1.0): [-0.65330318136020071, -0.12638310760474375, 0.035987535130769424, -0.0028562665467665315],
|
||
|
(0.95, 2.0): [-0.47225160417826934, -0.10182570362271424, 0.025846563499059158, -0.0019096769058043243],
|
||
|
(0.95, 3.0): [-0.4056635555586528, -0.077067172693350297, 0.017789909647225533, -0.001182961668735774],
|
||
|
(0.95, 4.0): [-0.37041675177340955, -0.063815687118939465, 0.014115210247737845, -0.00089996098435117598],
|
||
|
(0.95, 5.0): [-0.35152398291152309, -0.052156502640669317, 0.010753738086401853, -0.0005986841939451575],
|
||
|
(0.95, 6.0): [-0.33806730015201264, -0.045668399809578597, 0.0093168898952878162, -0.00051369719615782102],
|
||
|
(0.95, 7.0): [-0.32924041072104465, -0.040019601775490091, 0.0080051199552865163, -0.00042054536135868043],
|
||
|
(0.95, 8.0): [-0.32289030266989077, -0.035575345931670443, 0.0070509089344694669, -0.00035980773304803576],
|
||
|
(0.95, 9.0): [-0.31767304201477375, -0.032464945930165703, 0.0064755950437272143, -0.0003316676253661824],
|
||
|
(0.95, 10.0): [-0.31424318064708656, -0.029133461621153, 0.0057437449431074795, -0.00027894252261209191],
|
||
|
(0.95, 11.0): [-0.31113589620384974, -0.02685115250591049, 0.0053517905282942889, -0.00026155954116874666],
|
||
|
(0.95, 12.0): [-0.30848983612414582, -0.025043238019239168, 0.0050661675913488829, -0.00025017202909614005],
|
||
|
(0.95, 13.0): [-0.3059212907410393, -0.023863874699213077, 0.0049618051135807322, -0.00025665425781125703],
|
||
|
(0.95, 14.0): [-0.30449676902720035, -0.021983976741572344, 0.0045740513735751968, -0.00022881166323945914],
|
||
|
(0.95, 15.0): [-0.30264908294481396, -0.02104880307520084, 0.0044866571614804382, -0.00023187587597844057],
|
||
|
(0.95, 16.0): [-0.30118294463097917, -0.020160231061926728, 0.0044170780759056859, -0.00023733502359045826],
|
||
|
(0.95, 17.0): [-0.30020013353427744, -0.018959271614471574, 0.0041925333038202285, -0.00022274025630789767],
|
||
|
(0.95, 18.0): [-0.29857886556874402, -0.018664437456802001, 0.0042557787632833697, -0.00023758868868853716],
|
||
|
(0.95, 19.0): [-0.29796289236978263, -0.017632218552317589, 0.0040792779937959866, -0.00022753271474613109],
|
||
|
(0.95, 20.0): [-0.29681506554838077, -0.017302563243037392, 0.0041188426221428964, -0.00023913038468772782],
|
||
|
(0.95, 24.0): [-0.29403146911167666, -0.015332330986025032, 0.0039292170319163728, -0.00024003445648641732],
|
||
|
(0.95, 30.0): [-0.29080775563775879, -0.013844059210779323, 0.0039279165616059892, -0.00026085104496801666],
|
||
|
(0.95, 40.0): [-0.28821583032805109, -0.011894686715666892, 0.0038202623278839982, -0.00026933325102031252],
|
||
|
(0.95, 60.0): [-0.28525636737751447, -0.010235910558409797, 0.0038147029777580001, -0.00028598362144178959],
|
||
|
(0.95, 120.0): [-0.28241065885026539, -0.0086103836327305026, 0.0038450612886908714, -0.00030206053671559411],
|
||
|
(0.95, inf): [-0.27885570064169296, -0.0078122455524849222, 0.0041798538053623453, -0.0003469494881774609],
|
||
|
(0.975, 1.0): [-0.65203598304297983, -0.12608944279227957, 0.035710038757117347, -0.0028116024425349053],
|
||
|
(0.975, 2.0): [-0.46371891130382281, -0.096954458319996509, 0.023958312519912289, -0.0017124565391080503],
|
||
|
(0.975, 3.0): [-0.38265282195259875, -0.076782539231612282, 0.017405078796142955, -0.0011610853687902553],
|
||
|
(0.975, 4.0): [-0.34051193158878401, -0.063652342734671602, 0.013528310336964293, -0.00083644708934990761],
|
||
|
(0.975, 5.0): [-0.31777655705536484, -0.051694686914334619, 0.010115807205265859, -0.00054517465344192009],
|
||
|
(0.975, 6.0): [-0.30177149019958716, -0.044806697631189059, 0.008483551848413786, -0.00042827853925009264],
|
||
|
(0.975, 7.0): [-0.29046972313293562, -0.039732822689098744, 0.007435356037378946, -0.00037562928283350671],
|
||
|
(0.975, 8.0): [-0.28309484007368141, -0.034764904940713388, 0.0062932513694928518, -0.00029339243611357956],
|
||
|
(0.975, 9.0): [-0.27711707948119785, -0.031210465194810709, 0.0055576244284178435, -0.00024663798208895803],
|
||
|
(0.975, 10.0): [-0.27249203448553611, -0.028259756468251584, 0.00499112012528406, -0.00021535380417035389],
|
||
|
(0.975, 11.0): [-0.26848515860011007, -0.026146703336893323, 0.0046557767110634073, -0.00020400628148271448],
|
||
|
(0.975, 12.0): [-0.26499921540008192, -0.024522931106167097, 0.0044259624958665278, -0.00019855685376441687],
|
||
|
(0.975, 13.0): [-0.2625023751891592, -0.022785875653297854, 0.004150277321193792, -0.00018801223218078264],
|
||
|
(0.975, 14.0): [-0.26038552414321758, -0.021303509859738341, 0.0039195608280464681, -0.00017826200169385824],
|
||
|
(0.975, 15.0): [-0.25801244886414665, -0.020505508012402567, 0.0038754868932712929, -0.00018588907991739744],
|
||
|
(0.975, 16.0): [-0.25685316062360508, -0.018888418269740373, 0.0035453092842317293, -0.00016235770674204116],
|
||
|
(0.975, 17.0): [-0.25501132271353549, -0.018362951972357794, 0.0035653933105288631, -0.00017470353354992729],
|
||
|
(0.975, 18.0): [-0.25325045404452656, -0.017993537285026156, 0.0036035867405376691, -0.00018635492166426884],
|
||
|
(0.975, 19.0): [-0.25236899494677928, -0.016948921372207198, 0.0034138931781330802, -0.00017462253414687881],
|
||
|
(0.975, 20.0): [-0.25134498025027691, -0.016249564498874988, 0.0033197284005334333, -0.00017098091103245596],
|
||
|
(0.975, 24.0): [-0.24768690797476625, -0.014668160763513996, 0.0032850791186852558, -0.00019013480716844995],
|
||
|
(0.975, 30.0): [-0.24420834707522676, -0.012911171716272752, 0.0031977676700968051, -0.00020114907914487053],
|
||
|
(0.975, 40.0): [-0.24105725356215926, -0.010836526056169627, 0.0030231303550754159, -0.00020128696343148667],
|
||
|
(0.975, 60.0): [-0.23732082703955223, -0.0095442727157385391, 0.0031432904473555259, -0.00023062224109383941],
|
||
|
(0.975, 120.0): [-0.23358581879594578, -0.0081281259918709343, 0.0031877298679120094, -0.00024496230446851501],
|
||
|
(0.975, inf): [-0.23004105093119268, -0.0067112585174133573, 0.0032760251638919435, -0.00026244001319462992],
|
||
|
(0.99, 1.0): [-0.65154119422706203, -0.1266603927572312, 0.03607480609672048, -0.0028668112687608113],
|
||
|
(0.99, 2.0): [-0.45463403324378804, -0.098701236234527367, 0.024412715761684689, -0.0017613772919362193],
|
||
|
(0.99, 3.0): [-0.36402060051035778, -0.079244959193729148, 0.017838124021360584, -0.00119080116484847],
|
||
|
(0.99, 4.0): [-0.31903506063953818, -0.061060740682445241, 0.012093154962939612, -0.00067268347188443093],
|
||
|
(0.99, 5.0): [-0.28917014580689182, -0.052940780099313689, 0.010231009146279354, -0.00057178339184615239],
|
||
|
(0.99, 6.0): [-0.27283240161179012, -0.042505435573209085, 0.0072753401118264534, -0.00031314034710725922],
|
||
|
(0.99, 7.0): [-0.25773968720546719, -0.039384214480463406, 0.0069120882597286867, -0.00032994068754356204],
|
||
|
(0.99, 8.0): [-0.24913629282433833, -0.033831567178432859, 0.0055516244725724185, -0.00022570786249671376],
|
||
|
(0.99, 9.0): [-0.24252380896373404, -0.029488280751457097, 0.0045215453527922998, -0.00014424552929022646],
|
||
|
(0.99, 10.0): [-0.23654349556639986, -0.02705600214566789, 0.0041627255469343632, -0.00013804427029504753],
|
||
|
(0.99, 11.0): [-0.23187404969432468, -0.024803662094970855, 0.0037885852786822475, -0.00012334999287725012],
|
||
|
(0.99, 12.0): [-0.22749929386320905, -0.023655085290534145, 0.0037845051889055896, -0.00014785715789924055],
|
||
|
(0.99, 13.0): [-0.22458989143485605, -0.021688394892771506, 0.0034075294601425251, -0.00012436961982044268],
|
||
|
(0.99, 14.0): [-0.22197623872225777, -0.020188830700102918, 0.0031648685865587473, -0.00011320740119998819],
|
||
|
(0.99, 15.0): [-0.2193924323730066, -0.019327469111698265, 0.0031295453754886576, -0.00012373072900083014],
|
||
|
(0.99, 16.0): [-0.21739436875855705, -0.018215854969324128, 0.0029638341057222645, -0.00011714667871412003],
|
||
|
(0.99, 17.0): [-0.21548926805467686, -0.017447822179412719, 0.0028994805120482812, -0.00012001887015183794],
|
||
|
(0.99, 18.0): [-0.21365014687077843, -0.01688869353338961, 0.0028778031289216546, -0.00012591199104792711],
|
||
|
(0.99, 19.0): [-0.21236653761262406, -0.016057151563612645, 0.0027571468998022017, -0.00012049196593780046],
|
||
|
(0.99, 20.0): [-0.21092693178421842, -0.015641706950956638, 0.0027765989877361293, -0.00013084915163086915],
|
||
|
(0.99, 24.0): [-0.20681960327410207, -0.013804298040271909, 0.0026308276736585674, -0.0001355061502101814],
|
||
|
(0.99, 30.0): [-0.20271691131071576, -0.01206095288359876, 0.0025426138004198909, -0.00014589047959047533],
|
||
|
(0.99, 40.0): [-0.19833098054449289, -0.010714533963740719, 0.0025985992420317597, -0.0001688279944262007],
|
||
|
(0.99, 60.0): [-0.19406768821236584, -0.0093297106482013985, 0.0026521518387539584, -0.00018884874193665104],
|
||
|
(0.99, 120.0): [-0.19010213174677365, -0.0075958207221300924, 0.0025660823297025633, -0.00018906475172834352],
|
||
|
(0.99, inf): [-0.18602070255787137, -0.0062121155165363188, 0.0026328293420766593, -0.00020453366529867131],
|
||
|
(0.995, 1.0): [-0.65135583544951825, -0.1266868999507193, 0.036067522182457165, -0.0028654516958844922],
|
||
|
(0.995, 2.0): [-0.45229774013072793, -0.09869462954369547, 0.024381858599368908, -0.0017594734553033394],
|
||
|
(0.995, 3.0): [-0.35935765236429706, -0.076650408326671915, 0.016823026893528978, -0.0010835134496404637],
|
||
|
(0.995, 4.0): [-0.30704474720931169, -0.063093047731613019, 0.012771683306774929, -0.00075852491621809955],
|
||
|
(0.995, 5.0): [-0.27582551740863454, -0.052533353137885791, 0.0097776009845174372, -0.00051338031756399129],
|
||
|
(0.995, 6.0): [-0.25657971464398704, -0.043424914996692286, 0.0074324147435969991, -0.00034105188850494067],
|
||
|
(0.995, 7.0): [-0.24090407819707738, -0.039591604712200287, 0.0068848429451020387, -0.00034737131709273414],
|
||
|
(0.995, 8.0): [-0.23089540800827862, -0.034353305816361958, 0.0056009527629820111, -0.00024389336976992433],
|
||
|
(0.995, 9.0): [-0.22322694848310584, -0.030294770709722547, 0.0046751239747245543, -0.00017437479314218922],
|
||
|
(0.995, 10.0): [-0.21722684126671632, -0.026993563560163809, 0.0039811592710905491, -0.00013135281785826703],
|
||
|
(0.995, 11.0): [-0.21171635822852911, -0.025156193618212551, 0.0037507759652964205, -0.00012959836685175671],
|
||
|
(0.995, 12.0): [-0.20745332165849167, -0.023318819535607219, 0.0034935020002058903, -0.00012642826898405916],
|
||
|
(0.995, 13.0): [-0.20426054591612508, -0.021189796175249527, 0.003031472176128759, -9.0497733877531618e-05],
|
||
|
(0.995, 14.0): [-0.20113536905578902, -0.020011536696623061, 0.0029215880889956729, -9.571527213951222e-05],
|
||
|
(0.995, 15.0): [-0.19855601561006403, -0.018808533734002542, 0.0027608859956002344, -9.2472995256929217e-05],
|
||
|
(0.995, 16.0): [-0.19619157579534008, -0.017970461530551096, 0.0027113719105000371, -9.9864874982890861e-05],
|
||
|
(0.995, 17.0): [-0.19428015140726104, -0.017009762497670704, 0.0025833389598201345, -9.6137545738061124e-05],
|
||
|
(0.995, 18.0): [-0.19243180236773033, -0.01631617252107519, 0.0025227443561618621, -9.8067580523432881e-05],
|
||
|
(0.995, 19.0): [-0.19061294393069844, -0.01586226613672222, 0.0025207005902641781, -0.00010466151274918466],
|
||
|
(0.995, 20.0): [-0.18946302696580328, -0.014975796567260896, 0.0023700506576419867, -9.5507779057884629e-05],
|
||
|
(0.995, 24.0): [-0.18444251428695257, -0.013770955893918012, 0.0024579445553339903, -0.00012688402863358003],
|
||
|
(0.995, 30.0): [-0.18009742499570078, -0.011831341846559026, 0.0022801125189390046, -0.00012536249967254906],
|
||
|
(0.995, 40.0): [-0.17562721880943261, -0.010157142650455463, 0.0022121943861923474, -0.000134542652873434],
|
||
|
(0.995, 60.0): [-0.17084630673594547, -0.0090224965852754805, 0.0023435529965815565, -0.00016240306777440115],
|
||
|
(0.995, 120.0): [-0.16648414081054147, -0.0074792163241677225, 0.0023284585524533607, -0.00017116464012147041],
|
||
|
(0.995, inf): [-0.16213921875452461, -0.0058985998630496144, 0.0022605819363689093, -0.00016896211491119114],
|
||
|
(0.999, 1.0): [-0.65233994072089363, -0.12579427445444219, 0.035830577995679271, -0.0028470555202945564],
|
||
|
(0.999, 2.0): [-0.45050164311326341, -0.098294804380698292, 0.024134463919493736, -0.0017269603956852841],
|
||
|
(0.999, 3.0): [-0.35161741499307819, -0.076801152272374273, 0.016695693063138672, -0.0010661121974071864],
|
||
|
(0.999, 4.0): [-0.29398448788574133, -0.06277319725219685, 0.012454220010543127, -0.00072644165723402445],
|
||
|
(0.999, 5.0): [-0.25725364564365477, -0.053463787584337355, 0.0099664236557431545, -0.00054866039388980659],
|
||
|
(0.999, 6.0): [-0.23674225795168574, -0.040973155890031254, 0.0062599481191736696, -0.00021565734226586692],
|
||
|
(0.999, 7.0): [-0.21840108878983297, -0.037037020271877719, 0.0055908063671900703, -0.00020238790479809623],
|
||
|
(0.999, 8.0): [-0.2057964743918449, -0.032500885103194356, 0.0046441644585661756, -0.00014769592268680274],
|
||
|
(0.999, 9.0): [-0.19604592954882674, -0.029166922919677936, 0.0040644333111949814, -0.00012854052861297006],
|
||
|
(0.999, 10.0): [-0.18857328935948367, -0.026316705703161091, 0.0035897350868809275, -0.00011572282691335702],
|
||
|
(0.999, 11.0): [-0.18207431428535406, -0.024201081944369412, 0.0031647372098056077, -8.1145935982296439e-05],
|
||
|
(0.999, 12.0): [-0.17796358148991101, -0.021054306118620879, 0.0023968085939602055, -1.5907156771296993e-05],
|
||
|
(0.999, 13.0): [-0.17371965962745489, -0.019577162950177709, 0.0022391783473999739, -2.0613023472812558e-05],
|
||
|
(0.999, 14.0): [-0.16905298116759873, -0.01967115985443986, 0.0026495208325889269, -9.1074275220634073e-05],
|
||
|
(0.999, 15.0): [-0.16635662558214312, -0.017903767183469876, 0.0022301322677100496, -5.1956773935885426e-05],
|
||
|
(0.999, 16.0): [-0.16388776549525449, -0.016671918839902419, 0.0020365289602744382, -4.3592447599724942e-05],
|
||
|
(0.999, 17.0): [-0.16131934177990759, -0.015998918405126326, 0.0019990454743285904, -4.8176277491327653e-05],
|
||
|
(0.999, 18.0): [-0.15880633110376571, -0.015830715141055916, 0.0021688405343832091, -8.061825248932771e-05],
|
||
|
(0.999, 19.0): [-0.15644841913314136, -0.015729364721105681, 0.0022981443610378136, -0.00010093672643417343],
|
||
|
(0.999, 20.0): [-0.15516596606222705, -0.014725095968258637, 0.0021117117014292155, -8.8806880297328484e-05],
|
||
|
(0.999, 24.0): [-0.14997437768645827, -0.012755323295476786, 0.0018871651510496939, -8.0896370662414938e-05],
|
||
|
(0.999, 30.0): [-0.14459974882323703, -0.011247323832877647, 0.0018637400643826279, -9.6415323191606741e-05],
|
||
|
(0.999, 40.0): [-0.13933285919392555, -0.0097151769692496587, 0.0018131251876208683, -0.00010452598991994023],
|
||
|
(0.999, 60.0): [-0.13424555343804143, -0.0082163027951669444, 0.0017883427892173382, -0.00011415865110808405],
|
||
|
(0.999, 120.0): [-0.12896119523040372, -0.0070426701112581112, 0.0018472364154226955, -0.00012862202979478294],
|
||
|
(0.999, inf): [-0.12397213562666673, -0.0056901201604149998, 0.0018260689406957129, -0.00013263452567995485]}
|
||
|
|
||
|
# p values that are defined in the A table
|
||
|
p_keys = [.1,.5,.675,.75,.8,.85,.9,.95,.975,.99,.995,.999]
|
||
|
|
||
|
# v values that are defined in the A table
|
||
|
v_keys = lrange(2, 21) + [24, 30, 40, 60, 120, inf]
|
||
|
|
||
|
def _isfloat(x):
|
||
|
"""
|
||
|
returns True if x is a float,
|
||
|
returns False otherwise
|
||
|
"""
|
||
|
try:
|
||
|
float(x)
|
||
|
except:
|
||
|
return False
|
||
|
|
||
|
return True
|
||
|
|
||
|
##def _phi(p):
|
||
|
## """returns the pth quantile inverse norm"""
|
||
|
## return scipy.stats.norm.isf(p)
|
||
|
|
||
|
def _phi( p ):
|
||
|
# this function is faster than using scipy.stats.norm.isf(p)
|
||
|
# but the permissity of the license is not explicitly listed.
|
||
|
# using scipy.stats.norm.isf(p) is an acceptable alternative
|
||
|
"""
|
||
|
Modified from the author's original perl code (original comments follow below)
|
||
|
by dfield@yahoo-inc.com. May 3, 2004.
|
||
|
|
||
|
Lower tail quantile for standard normal distribution function.
|
||
|
|
||
|
This function returns an approximation of the inverse cumulative
|
||
|
standard normal distribution function. I.e., given P, it returns
|
||
|
an approximation to the X satisfying P = Pr{Z <= X} where Z is a
|
||
|
random variable from the standard normal distribution.
|
||
|
|
||
|
The algorithm uses a minimax approximation by rational functions
|
||
|
and the result has a relative error whose absolute value is less
|
||
|
than 1.15e-9.
|
||
|
|
||
|
Author: Peter John Acklam
|
||
|
Time-stamp: 2000-07-19 18:26:14
|
||
|
E-mail: pjacklam@online.no
|
||
|
WWW URL: http://home.online.no/~pjacklam
|
||
|
"""
|
||
|
|
||
|
if p <= 0 or p >= 1:
|
||
|
# The original perl code exits here, we'll throw an exception instead
|
||
|
raise ValueError( "Argument to ltqnorm %f must be in open interval (0,1)" % p )
|
||
|
|
||
|
# Coefficients in rational approximations.
|
||
|
a = (-3.969683028665376e+01, 2.209460984245205e+02, \
|
||
|
-2.759285104469687e+02, 1.383577518672690e+02, \
|
||
|
-3.066479806614716e+01, 2.506628277459239e+00)
|
||
|
b = (-5.447609879822406e+01, 1.615858368580409e+02, \
|
||
|
-1.556989798598866e+02, 6.680131188771972e+01, \
|
||
|
-1.328068155288572e+01 )
|
||
|
c = (-7.784894002430293e-03, -3.223964580411365e-01, \
|
||
|
-2.400758277161838e+00, -2.549732539343734e+00, \
|
||
|
4.374664141464968e+00, 2.938163982698783e+00)
|
||
|
d = ( 7.784695709041462e-03, 3.224671290700398e-01, \
|
||
|
2.445134137142996e+00, 3.754408661907416e+00)
|
||
|
|
||
|
# Define break-points.
|
||
|
plow = 0.02425
|
||
|
phigh = 1 - plow
|
||
|
|
||
|
# Rational approximation for lower region:
|
||
|
if p < plow:
|
||
|
q = math.sqrt(-2*math.log(p))
|
||
|
return -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) / \
|
||
|
((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1)
|
||
|
|
||
|
# Rational approximation for upper region:
|
||
|
if phigh < p:
|
||
|
q = math.sqrt(-2*math.log(1-p))
|
||
|
return (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) / \
|
||
|
((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1)
|
||
|
|
||
|
# Rational approximation for central region:
|
||
|
q = p - 0.5
|
||
|
r = q*q
|
||
|
return -(((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q / \
|
||
|
(((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1)
|
||
|
|
||
|
def _ptransform(p):
|
||
|
"""function for p-value abcissa transformation"""
|
||
|
return -1. / (1. + 1.5 * _phi((1. + p)/2.))
|
||
|
|
||
|
def _func(a, p, r, v):
|
||
|
"""
|
||
|
calculates f-hat for the coefficients in a, probability p,
|
||
|
sample mean difference r, and degrees of freedom v.
|
||
|
"""
|
||
|
# eq. 2.3
|
||
|
f = a[0]*math.log(r-1.) + \
|
||
|
a[1]*math.log(r-1.)**2 + \
|
||
|
a[2]*math.log(r-1.)**3 + \
|
||
|
a[3]*math.log(r-1.)**4
|
||
|
|
||
|
# eq. 2.7 and 2.8 corrections
|
||
|
if r == 3:
|
||
|
f += -0.002 / (1. + 12. * _phi(p)**2)
|
||
|
|
||
|
if v <= 4.364:
|
||
|
v = v if not np.isinf(v) else 1e38
|
||
|
f += 1. / 517. - 1. / (312. * v)
|
||
|
else:
|
||
|
v = v if not np.isinf(v) else 1e38
|
||
|
f += 1. / (191. * v)
|
||
|
|
||
|
return -f
|
||
|
|
||
|
def _select_ps(p):
|
||
|
# There are more generic ways of doing this but profiling
|
||
|
# revealed that selecting these points is one of the slow
|
||
|
# things that is easy to change. This is about 11 times
|
||
|
# faster than the generic algorithm it is replacing.
|
||
|
#
|
||
|
# it is possible that different break points could yield
|
||
|
# better estimates, but the function this is refactoring
|
||
|
# just used linear distance.
|
||
|
"""returns the points to use for interpolating p"""
|
||
|
if p >= .99:
|
||
|
return .990, .995, .999
|
||
|
elif p >= .975:
|
||
|
return .975, .990, .995
|
||
|
elif p >= .95:
|
||
|
return .950, .975, .990
|
||
|
elif p >= .9125:
|
||
|
return .900, .950, .975
|
||
|
elif p >= .875:
|
||
|
return .850, .900, .950
|
||
|
elif p >= .825:
|
||
|
return .800, .850, .900
|
||
|
elif p >= .7625:
|
||
|
return .750, .800, .850
|
||
|
elif p >= .675:
|
||
|
return .675, .750, .800
|
||
|
elif p >= .500:
|
||
|
return .500, .675, .750
|
||
|
else:
|
||
|
return .100, .500, .675
|
||
|
|
||
|
def _interpolate_p(p, r, v):
|
||
|
"""
|
||
|
interpolates p based on the values in the A table for the
|
||
|
scalar value of r and the scalar value of v
|
||
|
"""
|
||
|
|
||
|
# interpolate p (v should be in table)
|
||
|
# if .5 < p < .75 use linear interpolation in q
|
||
|
# if p > .75 use quadratic interpolation in log(y + r/v)
|
||
|
# by -1. / (1. + 1.5 * _phi((1. + p)/2.))
|
||
|
|
||
|
# find the 3 closest v values
|
||
|
p0, p1, p2 = _select_ps(p)
|
||
|
try:
|
||
|
y0 = _func(A[(p0, v)], p0, r, v) + 1.
|
||
|
except:
|
||
|
print(p,r,v)
|
||
|
raise
|
||
|
y1 = _func(A[(p1, v)], p1, r, v) + 1.
|
||
|
y2 = _func(A[(p2, v)], p2, r, v) + 1.
|
||
|
|
||
|
y_log0 = math.log(y0 + float(r)/float(v))
|
||
|
y_log1 = math.log(y1 + float(r)/float(v))
|
||
|
y_log2 = math.log(y2 + float(r)/float(v))
|
||
|
|
||
|
# If p < .85 apply only the ordinate transformation
|
||
|
# if p > .85 apply the ordinate and the abcissa transformation
|
||
|
# In both cases apply quadratic interpolation
|
||
|
if p > .85:
|
||
|
p_t = _ptransform(p)
|
||
|
p0_t = _ptransform(p0)
|
||
|
p1_t = _ptransform(p1)
|
||
|
p2_t = _ptransform(p2)
|
||
|
|
||
|
# calculate derivatives for quadratic interpolation
|
||
|
d2 = 2*((y_log2-y_log1)/(p2_t-p1_t) - \
|
||
|
(y_log1-y_log0)/(p1_t-p0_t))/(p2_t-p0_t)
|
||
|
if (p2+p0)>=(p1+p1):
|
||
|
d1 = (y_log2-y_log1)/(p2_t-p1_t) - 0.5*d2*(p2_t-p1_t)
|
||
|
else:
|
||
|
d1 = (y_log1-y_log0)/(p1_t-p0_t) + 0.5*d2*(p1_t-p0_t)
|
||
|
d0 = y_log1
|
||
|
|
||
|
# interpolate value
|
||
|
y_log = (d2/2.) * (p_t-p1_t)**2. + d1 * (p_t-p1_t) + d0
|
||
|
|
||
|
# transform back to y
|
||
|
y = math.exp(y_log) - float(r)/float(v)
|
||
|
|
||
|
elif p > .5:
|
||
|
# calculate derivatives for quadratic interpolation
|
||
|
d2 = 2*((y_log2-y_log1)/(p2-p1) - \
|
||
|
(y_log1-y_log0)/(p1-p0))/(p2-p0)
|
||
|
if (p2+p0)>=(p1+p1):
|
||
|
d1 = (y_log2-y_log1)/(p2-p1) - 0.5*d2*(p2-p1)
|
||
|
else:
|
||
|
d1 = (y_log1-y_log0)/(p1-p0) + 0.5*d2*(p1-p0)
|
||
|
d0 = y_log1
|
||
|
|
||
|
# interpolate values
|
||
|
y_log = (d2/2.) * (p-p1)**2. + d1 * (p-p1) + d0
|
||
|
|
||
|
# transform back to y
|
||
|
y = math.exp(y_log) - float(r)/float(v)
|
||
|
|
||
|
else:
|
||
|
# linear interpolation in q and p
|
||
|
v = min(v, 1e38)
|
||
|
q0 = math.sqrt(2) * -y0 * \
|
||
|
scipy.stats.t.isf((1.+p0)/2., v)
|
||
|
q1 = math.sqrt(2) * -y1 * \
|
||
|
scipy.stats.t.isf((1.+p1)/2., v)
|
||
|
|
||
|
d1 = (q1-q0)/(p1-p0)
|
||
|
d0 = q0
|
||
|
|
||
|
# interpolate values
|
||
|
q = d1 * (p-p0) + d0
|
||
|
|
||
|
# transform back to y
|
||
|
y = -q / (math.sqrt(2) * scipy.stats.t.isf((1.+p)/2., v))
|
||
|
|
||
|
return y
|
||
|
|
||
|
def _select_vs(v, p):
|
||
|
# This one is is about 30 times faster than
|
||
|
# the generic algorithm it is replacing.
|
||
|
"""returns the points to use for interpolating v"""
|
||
|
|
||
|
if v >= 120.:
|
||
|
return 60, 120, inf
|
||
|
elif v >= 60.:
|
||
|
return 40, 60, 120
|
||
|
elif v >= 40.:
|
||
|
return 30, 40, 60
|
||
|
elif v >= 30.:
|
||
|
return 24, 30, 40
|
||
|
elif v >= 24.:
|
||
|
return 20, 24, 30
|
||
|
elif v >= 19.5:
|
||
|
return 19, 20, 24
|
||
|
|
||
|
if p >= .9:
|
||
|
if v < 2.5:
|
||
|
return 1, 2, 3
|
||
|
else:
|
||
|
if v < 3.5:
|
||
|
return 2, 3, 4
|
||
|
|
||
|
vi = int(round(v))
|
||
|
return vi - 1, vi, vi + 1
|
||
|
|
||
|
def _interpolate_v(p, r, v):
|
||
|
"""
|
||
|
interpolates v based on the values in the A table for the
|
||
|
scalar value of r and th
|
||
|
"""
|
||
|
# interpolate v (p should be in table)
|
||
|
# ordinate: y**2
|
||
|
# abcissa: 1./v
|
||
|
|
||
|
# find the 3 closest v values
|
||
|
# only p >= .9 have table values for 1 degree of freedom.
|
||
|
# The boolean is used to index the tuple and append 1 when
|
||
|
# p >= .9
|
||
|
v0, v1, v2 = _select_vs(v, p)
|
||
|
|
||
|
# y = f - 1.
|
||
|
y0_sq = (_func(A[(p,v0)], p, r, v0) + 1.)**2.
|
||
|
y1_sq = (_func(A[(p,v1)], p, r, v1) + 1.)**2.
|
||
|
y2_sq = (_func(A[(p,v2)], p, r, v2) + 1.)**2.
|
||
|
|
||
|
# if v2 is inf set to a big number so interpolation
|
||
|
# calculations will work
|
||
|
if v2 > 1e38:
|
||
|
v2 = 1e38
|
||
|
|
||
|
# transform v
|
||
|
v_, v0_, v1_, v2_ = 1./v, 1./v0, 1./v1, 1./v2
|
||
|
|
||
|
# calculate derivatives for quadratic interpolation
|
||
|
d2 = 2.*((y2_sq-y1_sq)/(v2_-v1_) - \
|
||
|
(y0_sq-y1_sq)/(v0_-v1_)) / (v2_-v0_)
|
||
|
if (v2_ + v0_) >= (v1_ + v1_):
|
||
|
d1 = (y2_sq-y1_sq) / (v2_-v1_) - 0.5*d2*(v2_-v1_)
|
||
|
else:
|
||
|
d1 = (y1_sq-y0_sq) / (v1_-v0_) + 0.5*d2*(v1_-v0_)
|
||
|
d0 = y1_sq
|
||
|
|
||
|
# calculate y
|
||
|
y = math.sqrt((d2/2.)*(v_-v1_)**2. + d1*(v_-v1_)+ d0)
|
||
|
|
||
|
return y
|
||
|
|
||
|
def _qsturng(p, r, v):
|
||
|
"""scalar version of qsturng"""
|
||
|
## print 'q',p
|
||
|
# r is interpolated through the q to y here we only need to
|
||
|
# account for when p and/or v are not found in the table.
|
||
|
global A, p_keys, v_keys
|
||
|
|
||
|
if p < .1 or p > .999:
|
||
|
raise ValueError('p must be between .1 and .999')
|
||
|
|
||
|
if p < .9:
|
||
|
if v < 2:
|
||
|
raise ValueError('v must be > 2 when p < .9')
|
||
|
else:
|
||
|
if v < 1:
|
||
|
raise ValueError('v must be > 1 when p >= .9')
|
||
|
|
||
|
# The easy case. A tabled value is requested.
|
||
|
|
||
|
#numpy 1.4.1: TypeError: unhashable type: 'numpy.ndarray' :
|
||
|
p = float(p)
|
||
|
if isinstance(v, np.ndarray):
|
||
|
v = v.item()
|
||
|
if (p,v) in A:
|
||
|
y = _func(A[(p,v)], p, r, v) + 1.
|
||
|
|
||
|
elif p not in p_keys and v not in v_keys+([],[1])[p>=.90]:
|
||
|
# apply bilinear (quadratic) interpolation
|
||
|
#
|
||
|
# p0,v2 + o + p1,v2 + p2,v2
|
||
|
# r2
|
||
|
#
|
||
|
# 1
|
||
|
# - (p,v)
|
||
|
# v x
|
||
|
#
|
||
|
# r1
|
||
|
# p0,v1 + o + p1,v1 + p2,v1
|
||
|
#
|
||
|
#
|
||
|
# p0,v0 + o r0 + p1,v0 + p2,v0
|
||
|
#
|
||
|
# _ptransform(p)
|
||
|
#
|
||
|
# (p1 and v1 may be below or above (p,v). The algorithm
|
||
|
# works in both cases. For diagramatic simplicity it is
|
||
|
# shown as above)
|
||
|
#
|
||
|
# 1. at v0, v1, and v2 use quadratic interpolation
|
||
|
# to find r0, r1, r2
|
||
|
#
|
||
|
# 2. use r0, r1, r2 and quadratic interpolaiton
|
||
|
# to find y and (p,v)
|
||
|
|
||
|
# find the 3 closest v values
|
||
|
v0, v1, v2 = _select_vs(v, p)
|
||
|
|
||
|
# find the 3 closest p values
|
||
|
p0, p1, p2 = _select_ps(p)
|
||
|
|
||
|
# calculate r0, r1, and r2
|
||
|
r0_sq = _interpolate_p(p, r, v0)**2
|
||
|
r1_sq = _interpolate_p(p, r, v1)**2
|
||
|
r2_sq = _interpolate_p(p, r, v2)**2
|
||
|
|
||
|
# transform v
|
||
|
v_, v0_, v1_, v2_ = 1./v, 1./v0, 1./v1, 1./v2
|
||
|
|
||
|
# calculate derivatives for quadratic interpolation
|
||
|
d2 = 2.*((r2_sq-r1_sq)/(v2_-v1_) - \
|
||
|
(r0_sq-r1_sq)/(v0_-v1_)) / (v2_-v0_)
|
||
|
if (v2_ + v0_) >= (v1_ + v1_):
|
||
|
d1 = (r2_sq-r1_sq) / (v2_-v1_) - 0.5*d2*(v2_-v1_)
|
||
|
else:
|
||
|
d1 = (r1_sq-r0_sq) / (v1_-v0_) + 0.5*d2*(v1_-v0_)
|
||
|
d0 = r1_sq
|
||
|
|
||
|
# calculate y
|
||
|
y = math.sqrt((d2/2.)*(v_-v1_)**2. + d1*(v_-v1_)+ d0)
|
||
|
|
||
|
elif v not in v_keys+([],[1])[p>=.90]:
|
||
|
y = _interpolate_v(p, r, v)
|
||
|
|
||
|
elif p not in p_keys:
|
||
|
y = _interpolate_p(p, r, v)
|
||
|
|
||
|
v = min(v, 1e38)
|
||
|
return math.sqrt(2) * -y * scipy.stats.t.isf((1. + p) / 2., v)
|
||
|
|
||
|
# make a qsturng functinon that will accept list-like objects
|
||
|
_vqsturng = np.vectorize(_qsturng)
|
||
|
_vqsturng.__doc__ = """vector version of qsturng"""
|
||
|
|
||
|
def qsturng(p, r, v):
|
||
|
"""Approximates the quantile p for a studentized range
|
||
|
distribution having v degrees of freedom and r samples
|
||
|
for probability p.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : (scalar, array_like)
|
||
|
The cumulative probability value
|
||
|
p >= .1 and p <=.999
|
||
|
(values under .5 are not recommended)
|
||
|
r : (scalar, array_like)
|
||
|
The number of samples
|
||
|
r >= 2 and r <= 200
|
||
|
(values over 200 are permitted but not recommended)
|
||
|
v : (scalar, array_like)
|
||
|
The sample degrees of freedom
|
||
|
if p >= .9:
|
||
|
v >=1 and v >= inf
|
||
|
else:
|
||
|
v >=2 and v >= inf
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
q : (scalar, array_like)
|
||
|
approximation of the Studentized Range
|
||
|
"""
|
||
|
|
||
|
if all(map(_isfloat, [p, r, v])):
|
||
|
return _qsturng(p, r, v)
|
||
|
return _vqsturng(p, r, v)
|
||
|
|
||
|
##def _qsturng0(p, r, v):
|
||
|
#### print 'q0',p
|
||
|
## """
|
||
|
## returns a first order approximation of q studentized range
|
||
|
## value. Based on Lund and Lund's 1983 based on the FORTRAN77
|
||
|
## algorithm AS 190.2 Appl. Statist. (1983).
|
||
|
## """
|
||
|
## vmax = 120.
|
||
|
## c = [0.8843, 0.2368, 1.214, 1.208, 1.4142]
|
||
|
##
|
||
|
## t = -_phi(.5+.5*p)
|
||
|
## if (v < vmax):
|
||
|
## t += (t**3. + t) / float(v) / 4.
|
||
|
##
|
||
|
## q = c[0] - c[1] * t
|
||
|
## if (v < vmax):
|
||
|
## q = q - c[2] / float(v) + c[3] * t / float(v)
|
||
|
## q = t * (q * math.log(r - 1.) + c[4])
|
||
|
##
|
||
|
## # apply "bar napkin" correction for when p < .85
|
||
|
## # this is good enough for our intended purpose
|
||
|
## if p < .85:
|
||
|
## q += math.log10(r) * 2.25 * (.85-p)
|
||
|
## return q
|
||
|
|
||
|
def _psturng(q, r, v):
|
||
|
"""scalar version of psturng"""
|
||
|
if q < 0.:
|
||
|
raise ValueError('q should be >= 0')
|
||
|
|
||
|
def opt_func(p, r, v):
|
||
|
return np.squeeze(abs(_qsturng(p, r, v) - q))
|
||
|
|
||
|
if v == 1:
|
||
|
if q < _qsturng(.9, r, 1):
|
||
|
return .1
|
||
|
elif q > _qsturng(.999, r, 1):
|
||
|
return .001
|
||
|
soln = 1. - fminbound(opt_func, .9, .999, args=(r,v))
|
||
|
return np.atleast_1d(soln)
|
||
|
else:
|
||
|
if q < _qsturng(.1, r, v):
|
||
|
return .9
|
||
|
elif q > _qsturng(.999, r, v):
|
||
|
return .001
|
||
|
soln = 1. - fminbound(opt_func, .1, .999, args=(r,v))
|
||
|
return np.atleast_1d(soln)
|
||
|
|
||
|
def _psturng_scalar(q, r, v):
|
||
|
return np.squeeze(_psturng(q, r, v))
|
||
|
|
||
|
_vpsturng = np.vectorize(_psturng_scalar)
|
||
|
_vpsturng.__doc__ = """vector version of psturng"""
|
||
|
|
||
|
def psturng(q, r, v):
|
||
|
"""Evaluates the probability from 0 to q for a studentized
|
||
|
range having v degrees of freedom and r samples.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
q : (scalar, array_like)
|
||
|
quantile value of Studentized Range
|
||
|
q >= 0.
|
||
|
r : (scalar, array_like)
|
||
|
The number of samples
|
||
|
r >= 2 and r <= 200
|
||
|
(values over 200 are permitted but not recommended)
|
||
|
v : (scalar, array_like)
|
||
|
The sample degrees of freedom
|
||
|
if p >= .9:
|
||
|
v >=1 and v >= inf
|
||
|
else:
|
||
|
v >=2 and v >= inf
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
p : (scalar, array_like)
|
||
|
1. - area from zero to q under the Studentized Range
|
||
|
distribution. When v == 1, p is bound between .001
|
||
|
and .1, when v > 1, p is bound between .001 and .9.
|
||
|
Values between .5 and .9 are 1st order appoximations.
|
||
|
"""
|
||
|
if all(map(_isfloat, [q, r, v])):
|
||
|
return _psturng(q, r, v)
|
||
|
return _vpsturng(q, r, v)
|
||
|
|
||
|
##p, r, v = .9, 10, 20
|
||
|
##print
|
||
|
##print 'p and v interpolation'
|
||
|
##print '\t20\t22\t24'
|
||
|
##print '.75',qsturng(.75, r, 20),qsturng(.75, r, 22),qsturng(.75, r, 24)
|
||
|
##print '.85',qsturng(.85, r, 20),qsturng(.85, r, 22),qsturng(.85, r, 24)
|
||
|
##print '.90',qsturng(.90, r, 20),qsturng(.90, r, 22),qsturng(.90, r, 24)
|
||
|
##print
|
||
|
##print 'p and v interpolation'
|
||
|
##print '\t120\t500\tinf'
|
||
|
##print '.950',qsturng(.95, r, 120),qsturng(.95, r, 500),qsturng(.95, r, inf)
|
||
|
##print '.960',qsturng(.96, r, 120),qsturng(.96, r, 500),qsturng(.96, r, inf)
|
||
|
##print '.975',qsturng(.975, r, 120),qsturng(.975, r, 500),qsturng(.975, r, inf)
|
||
|
##print
|
||
|
##print 'p and v interpolation'
|
||
|
##print '\t40\t50\t60'
|
||
|
##print '.950',qsturng(.95, r, 40),qsturng(.95, r, 50),qsturng(.95, r, 60)
|
||
|
##print '.960',qsturng(.96, r, 40),qsturng(.96, r, 50),qsturng(.96, r, 60)
|
||
|
##print '.975',qsturng(.975, r, 40),qsturng(.975, r, 50),qsturng(.975, r, 60)
|
||
|
##print
|
||
|
##print 'p and v interpolation'
|
||
|
##print '\t20\t22\t24'
|
||
|
##print '.50',qsturng(.5, r, 20),qsturng(.5, r, 22),qsturng(.5, r, 24)
|
||
|
##print '.60',qsturng(.6, r, 20),qsturng(.6, r, 22),qsturng(.6, r, 24)
|
||
|
##print '.75',qsturng(.75, r, 20),qsturng(.75, r, 22),qsturng(.75, r, 24)
|