1813 lines
60 KiB
Python
1813 lines
60 KiB
Python
|
'''Generalized Method of Moments, GMM, and Two-Stage Least Squares for
|
||
|
instrumental variables IV2SLS
|
||
|
|
||
|
|
||
|
|
||
|
Issues
|
||
|
------
|
||
|
* number of parameters, nparams, and starting values for parameters
|
||
|
Where to put them? start was initially taken from global scope (bug)
|
||
|
* When optimal weighting matrix cannot be calculated numerically
|
||
|
In DistQuantilesGMM, we only have one row of moment conditions, not a
|
||
|
moment condition for each observation, calculation for cov of moments
|
||
|
breaks down. iter=1 works (weights is identity matrix)
|
||
|
-> need method to do one iteration with an identity matrix or an
|
||
|
analytical weighting matrix given as parameter.
|
||
|
-> add result statistics for this case, e.g. cov_params, I have it in the
|
||
|
standalone function (and in calc_covparams which is a copy of it),
|
||
|
but not tested yet.
|
||
|
DONE `fitonce` in DistQuantilesGMM, params are the same as in direct call to fitgmm
|
||
|
move it to GMM class (once it's clearer for which cases I need this.)
|
||
|
* GMM does not know anything about the underlying model, e.g. y = X beta + u or panel
|
||
|
data model. It would be good if we can reuse methods from regressions, e.g.
|
||
|
predict, fitted values, calculating the error term, and some result statistics.
|
||
|
What's the best way to do this, multiple inheritance, outsourcing the functions,
|
||
|
mixins or delegation (a model creates a GMM instance just for estimation).
|
||
|
|
||
|
|
||
|
Unclear
|
||
|
-------
|
||
|
* dof in Hausman
|
||
|
- based on rank
|
||
|
- differs between IV2SLS method and function used with GMM or (IV2SLS)
|
||
|
- with GMM, covariance matrix difference has negative eigenvalues in iv example, ???
|
||
|
* jtest/jval
|
||
|
- I'm not sure about the normalization (multiply or divide by nobs) in jtest.
|
||
|
need a test case. Scaling of jval is irrelevant for estimation.
|
||
|
jval in jtest looks to large in example, but I have no idea about the size
|
||
|
* bse for fitonce look too large (no time for checking now)
|
||
|
formula for calc_cov_params for the case without optimal weighting matrix
|
||
|
is wrong. I do not have an estimate for omega in that case. And I'm confusing
|
||
|
between weights and omega, which are *not* the same in this case.
|
||
|
|
||
|
|
||
|
|
||
|
Author: josef-pktd
|
||
|
License: BSD (3-clause)
|
||
|
|
||
|
'''
|
||
|
|
||
|
|
||
|
from statsmodels.compat.python import lrange
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import optimize, stats
|
||
|
|
||
|
from statsmodels.tools.numdiff import approx_fprime
|
||
|
from statsmodels.base.model import (Model,
|
||
|
LikelihoodModel, LikelihoodModelResults)
|
||
|
from statsmodels.regression.linear_model import (OLS, RegressionResults,
|
||
|
RegressionResultsWrapper)
|
||
|
import statsmodels.stats.sandwich_covariance as smcov
|
||
|
from statsmodels.tools.decorators import cache_readonly
|
||
|
from statsmodels.tools.tools import _ensure_2d
|
||
|
|
||
|
DEBUG = 0
|
||
|
|
||
|
|
||
|
def maxabs(x):
|
||
|
'''just a shortcut to np.abs(x).max()
|
||
|
'''
|
||
|
return np.abs(x).max()
|
||
|
|
||
|
|
||
|
class IV2SLS(LikelihoodModel):
|
||
|
"""
|
||
|
Instrumental variables estimation using Two-Stage Least-Squares (2SLS)
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : ndarray
|
||
|
Endogenous variable, 1-dimensional or 2-dimensional array nobs by 1
|
||
|
exog : ndarray
|
||
|
Explanatory variables, 1-dimensional or 2-dimensional array nobs by k
|
||
|
instrument : ndarray
|
||
|
Instruments for explanatory variables. Must contain both exog
|
||
|
variables that are not being instrumented and instruments
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
All variables in exog are instrumented in the calculations. If variables
|
||
|
in exog are not supposed to be instrumented, then these variables
|
||
|
must also to be included in the instrument array.
|
||
|
|
||
|
Degrees of freedom in the calculation of the standard errors uses
|
||
|
`df_resid = (nobs - k_vars)`.
|
||
|
(This corresponds to the `small` option in Stata's ivreg2.)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, endog, exog, instrument=None):
|
||
|
self.instrument, self.instrument_names = _ensure_2d(instrument, True)
|
||
|
super().__init__(endog, exog)
|
||
|
# where is this supposed to be handled
|
||
|
# Note: Greene p.77/78 dof correction is not necessary (because only
|
||
|
# asy results), but most packages do it anyway
|
||
|
self.df_resid = self.exog.shape[0] - self.exog.shape[1]
|
||
|
#self.df_model = float(self.rank - self.k_constant)
|
||
|
self.df_model = float(self.exog.shape[1] - self.k_constant)
|
||
|
|
||
|
def initialize(self):
|
||
|
self.wendog = self.endog
|
||
|
self.wexog = self.exog
|
||
|
|
||
|
def whiten(self, X):
|
||
|
"""Not implemented"""
|
||
|
pass
|
||
|
|
||
|
def fit(self):
|
||
|
'''estimate model using 2SLS IV regression
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results : instance of RegressionResults
|
||
|
regression result
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This returns a generic RegressioResults instance as defined for the
|
||
|
linear models.
|
||
|
|
||
|
Parameter estimates and covariance are correct, but other results
|
||
|
have not been tested yet, to see whether they apply without changes.
|
||
|
|
||
|
'''
|
||
|
#Greene 5th edt., p.78 section 5.4
|
||
|
#move this maybe
|
||
|
y,x,z = self.endog, self.exog, self.instrument
|
||
|
# TODO: this uses "textbook" calculation, improve linalg
|
||
|
ztz = np.dot(z.T, z)
|
||
|
ztx = np.dot(z.T, x)
|
||
|
self.xhatparams = xhatparams = np.linalg.solve(ztz, ztx)
|
||
|
#print 'x.T.shape, xhatparams.shape', x.shape, xhatparams.shape
|
||
|
F = xhat = np.dot(z, xhatparams)
|
||
|
FtF = np.dot(F.T, F)
|
||
|
self.xhatprod = FtF #store for Housman specification test
|
||
|
Ftx = np.dot(F.T, x)
|
||
|
Fty = np.dot(F.T, y)
|
||
|
params = np.linalg.solve(FtF, Fty)
|
||
|
Ftxinv = np.linalg.inv(Ftx)
|
||
|
self.normalized_cov_params = np.dot(Ftxinv.T, np.dot(FtF, Ftxinv))
|
||
|
|
||
|
lfit = IVRegressionResults(self, params,
|
||
|
normalized_cov_params=self.normalized_cov_params)
|
||
|
|
||
|
lfit.exog_hat_params = xhatparams
|
||
|
lfit.exog_hat = xhat # TODO: do we want to store this, might be large
|
||
|
self._results_ols2nd = OLS(y, xhat).fit()
|
||
|
|
||
|
return RegressionResultsWrapper(lfit)
|
||
|
|
||
|
# copied from GLS, because I subclass currently LikelihoodModel and not GLS
|
||
|
def predict(self, params, exog=None):
|
||
|
"""
|
||
|
Return linear predicted values from a design matrix.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
exog : array_like
|
||
|
Design / exogenous data
|
||
|
params : array_like, optional after fit has been called
|
||
|
Parameters of a linear model
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
An array of fitted values
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If the model as not yet been fit, params is not optional.
|
||
|
"""
|
||
|
if exog is None:
|
||
|
exog = self.exog
|
||
|
|
||
|
return np.dot(exog, params)
|
||
|
|
||
|
|
||
|
class IVRegressionResults(RegressionResults):
|
||
|
"""
|
||
|
Results class for for an OLS model.
|
||
|
|
||
|
Most of the methods and attributes are inherited from RegressionResults.
|
||
|
The special methods that are only available for OLS are:
|
||
|
|
||
|
- get_influence
|
||
|
- outlier_test
|
||
|
- el_test
|
||
|
- conf_int_el
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
RegressionResults
|
||
|
"""
|
||
|
|
||
|
@cache_readonly
|
||
|
def fvalue(self):
|
||
|
const_idx = self.model.data.const_idx
|
||
|
# if constant is implicit or missing, return nan see #2444, #3544
|
||
|
if const_idx is None:
|
||
|
return np.nan
|
||
|
else:
|
||
|
k_vars = len(self.params)
|
||
|
restriction = np.eye(k_vars)
|
||
|
idx_noconstant = lrange(k_vars)
|
||
|
del idx_noconstant[const_idx]
|
||
|
fval = self.f_test(restriction[idx_noconstant]).fvalue # without constant
|
||
|
return fval
|
||
|
|
||
|
|
||
|
def spec_hausman(self, dof=None):
|
||
|
'''Hausman's specification test
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
spec_hausman : generic function for Hausman's specification test
|
||
|
|
||
|
'''
|
||
|
#use normalized cov_params for OLS
|
||
|
|
||
|
endog, exog = self.model.endog, self.model.exog
|
||
|
resols = OLS(endog, exog).fit()
|
||
|
normalized_cov_params_ols = resols.model.normalized_cov_params
|
||
|
# Stata `ivendog` does not use df correction for se
|
||
|
#se2 = resols.mse_resid #* resols.df_resid * 1. / len(endog)
|
||
|
se2 = resols.ssr / len(endog)
|
||
|
|
||
|
params_diff = self.params - resols.params
|
||
|
|
||
|
cov_diff = np.linalg.pinv(self.model.xhatprod) - normalized_cov_params_ols
|
||
|
#TODO: the following is very inefficient, solves problem (svd) twice
|
||
|
#use linalg.lstsq or svd directly
|
||
|
#cov_diff will very often be in-definite (singular)
|
||
|
if not dof:
|
||
|
dof = np.linalg.matrix_rank(cov_diff)
|
||
|
cov_diffpinv = np.linalg.pinv(cov_diff)
|
||
|
H = np.dot(params_diff, np.dot(cov_diffpinv, params_diff))/se2
|
||
|
pval = stats.chi2.sf(H, dof)
|
||
|
|
||
|
return H, pval, dof
|
||
|
|
||
|
|
||
|
# copied from regression results with small changes, no llf
|
||
|
def summary(self, yname=None, xname=None, title=None, alpha=.05):
|
||
|
"""Summarize the Regression Results
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
yname : str, optional
|
||
|
Default is `y`
|
||
|
xname : list[str], optional
|
||
|
Default is `var_##` for ## in p the number of regressors
|
||
|
title : str, optional
|
||
|
Title for the top table. If not None, then this replaces the
|
||
|
default title
|
||
|
alpha : float
|
||
|
significance level for the confidence intervals
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
smry : Summary instance
|
||
|
this holds the summary tables and text, which can be printed or
|
||
|
converted to various output formats.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.iolib.summary.Summary : class to hold summary
|
||
|
results
|
||
|
"""
|
||
|
|
||
|
#TODO: import where we need it (for now), add as cached attributes
|
||
|
from statsmodels.stats.stattools import (jarque_bera,
|
||
|
omni_normtest, durbin_watson)
|
||
|
jb, jbpv, skew, kurtosis = jarque_bera(self.wresid)
|
||
|
omni, omnipv = omni_normtest(self.wresid)
|
||
|
|
||
|
#TODO: reuse condno from somewhere else ?
|
||
|
#condno = np.linalg.cond(np.dot(self.wexog.T, self.wexog))
|
||
|
wexog = self.model.wexog
|
||
|
eigvals = np.linalg.eigvalsh(np.dot(wexog.T, wexog))
|
||
|
eigvals = np.sort(eigvals) #in increasing order
|
||
|
condno = np.sqrt(eigvals[-1]/eigvals[0])
|
||
|
|
||
|
# TODO: check what is valid.
|
||
|
# box-pierce, breusch-pagan, durbin's h are not with endogenous on rhs
|
||
|
# use Cumby Huizinga 1992 instead
|
||
|
self.diagn = dict(jb=jb, jbpv=jbpv, skew=skew, kurtosis=kurtosis,
|
||
|
omni=omni, omnipv=omnipv, condno=condno,
|
||
|
mineigval=eigvals[0])
|
||
|
|
||
|
#TODO not used yet
|
||
|
#diagn_left_header = ['Models stats']
|
||
|
#diagn_right_header = ['Residual stats']
|
||
|
|
||
|
#TODO: requiring list/iterable is a bit annoying
|
||
|
#need more control over formatting
|
||
|
#TODO: default do not work if it's not identically spelled
|
||
|
|
||
|
top_left = [('Dep. Variable:', None),
|
||
|
('Model:', None),
|
||
|
('Method:', ['Two Stage']),
|
||
|
('', ['Least Squares']),
|
||
|
('Date:', None),
|
||
|
('Time:', None),
|
||
|
('No. Observations:', None),
|
||
|
('Df Residuals:', None), #[self.df_resid]), #TODO: spelling
|
||
|
('Df Model:', None), #[self.df_model])
|
||
|
]
|
||
|
|
||
|
top_right = [('R-squared:', ["%#8.3f" % self.rsquared]),
|
||
|
('Adj. R-squared:', ["%#8.3f" % self.rsquared_adj]),
|
||
|
('F-statistic:', ["%#8.4g" % self.fvalue] ),
|
||
|
('Prob (F-statistic):', ["%#6.3g" % self.f_pvalue]),
|
||
|
#('Log-Likelihood:', None), #["%#6.4g" % self.llf]),
|
||
|
#('AIC:', ["%#8.4g" % self.aic]),
|
||
|
#('BIC:', ["%#8.4g" % self.bic])
|
||
|
]
|
||
|
|
||
|
diagn_left = [('Omnibus:', ["%#6.3f" % omni]),
|
||
|
('Prob(Omnibus):', ["%#6.3f" % omnipv]),
|
||
|
('Skew:', ["%#6.3f" % skew]),
|
||
|
('Kurtosis:', ["%#6.3f" % kurtosis])
|
||
|
]
|
||
|
|
||
|
diagn_right = [('Durbin-Watson:', ["%#8.3f" % durbin_watson(self.wresid)]),
|
||
|
('Jarque-Bera (JB):', ["%#8.3f" % jb]),
|
||
|
('Prob(JB):', ["%#8.3g" % jbpv]),
|
||
|
('Cond. No.', ["%#8.3g" % condno])
|
||
|
]
|
||
|
|
||
|
|
||
|
if title is None:
|
||
|
title = self.model.__class__.__name__ + ' ' + "Regression Results"
|
||
|
|
||
|
#create summary table instance
|
||
|
from statsmodels.iolib.summary import Summary
|
||
|
smry = Summary()
|
||
|
smry.add_table_2cols(self, gleft=top_left, gright=top_right,
|
||
|
yname=yname, xname=xname, title=title)
|
||
|
smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha,
|
||
|
use_t=True)
|
||
|
|
||
|
smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right,
|
||
|
yname=yname, xname=xname,
|
||
|
title="")
|
||
|
|
||
|
|
||
|
|
||
|
return smry
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
############# classes for Generalized Method of Moments GMM
|
||
|
|
||
|
_gmm_options = '''\
|
||
|
|
||
|
Options for GMM
|
||
|
---------------
|
||
|
|
||
|
Type of GMM
|
||
|
~~~~~~~~~~~
|
||
|
|
||
|
- one-step
|
||
|
- iterated
|
||
|
- CUE : not tested yet
|
||
|
|
||
|
weight matrix
|
||
|
~~~~~~~~~~~~~
|
||
|
|
||
|
- `weights_method` : str, defines method for robust
|
||
|
Options here are similar to :mod:`statsmodels.stats.robust_covariance`
|
||
|
default is heteroscedasticity consistent, HC0
|
||
|
|
||
|
currently available methods are
|
||
|
|
||
|
- `cov` : HC0, optionally with degrees of freedom correction
|
||
|
- `hac` :
|
||
|
- `iid` : untested, only for Z*u case, IV cases with u as error indep of Z
|
||
|
- `ac` : not available yet
|
||
|
- `cluster` : not connected yet
|
||
|
- others from robust_covariance
|
||
|
|
||
|
other arguments:
|
||
|
|
||
|
- `wargs` : tuple or dict, required arguments for weights_method
|
||
|
|
||
|
- `centered` : bool,
|
||
|
indicates whether moments are centered for the calculation of the weights
|
||
|
and covariance matrix, applies to all weight_methods
|
||
|
- `ddof` : int
|
||
|
degrees of freedom correction, applies currently only to `cov`
|
||
|
- maxlag : int
|
||
|
number of lags to include in HAC calculation , applies only to `hac`
|
||
|
- others not yet, e.g. groups for cluster robust
|
||
|
|
||
|
covariance matrix
|
||
|
~~~~~~~~~~~~~~~~~
|
||
|
|
||
|
The same options as for weight matrix also apply to the calculation of the
|
||
|
estimate of the covariance matrix of the parameter estimates.
|
||
|
The additional option is
|
||
|
|
||
|
- `has_optimal_weights`: If true, then the calculation of the covariance
|
||
|
matrix assumes that we have optimal GMM with :math:`W = S^{-1}`.
|
||
|
Default is True.
|
||
|
TODO: do we want to have a different default after `onestep`?
|
||
|
|
||
|
|
||
|
'''
|
||
|
|
||
|
class GMM(Model):
|
||
|
'''
|
||
|
Class for estimation by Generalized Method of Moments
|
||
|
|
||
|
needs to be subclassed, where the subclass defined the moment conditions
|
||
|
`momcond`
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : ndarray
|
||
|
endogenous variable, see notes
|
||
|
exog : ndarray
|
||
|
array of exogenous variables, see notes
|
||
|
instrument : ndarray
|
||
|
array of instruments, see notes
|
||
|
nmoms : None or int
|
||
|
number of moment conditions, if None then it is set equal to the
|
||
|
number of columns of instruments. Mainly needed to determine the shape
|
||
|
or size of start parameters and starting weighting matrix.
|
||
|
kwds : anything
|
||
|
this is mainly if additional variables need to be stored for the
|
||
|
calculations of the moment conditions
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
results : instance of GMMResults
|
||
|
currently just a storage class for params and cov_params without it's
|
||
|
own methods
|
||
|
bse : property
|
||
|
return bse
|
||
|
|
||
|
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The GMM class only uses the moment conditions and does not use any data
|
||
|
directly. endog, exog, instrument and kwds in the creation of the class
|
||
|
instance are only used to store them for access in the moment conditions.
|
||
|
Which of this are required and how they are used depends on the moment
|
||
|
conditions of the subclass.
|
||
|
|
||
|
Warning:
|
||
|
|
||
|
Options for various methods have not been fully implemented and
|
||
|
are still missing in several methods.
|
||
|
|
||
|
|
||
|
TODO:
|
||
|
currently onestep (maxiter=0) still produces an updated estimate of bse
|
||
|
and cov_params.
|
||
|
|
||
|
'''
|
||
|
|
||
|
results_class = 'GMMResults'
|
||
|
|
||
|
def __init__(self, endog, exog, instrument, k_moms=None, k_params=None,
|
||
|
missing='none', **kwds):
|
||
|
'''
|
||
|
maybe drop and use mixin instead
|
||
|
|
||
|
TODO: GMM does not really care about the data, just the moment conditions
|
||
|
'''
|
||
|
instrument = self._check_inputs(instrument, endog) # attaches if needed
|
||
|
super().__init__(endog, exog, missing=missing,
|
||
|
instrument=instrument)
|
||
|
# self.endog = endog
|
||
|
# self.exog = exog
|
||
|
# self.instrument = instrument
|
||
|
self.nobs = endog.shape[0]
|
||
|
if k_moms is not None:
|
||
|
self.nmoms = k_moms
|
||
|
elif instrument is not None:
|
||
|
self.nmoms = instrument.shape[1]
|
||
|
else:
|
||
|
self.nmoms = np.nan
|
||
|
|
||
|
if k_params is not None:
|
||
|
self.k_params = k_params
|
||
|
elif instrument is not None:
|
||
|
self.k_params = exog.shape[1]
|
||
|
else:
|
||
|
self.k_params = np.nan
|
||
|
|
||
|
self.__dict__.update(kwds)
|
||
|
self.epsilon_iter = 1e-6
|
||
|
|
||
|
def _check_inputs(self, instrument, endog):
|
||
|
if instrument is not None:
|
||
|
offset = np.asarray(instrument)
|
||
|
if offset.shape[0] != endog.shape[0]:
|
||
|
raise ValueError("instrument is not the same length as endog")
|
||
|
return instrument
|
||
|
|
||
|
def _fix_param_names(self, params, param_names=None):
|
||
|
# TODO: this is a temporary fix, need
|
||
|
xnames = self.data.xnames
|
||
|
|
||
|
if param_names is not None:
|
||
|
if len(params) == len(param_names):
|
||
|
self.data.xnames = param_names
|
||
|
else:
|
||
|
raise ValueError('param_names has the wrong length')
|
||
|
|
||
|
else:
|
||
|
if len(params) < len(xnames):
|
||
|
# cut in front for poisson multiplicative
|
||
|
self.data.xnames = xnames[-len(params):]
|
||
|
elif len(params) > len(xnames):
|
||
|
# use generic names
|
||
|
self.data.xnames = ['p%2d' % i for i in range(len(params))]
|
||
|
|
||
|
def set_param_names(self, param_names, k_params=None):
|
||
|
"""set the parameter names in the model
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
param_names : list[str]
|
||
|
param_names should have the same length as the number of params
|
||
|
k_params : None or int
|
||
|
If k_params is None, then the k_params attribute is used, unless
|
||
|
it is None.
|
||
|
If k_params is not None, then it will also set the k_params
|
||
|
attribute.
|
||
|
"""
|
||
|
if k_params is not None:
|
||
|
self.k_params = k_params
|
||
|
else:
|
||
|
k_params = self.k_params
|
||
|
|
||
|
if k_params == len(param_names):
|
||
|
self.data.xnames = param_names
|
||
|
else:
|
||
|
raise ValueError('param_names has the wrong length')
|
||
|
|
||
|
|
||
|
def fit(self, start_params=None, maxiter=10, inv_weights=None,
|
||
|
weights_method='cov', wargs=(),
|
||
|
has_optimal_weights=True,
|
||
|
optim_method='bfgs', optim_args=None):
|
||
|
'''
|
||
|
Estimate parameters using GMM and return GMMResults
|
||
|
|
||
|
TODO: weight and covariance arguments still need to be made consistent
|
||
|
with similar options in other models,
|
||
|
see RegressionResult.get_robustcov_results
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start_params : array (optional)
|
||
|
starting value for parameters ub minimization. If None then
|
||
|
fitstart method is called for the starting values.
|
||
|
maxiter : int or 'cue'
|
||
|
Number of iterations in iterated GMM. The onestep estimate can be
|
||
|
obtained with maxiter=0 or 1. If maxiter is large, then the
|
||
|
iteration will stop either at maxiter or on convergence of the
|
||
|
parameters (TODO: no options for convergence criteria yet.)
|
||
|
If `maxiter == 'cue'`, the the continuously updated GMM is
|
||
|
calculated which updates the weight matrix during the minimization
|
||
|
of the GMM objective function. The CUE estimation uses the onestep
|
||
|
parameters as starting values.
|
||
|
inv_weights : None or ndarray
|
||
|
inverse of the starting weighting matrix. If inv_weights are not
|
||
|
given then the method `start_weights` is used which depends on
|
||
|
the subclass, for IV subclasses `inv_weights = z'z` where `z` are
|
||
|
the instruments, otherwise an identity matrix is used.
|
||
|
weights_method : str, defines method for robust
|
||
|
Options here are similar to :mod:`statsmodels.stats.robust_covariance`
|
||
|
default is heteroscedasticity consistent, HC0
|
||
|
|
||
|
currently available methods are
|
||
|
|
||
|
- `cov` : HC0, optionally with degrees of freedom correction
|
||
|
- `hac` :
|
||
|
- `iid` : untested, only for Z*u case, IV cases with u as error indep of Z
|
||
|
- `ac` : not available yet
|
||
|
- `cluster` : not connected yet
|
||
|
- others from robust_covariance
|
||
|
|
||
|
wargs` : tuple or dict,
|
||
|
required and optional arguments for weights_method
|
||
|
|
||
|
- `centered` : bool,
|
||
|
indicates whether moments are centered for the calculation of the weights
|
||
|
and covariance matrix, applies to all weight_methods
|
||
|
- `ddof` : int
|
||
|
degrees of freedom correction, applies currently only to `cov`
|
||
|
- `maxlag` : int
|
||
|
number of lags to include in HAC calculation , applies only to `hac`
|
||
|
- others not yet, e.g. groups for cluster robust
|
||
|
|
||
|
has_optimal_weights: If true, then the calculation of the covariance
|
||
|
matrix assumes that we have optimal GMM with :math:`W = S^{-1}`.
|
||
|
Default is True.
|
||
|
TODO: do we want to have a different default after `onestep`?
|
||
|
optim_method : str, default is 'bfgs'
|
||
|
numerical optimization method. Currently not all optimizers that
|
||
|
are available in LikelihoodModels are connected.
|
||
|
optim_args : dict
|
||
|
keyword arguments for the numerical optimizer.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results : instance of GMMResults
|
||
|
this is also attached as attribute results
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
Warning: One-step estimation, `maxiter` either 0 or 1, still has
|
||
|
problems (at least compared to Stata's gmm).
|
||
|
By default it uses a heteroscedasticity robust covariance matrix, but
|
||
|
uses the assumption that the weight matrix is optimal.
|
||
|
See options for cov_params in the results instance.
|
||
|
|
||
|
The same options as for weight matrix also apply to the calculation of
|
||
|
the estimate of the covariance matrix of the parameter estimates.
|
||
|
|
||
|
'''
|
||
|
# TODO: add check for correct wargs keys
|
||
|
# currently a misspelled key is not detected,
|
||
|
# because I'm still adding options
|
||
|
|
||
|
# TODO: check repeated calls to fit with different options
|
||
|
# arguments are dictionaries, i.e. mutable
|
||
|
# unit test if anything is stale or spilled over.
|
||
|
|
||
|
#bug: where does start come from ???
|
||
|
start = start_params # alias for renaming
|
||
|
if start is None:
|
||
|
start = self.fitstart() #TODO: temporary hack
|
||
|
|
||
|
if inv_weights is None:
|
||
|
inv_weights
|
||
|
|
||
|
if optim_args is None:
|
||
|
optim_args = {}
|
||
|
if 'disp' not in optim_args:
|
||
|
optim_args['disp'] = 1
|
||
|
|
||
|
if maxiter == 0 or maxiter == 'cue':
|
||
|
if inv_weights is not None:
|
||
|
weights = np.linalg.pinv(inv_weights)
|
||
|
else:
|
||
|
# let start_weights handle the inv=False for maxiter=0
|
||
|
weights = self.start_weights(inv=False)
|
||
|
|
||
|
params = self.fitgmm(start, weights=weights,
|
||
|
optim_method=optim_method, optim_args=optim_args)
|
||
|
weights_ = weights # temporary alias used in jval
|
||
|
else:
|
||
|
params, weights = self.fititer(start,
|
||
|
maxiter=maxiter,
|
||
|
start_invweights=inv_weights,
|
||
|
weights_method=weights_method,
|
||
|
wargs=wargs,
|
||
|
optim_method=optim_method,
|
||
|
optim_args=optim_args)
|
||
|
# TODO weights returned by fititer is inv_weights - not true anymore
|
||
|
# weights_ currently not necessary and used anymore
|
||
|
weights_ = np.linalg.pinv(weights)
|
||
|
|
||
|
if maxiter == 'cue':
|
||
|
#we have params from maxiter= 0 as starting value
|
||
|
# TODO: need to give weights options to gmmobjective_cu
|
||
|
params = self.fitgmm_cu(params,
|
||
|
optim_method=optim_method,
|
||
|
optim_args=optim_args)
|
||
|
# weights is stored as attribute
|
||
|
weights = self._weights_cu
|
||
|
|
||
|
#TODO: use Bunch instead ?
|
||
|
options_other = {'weights_method':weights_method,
|
||
|
'has_optimal_weights':has_optimal_weights,
|
||
|
'optim_method':optim_method}
|
||
|
|
||
|
# check that we have the right number of xnames
|
||
|
self._fix_param_names(params, param_names=None)
|
||
|
results = results_class_dict[self.results_class](
|
||
|
model = self,
|
||
|
params = params,
|
||
|
weights = weights,
|
||
|
wargs = wargs,
|
||
|
options_other = options_other,
|
||
|
optim_args = optim_args)
|
||
|
|
||
|
self.results = results # FIXME: remove, still keeping it temporarily
|
||
|
return results
|
||
|
|
||
|
def fitgmm(self, start, weights=None, optim_method='bfgs', optim_args=None):
|
||
|
'''estimate parameters using GMM
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : array_like
|
||
|
starting values for minimization
|
||
|
weights : ndarray
|
||
|
weighting matrix for moment conditions. If weights is None, then
|
||
|
the identity matrix is used
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
paramest : ndarray
|
||
|
estimated parameters
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
todo: add fixed parameter option, not here ???
|
||
|
|
||
|
uses scipy.optimize.fmin
|
||
|
|
||
|
'''
|
||
|
## if not fixed is None: #fixed not defined in this version
|
||
|
## raise NotImplementedError
|
||
|
|
||
|
# TODO: should start_weights only be in `fit`
|
||
|
if weights is None:
|
||
|
weights = self.start_weights(inv=False)
|
||
|
|
||
|
if optim_args is None:
|
||
|
optim_args = {}
|
||
|
|
||
|
if optim_method == 'nm':
|
||
|
optimizer = optimize.fmin
|
||
|
elif optim_method == 'bfgs':
|
||
|
optimizer = optimize.fmin_bfgs
|
||
|
# TODO: add score
|
||
|
optim_args['fprime'] = self.score #lambda params: self.score(params, weights)
|
||
|
elif optim_method == 'ncg':
|
||
|
optimizer = optimize.fmin_ncg
|
||
|
optim_args['fprime'] = self.score
|
||
|
elif optim_method == 'cg':
|
||
|
optimizer = optimize.fmin_cg
|
||
|
optim_args['fprime'] = self.score
|
||
|
elif optim_method == 'fmin_l_bfgs_b':
|
||
|
optimizer = optimize.fmin_l_bfgs_b
|
||
|
optim_args['fprime'] = self.score
|
||
|
elif optim_method == 'powell':
|
||
|
optimizer = optimize.fmin_powell
|
||
|
elif optim_method == 'slsqp':
|
||
|
optimizer = optimize.fmin_slsqp
|
||
|
else:
|
||
|
raise ValueError('optimizer method not available')
|
||
|
|
||
|
if DEBUG:
|
||
|
print(np.linalg.det(weights))
|
||
|
|
||
|
#TODO: add other optimization options and results
|
||
|
return optimizer(self.gmmobjective, start, args=(weights,),
|
||
|
**optim_args)
|
||
|
|
||
|
|
||
|
def fitgmm_cu(self, start, optim_method='bfgs', optim_args=None):
|
||
|
'''estimate parameters using continuously updating GMM
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : array_like
|
||
|
starting values for minimization
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
paramest : ndarray
|
||
|
estimated parameters
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
todo: add fixed parameter option, not here ???
|
||
|
|
||
|
uses scipy.optimize.fmin
|
||
|
|
||
|
'''
|
||
|
## if not fixed is None: #fixed not defined in this version
|
||
|
## raise NotImplementedError
|
||
|
|
||
|
if optim_args is None:
|
||
|
optim_args = {}
|
||
|
|
||
|
if optim_method == 'nm':
|
||
|
optimizer = optimize.fmin
|
||
|
elif optim_method == 'bfgs':
|
||
|
optimizer = optimize.fmin_bfgs
|
||
|
optim_args['fprime'] = self.score_cu
|
||
|
elif optim_method == 'ncg':
|
||
|
optimizer = optimize.fmin_ncg
|
||
|
else:
|
||
|
raise ValueError('optimizer method not available')
|
||
|
|
||
|
#TODO: add other optimization options and results
|
||
|
return optimizer(self.gmmobjective_cu, start, args=(), **optim_args)
|
||
|
|
||
|
def start_weights(self, inv=True):
|
||
|
"""Create identity matrix for starting weights"""
|
||
|
return np.eye(self.nmoms)
|
||
|
|
||
|
def gmmobjective(self, params, weights):
|
||
|
'''
|
||
|
objective function for GMM minimization
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
parameter values at which objective is evaluated
|
||
|
weights : ndarray
|
||
|
weighting matrix
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
jval : float
|
||
|
value of objective function
|
||
|
|
||
|
'''
|
||
|
moms = self.momcond_mean(params)
|
||
|
return np.dot(np.dot(moms, weights), moms)
|
||
|
#moms = self.momcond(params)
|
||
|
#return np.dot(np.dot(moms.mean(0),weights), moms.mean(0))
|
||
|
|
||
|
|
||
|
def gmmobjective_cu(self, params, weights_method='cov',
|
||
|
wargs=()):
|
||
|
'''
|
||
|
objective function for continuously updating GMM minimization
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
parameter values at which objective is evaluated
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
jval : float
|
||
|
value of objective function
|
||
|
|
||
|
'''
|
||
|
moms = self.momcond(params)
|
||
|
inv_weights = self.calc_weightmatrix(moms, weights_method=weights_method,
|
||
|
wargs=wargs)
|
||
|
weights = np.linalg.pinv(inv_weights)
|
||
|
self._weights_cu = weights # store if we need it later
|
||
|
return np.dot(np.dot(moms.mean(0), weights), moms.mean(0))
|
||
|
|
||
|
|
||
|
def fititer(self, start, maxiter=2, start_invweights=None,
|
||
|
weights_method='cov', wargs=(), optim_method='bfgs',
|
||
|
optim_args=None):
|
||
|
'''iterative estimation with updating of optimal weighting matrix
|
||
|
|
||
|
stopping criteria are maxiter or change in parameter estimate less
|
||
|
than self.epsilon_iter, with default 1e-6.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : ndarray
|
||
|
starting value for parameters
|
||
|
maxiter : int
|
||
|
maximum number of iterations
|
||
|
start_weights : array (nmoms, nmoms)
|
||
|
initial weighting matrix; if None, then the identity matrix
|
||
|
is used
|
||
|
weights_method : {'cov', ...}
|
||
|
method to use to estimate the optimal weighting matrix,
|
||
|
see calc_weightmatrix for details
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
params : ndarray
|
||
|
estimated parameters
|
||
|
weights : ndarray
|
||
|
optimal weighting matrix calculated with final parameter
|
||
|
estimates
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
'''
|
||
|
self.history = []
|
||
|
momcond = self.momcond
|
||
|
|
||
|
if start_invweights is None:
|
||
|
w = self.start_weights(inv=True)
|
||
|
else:
|
||
|
w = start_invweights
|
||
|
|
||
|
#call fitgmm function
|
||
|
#args = (self.endog, self.exog, self.instrument)
|
||
|
#args is not used in the method version
|
||
|
winv_new = w
|
||
|
for it in range(maxiter):
|
||
|
winv = winv_new
|
||
|
w = np.linalg.pinv(winv)
|
||
|
#this is still calling function not method
|
||
|
## resgmm = fitgmm(momcond, (), start, weights=winv, fixed=None,
|
||
|
## weightsoptimal=False)
|
||
|
resgmm = self.fitgmm(start, weights=w, optim_method=optim_method,
|
||
|
optim_args=optim_args)
|
||
|
|
||
|
moms = momcond(resgmm)
|
||
|
# the following is S = cov_moments
|
||
|
winv_new = self.calc_weightmatrix(moms,
|
||
|
weights_method=weights_method,
|
||
|
wargs=wargs, params=resgmm)
|
||
|
|
||
|
if it > 2 and maxabs(resgmm - start) < self.epsilon_iter:
|
||
|
#check rule for early stopping
|
||
|
# TODO: set has_optimal_weights = True
|
||
|
break
|
||
|
|
||
|
start = resgmm
|
||
|
return resgmm, w
|
||
|
|
||
|
|
||
|
def calc_weightmatrix(self, moms, weights_method='cov', wargs=(),
|
||
|
params=None):
|
||
|
'''
|
||
|
calculate omega or the weighting matrix
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
moms : ndarray
|
||
|
moment conditions (nobs x nmoms) for all observations evaluated at
|
||
|
a parameter value
|
||
|
weights_method : str 'cov'
|
||
|
If method='cov' is cov then the matrix is calculated as simple
|
||
|
covariance of the moment conditions.
|
||
|
see fit method for available aoptions for the weight and covariance
|
||
|
matrix
|
||
|
wargs : tuple or dict
|
||
|
parameters that are required by some kernel methods to
|
||
|
estimate the long-run covariance. Not used yet.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : array (nmoms, nmoms)
|
||
|
estimate for the weighting matrix or covariance of the moment
|
||
|
condition
|
||
|
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
currently a constant cutoff window is used
|
||
|
TODO: implement long-run cov estimators, kernel-based
|
||
|
|
||
|
Newey-West
|
||
|
Andrews
|
||
|
Andrews-Moy????
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Greene
|
||
|
Hansen, Bruce
|
||
|
|
||
|
'''
|
||
|
nobs, k_moms = moms.shape
|
||
|
# TODO: wargs are tuple or dict ?
|
||
|
if DEBUG:
|
||
|
print(' momcov wargs', wargs)
|
||
|
|
||
|
centered = not ('centered' in wargs and not wargs['centered'])
|
||
|
if not centered:
|
||
|
# caller does not want centered moment conditions
|
||
|
moms_ = moms
|
||
|
else:
|
||
|
moms_ = moms - moms.mean()
|
||
|
|
||
|
# TODO: store this outside to avoid doing this inside optimization loop
|
||
|
# TODO: subclasses need to be able to add weights_methods, and remove
|
||
|
# IVGMM can have homoscedastic (OLS),
|
||
|
# some options will not make sense in some cases
|
||
|
# possible add all here and allow subclasses to define a list
|
||
|
# TODO: should other weights_methods also have `ddof`
|
||
|
if weights_method == 'cov':
|
||
|
w = np.dot(moms_.T, moms_)
|
||
|
if 'ddof' in wargs:
|
||
|
# caller requests degrees of freedom correction
|
||
|
if wargs['ddof'] == 'k_params':
|
||
|
w /= (nobs - self.k_params)
|
||
|
else:
|
||
|
if DEBUG:
|
||
|
print(' momcov ddof', wargs['ddof'])
|
||
|
w /= (nobs - wargs['ddof'])
|
||
|
else:
|
||
|
# default: divide by nobs
|
||
|
w /= nobs
|
||
|
|
||
|
elif weights_method == 'flatkernel':
|
||
|
#uniform cut-off window
|
||
|
# This was a trial version, can use HAC with flatkernel
|
||
|
if 'maxlag' not in wargs:
|
||
|
raise ValueError('flatkernel requires maxlag')
|
||
|
|
||
|
maxlag = wargs['maxlag']
|
||
|
h = np.ones(maxlag + 1)
|
||
|
w = np.dot(moms_.T, moms_)/nobs
|
||
|
for i in range(1,maxlag+1):
|
||
|
w += (h[i] * np.dot(moms_[i:].T, moms_[:-i]) / (nobs-i))
|
||
|
|
||
|
elif weights_method == 'hac':
|
||
|
maxlag = wargs['maxlag']
|
||
|
if 'kernel' in wargs:
|
||
|
weights_func = wargs['kernel']
|
||
|
else:
|
||
|
weights_func = smcov.weights_bartlett
|
||
|
wargs['kernel'] = weights_func
|
||
|
|
||
|
w = smcov.S_hac_simple(moms_, nlags=maxlag,
|
||
|
weights_func=weights_func)
|
||
|
w /= nobs #(nobs - self.k_params)
|
||
|
|
||
|
elif weights_method == 'iid':
|
||
|
# only when we have instruments and residual mom = Z * u
|
||
|
# TODO: problem we do not have params in argument
|
||
|
# I cannot keep everything in here w/o params as argument
|
||
|
u = self.get_error(params)
|
||
|
|
||
|
if centered:
|
||
|
# Note: I'm not centering instruments,
|
||
|
# should not we always center u? Ok, with centered as default
|
||
|
u -= u.mean(0) #demean inplace, we do not need original u
|
||
|
|
||
|
instrument = self.instrument
|
||
|
w = np.dot(instrument.T, instrument).dot(np.dot(u.T, u)) / nobs
|
||
|
if 'ddof' in wargs:
|
||
|
# caller requests degrees of freedom correction
|
||
|
if wargs['ddof'] == 'k_params':
|
||
|
w /= (nobs - self.k_params)
|
||
|
else:
|
||
|
# assume ddof is a number
|
||
|
if DEBUG:
|
||
|
print(' momcov ddof', wargs['ddof'])
|
||
|
w /= (nobs - wargs['ddof'])
|
||
|
else:
|
||
|
# default: divide by nobs
|
||
|
w /= nobs
|
||
|
|
||
|
else:
|
||
|
raise ValueError('weight method not available')
|
||
|
|
||
|
return w
|
||
|
|
||
|
|
||
|
def momcond_mean(self, params):
|
||
|
'''
|
||
|
mean of moment conditions,
|
||
|
|
||
|
'''
|
||
|
|
||
|
momcond = self.momcond(params)
|
||
|
self.nobs_moms, self.k_moms = momcond.shape
|
||
|
return momcond.mean(0)
|
||
|
|
||
|
|
||
|
def gradient_momcond(self, params, epsilon=1e-4, centered=True):
|
||
|
'''gradient of moment conditions
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
parameter at which the moment conditions are evaluated
|
||
|
epsilon : float
|
||
|
stepsize for finite difference calculation
|
||
|
centered : bool
|
||
|
This refers to the finite difference calculation. If `centered`
|
||
|
is true, then the centered finite difference calculation is
|
||
|
used. Otherwise the one-sided forward differences are used.
|
||
|
|
||
|
TODO: looks like not used yet
|
||
|
missing argument `weights`
|
||
|
|
||
|
'''
|
||
|
|
||
|
momcond = self.momcond_mean
|
||
|
|
||
|
# TODO: approx_fprime has centered keyword
|
||
|
if centered:
|
||
|
gradmoms = (approx_fprime(params, momcond, epsilon=epsilon) +
|
||
|
approx_fprime(params, momcond, epsilon=-epsilon))/2
|
||
|
else:
|
||
|
gradmoms = approx_fprime(params, momcond, epsilon=epsilon)
|
||
|
|
||
|
return gradmoms
|
||
|
|
||
|
def score(self, params, weights, epsilon=None, centered=True):
|
||
|
"""Score"""
|
||
|
deriv = approx_fprime(params, self.gmmobjective, args=(weights,),
|
||
|
centered=centered, epsilon=epsilon)
|
||
|
|
||
|
return deriv
|
||
|
|
||
|
def score_cu(self, params, epsilon=None, centered=True):
|
||
|
"""Score cu"""
|
||
|
deriv = approx_fprime(params, self.gmmobjective_cu, args=(),
|
||
|
centered=centered, epsilon=epsilon)
|
||
|
|
||
|
return deriv
|
||
|
|
||
|
|
||
|
# TODO: wrong superclass, I want tvalues, ... right now
|
||
|
class GMMResults(LikelihoodModelResults):
|
||
|
'''just a storage class right now'''
|
||
|
|
||
|
use_t = False
|
||
|
|
||
|
def __init__(self, *args, **kwds):
|
||
|
self.__dict__.update(kwds)
|
||
|
|
||
|
self.nobs = self.model.nobs
|
||
|
self.df_resid = np.inf
|
||
|
|
||
|
self.cov_params_default = self._cov_params()
|
||
|
|
||
|
@cache_readonly
|
||
|
def q(self):
|
||
|
"""Objective function at params"""
|
||
|
return self.model.gmmobjective(self.params, self.weights)
|
||
|
|
||
|
@cache_readonly
|
||
|
def jval(self):
|
||
|
"""nobs_moms attached by momcond_mean"""
|
||
|
return self.q * self.model.nobs_moms
|
||
|
|
||
|
def _cov_params(self, **kwds):
|
||
|
#TODO add options ???)
|
||
|
# this should use by default whatever options have been specified in
|
||
|
# fit
|
||
|
|
||
|
# TODO: do not do this when we want to change options
|
||
|
# if hasattr(self, '_cov_params'):
|
||
|
# #replace with decorator later
|
||
|
# return self._cov_params
|
||
|
|
||
|
# set defaults based on fit arguments
|
||
|
if 'wargs' not in kwds:
|
||
|
# Note: we do not check the keys in wargs, use either all or nothing
|
||
|
kwds['wargs'] = self.wargs
|
||
|
if 'weights_method' not in kwds:
|
||
|
kwds['weights_method'] = self.options_other['weights_method']
|
||
|
if 'has_optimal_weights' not in kwds:
|
||
|
kwds['has_optimal_weights'] = self.options_other['has_optimal_weights']
|
||
|
|
||
|
gradmoms = self.model.gradient_momcond(self.params)
|
||
|
moms = self.model.momcond(self.params)
|
||
|
covparams = self.calc_cov_params(moms, gradmoms, **kwds)
|
||
|
|
||
|
return covparams
|
||
|
|
||
|
|
||
|
def calc_cov_params(self, moms, gradmoms, weights=None, use_weights=False,
|
||
|
has_optimal_weights=True,
|
||
|
weights_method='cov', wargs=()):
|
||
|
'''calculate covariance of parameter estimates
|
||
|
|
||
|
not all options tried out yet
|
||
|
|
||
|
If weights matrix is given, then the formula use to calculate cov_params
|
||
|
depends on whether has_optimal_weights is true.
|
||
|
If no weights are given, then the weight matrix is calculated with
|
||
|
the given method, and has_optimal_weights is assumed to be true.
|
||
|
|
||
|
(API Note: The latter assumption could be changed if we allow for
|
||
|
has_optimal_weights=None.)
|
||
|
|
||
|
'''
|
||
|
|
||
|
nobs = moms.shape[0]
|
||
|
|
||
|
if weights is None:
|
||
|
#omegahat = self.model.calc_weightmatrix(moms, method=method, wargs=wargs)
|
||
|
#has_optimal_weights = True
|
||
|
#add other options, Barzen, ... longrun var estimators
|
||
|
# TODO: this might still be inv_weights after fititer
|
||
|
weights = self.weights
|
||
|
else:
|
||
|
pass
|
||
|
#omegahat = weights #2 different names used,
|
||
|
#TODO: this is wrong, I need an estimate for omega
|
||
|
|
||
|
if use_weights:
|
||
|
omegahat = weights
|
||
|
else:
|
||
|
omegahat = self.model.calc_weightmatrix(
|
||
|
moms,
|
||
|
weights_method=weights_method,
|
||
|
wargs=wargs,
|
||
|
params=self.params)
|
||
|
|
||
|
|
||
|
if has_optimal_weights: #has_optimal_weights:
|
||
|
# TOD0 make has_optimal_weights depend on convergence or iter >2
|
||
|
cov = np.linalg.inv(np.dot(gradmoms.T,
|
||
|
np.dot(np.linalg.inv(omegahat), gradmoms)))
|
||
|
else:
|
||
|
gw = np.dot(gradmoms.T, weights)
|
||
|
gwginv = np.linalg.inv(np.dot(gw, gradmoms))
|
||
|
cov = np.dot(np.dot(gwginv, np.dot(np.dot(gw, omegahat), gw.T)), gwginv)
|
||
|
#cov /= nobs
|
||
|
|
||
|
return cov/nobs
|
||
|
|
||
|
@property
|
||
|
def bse_(self):
|
||
|
'''standard error of the parameter estimates
|
||
|
'''
|
||
|
return self.get_bse()
|
||
|
|
||
|
def get_bse(self, **kwds):
|
||
|
'''standard error of the parameter estimates with options
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
kwds : optional keywords
|
||
|
options for calculating cov_params
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bse : ndarray
|
||
|
estimated standard error of parameter estimates
|
||
|
|
||
|
'''
|
||
|
return np.sqrt(np.diag(self.cov_params(**kwds)))
|
||
|
|
||
|
def jtest(self):
|
||
|
'''overidentification test
|
||
|
|
||
|
I guess this is missing a division by nobs,
|
||
|
what's the normalization in jval ?
|
||
|
'''
|
||
|
|
||
|
jstat = self.jval
|
||
|
nparams = self.params.size #self.nparams
|
||
|
df = self.model.nmoms - nparams
|
||
|
return jstat, stats.chi2.sf(jstat, df), df
|
||
|
|
||
|
|
||
|
def compare_j(self, other):
|
||
|
'''overidentification test for comparing two nested gmm estimates
|
||
|
|
||
|
This assumes that some moment restrictions have been dropped in one
|
||
|
of the GMM estimates relative to the other.
|
||
|
|
||
|
Not tested yet
|
||
|
|
||
|
We are comparing two separately estimated models, that use different
|
||
|
weighting matrices. It is not guaranteed that the resulting
|
||
|
difference is positive.
|
||
|
|
||
|
TODO: Check in which cases Stata programs use the same weigths
|
||
|
|
||
|
'''
|
||
|
jstat1 = self.jval
|
||
|
k_moms1 = self.model.nmoms
|
||
|
jstat2 = other.jval
|
||
|
k_moms2 = other.model.nmoms
|
||
|
jdiff = jstat1 - jstat2
|
||
|
df = k_moms1 - k_moms2
|
||
|
if df < 0:
|
||
|
# possible nested in other way, TODO allow this or not
|
||
|
# flip sign instead of absolute
|
||
|
df = - df
|
||
|
jdiff = - jdiff
|
||
|
return jdiff, stats.chi2.sf(jdiff, df), df
|
||
|
|
||
|
def summary(self, yname=None, xname=None, title=None, alpha=.05):
|
||
|
"""Summarize the Regression Results
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
yname : str, optional
|
||
|
Default is `y`
|
||
|
xname : list[str], optional
|
||
|
Default is `var_##` for ## in p the number of regressors
|
||
|
title : str, optional
|
||
|
Title for the top table. If not None, then this replaces the
|
||
|
default title
|
||
|
alpha : float
|
||
|
significance level for the confidence intervals
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
smry : Summary instance
|
||
|
this holds the summary tables and text, which can be printed or
|
||
|
converted to various output formats.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.iolib.summary.Summary : class to hold summary
|
||
|
results
|
||
|
"""
|
||
|
#TODO: add a summary text for options that have been used
|
||
|
|
||
|
jvalue, jpvalue, jdf = self.jtest()
|
||
|
|
||
|
top_left = [('Dep. Variable:', None),
|
||
|
('Model:', None),
|
||
|
('Method:', ['GMM']),
|
||
|
('Date:', None),
|
||
|
('Time:', None),
|
||
|
('No. Observations:', None),
|
||
|
#('Df Residuals:', None), #[self.df_resid]), #TODO: spelling
|
||
|
#('Df Model:', None), #[self.df_model])
|
||
|
]
|
||
|
|
||
|
top_right = [#('R-squared:', ["%#8.3f" % self.rsquared]),
|
||
|
#('Adj. R-squared:', ["%#8.3f" % self.rsquared_adj]),
|
||
|
('Hansen J:', ["%#8.4g" % jvalue] ),
|
||
|
('Prob (Hansen J):', ["%#6.3g" % jpvalue]),
|
||
|
#('F-statistic:', ["%#8.4g" % self.fvalue] ),
|
||
|
#('Prob (F-statistic):', ["%#6.3g" % self.f_pvalue]),
|
||
|
#('Log-Likelihood:', None), #["%#6.4g" % self.llf]),
|
||
|
#('AIC:', ["%#8.4g" % self.aic]),
|
||
|
#('BIC:', ["%#8.4g" % self.bic])
|
||
|
]
|
||
|
|
||
|
if title is None:
|
||
|
title = self.model.__class__.__name__ + ' ' + "Results"
|
||
|
|
||
|
# create summary table instance
|
||
|
from statsmodels.iolib.summary import Summary
|
||
|
smry = Summary()
|
||
|
smry.add_table_2cols(self, gleft=top_left, gright=top_right,
|
||
|
yname=yname, xname=xname, title=title)
|
||
|
smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha,
|
||
|
use_t=self.use_t)
|
||
|
|
||
|
return smry
|
||
|
|
||
|
|
||
|
|
||
|
class IVGMM(GMM):
|
||
|
'''
|
||
|
Basic class for instrumental variables estimation using GMM
|
||
|
|
||
|
A linear function for the conditional mean is defined as default but the
|
||
|
methods should be overwritten by subclasses, currently `LinearIVGMM` and
|
||
|
`NonlinearIVGMM` are implemented as subclasses.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
LinearIVGMM
|
||
|
NonlinearIVGMM
|
||
|
|
||
|
'''
|
||
|
|
||
|
results_class = 'IVGMMResults'
|
||
|
|
||
|
def fitstart(self):
|
||
|
"""Create array of zeros"""
|
||
|
return np.zeros(self.exog.shape[1])
|
||
|
|
||
|
def start_weights(self, inv=True):
|
||
|
"""Starting weights"""
|
||
|
zz = np.dot(self.instrument.T, self.instrument)
|
||
|
nobs = self.instrument.shape[0]
|
||
|
if inv:
|
||
|
return zz / nobs
|
||
|
else:
|
||
|
return np.linalg.pinv(zz / nobs)
|
||
|
|
||
|
def get_error(self, params):
|
||
|
"""Get error at params"""
|
||
|
return self.endog - self.predict(params)
|
||
|
|
||
|
def predict(self, params, exog=None):
|
||
|
"""Get prediction at params"""
|
||
|
if exog is None:
|
||
|
exog = self.exog
|
||
|
|
||
|
return np.dot(exog, params)
|
||
|
|
||
|
def momcond(self, params):
|
||
|
"""Error times instrument"""
|
||
|
instrument = self.instrument
|
||
|
return instrument * self.get_error(params)[:, None]
|
||
|
|
||
|
|
||
|
class LinearIVGMM(IVGMM):
|
||
|
"""class for linear instrumental variables models estimated with GMM
|
||
|
|
||
|
Uses closed form expression instead of nonlinear optimizers for each step
|
||
|
of the iterative GMM.
|
||
|
|
||
|
The model is assumed to have the following moment condition
|
||
|
|
||
|
E( z * (y - x beta)) = 0
|
||
|
|
||
|
Where `y` is the dependent endogenous variable, `x` are the explanatory
|
||
|
variables and `z` are the instruments. Variables in `x` that are exogenous
|
||
|
need also be included in `z`.
|
||
|
|
||
|
Notation Warning: our name `exog` stands for the explanatory variables,
|
||
|
and includes both exogenous and explanatory variables that are endogenous,
|
||
|
i.e. included endogenous variables
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
dependent endogenous variable
|
||
|
exog : array_like
|
||
|
explanatory, right hand side variables, including explanatory variables
|
||
|
that are endogenous
|
||
|
instrument : array_like
|
||
|
Instrumental variables, variables that are exogenous to the error
|
||
|
in the linear model containing both included and excluded exogenous
|
||
|
variables
|
||
|
"""
|
||
|
|
||
|
def fitgmm(self, start, weights=None, optim_method=None, **kwds):
|
||
|
'''estimate parameters using GMM for linear model
|
||
|
|
||
|
Uses closed form expression instead of nonlinear optimizers
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : not used
|
||
|
starting values for minimization, not used, only for consistency
|
||
|
of method signature
|
||
|
weights : ndarray
|
||
|
weighting matrix for moment conditions. If weights is None, then
|
||
|
the identity matrix is used
|
||
|
optim_method : not used,
|
||
|
optimization method, not used, only for consistency of method
|
||
|
signature
|
||
|
**kwds : keyword arguments
|
||
|
not used, will be silently ignored (for compatibility with generic)
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
paramest : ndarray
|
||
|
estimated parameters
|
||
|
|
||
|
'''
|
||
|
## if not fixed is None: #fixed not defined in this version
|
||
|
## raise NotImplementedError
|
||
|
|
||
|
# TODO: should start_weights only be in `fit`
|
||
|
if weights is None:
|
||
|
weights = self.start_weights(inv=False)
|
||
|
|
||
|
y, x, z = self.endog, self.exog, self.instrument
|
||
|
|
||
|
zTx = np.dot(z.T, x)
|
||
|
zTy = np.dot(z.T, y)
|
||
|
# normal equation, solved with pinv
|
||
|
part0 = zTx.T.dot(weights)
|
||
|
part1 = part0.dot(zTx)
|
||
|
part2 = part0.dot(zTy)
|
||
|
params = np.linalg.pinv(part1).dot(part2)
|
||
|
|
||
|
return params
|
||
|
|
||
|
|
||
|
def predict(self, params, exog=None):
|
||
|
if exog is None:
|
||
|
exog = self.exog
|
||
|
|
||
|
return np.dot(exog, params)
|
||
|
|
||
|
|
||
|
def gradient_momcond(self, params, **kwds):
|
||
|
# **kwds for compatibility not used
|
||
|
|
||
|
x, z = self.exog, self.instrument
|
||
|
gradmoms = -np.dot(z.T, x) / self.nobs
|
||
|
|
||
|
return gradmoms
|
||
|
|
||
|
def score(self, params, weights, **kwds):
|
||
|
# **kwds for compatibility, not used
|
||
|
# Note: I coud use general formula with gradient_momcond instead
|
||
|
|
||
|
x, z = self.exog, self.instrument
|
||
|
nobs = z.shape[0]
|
||
|
|
||
|
u = self.get_errors(params)
|
||
|
score = -2 * np.dot(x.T, z).dot(weights.dot(np.dot(z.T, u)))
|
||
|
score /= nobs * nobs
|
||
|
|
||
|
return score
|
||
|
|
||
|
|
||
|
|
||
|
class NonlinearIVGMM(IVGMM):
|
||
|
"""
|
||
|
Class for non-linear instrumental variables estimation using GMM
|
||
|
|
||
|
The model is assumed to have the following moment condition
|
||
|
|
||
|
E[ z * (y - f(X, beta)] = 0
|
||
|
|
||
|
Where `y` is the dependent endogenous variable, `x` are the explanatory
|
||
|
variables and `z` are the instruments. Variables in `x` that are exogenous
|
||
|
need also be included in z. `f` is a nonlinear function.
|
||
|
|
||
|
Notation Warning: our name `exog` stands for the explanatory variables,
|
||
|
and includes both exogenous and explanatory variables that are endogenous,
|
||
|
i.e. included endogenous variables
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
dependent endogenous variable
|
||
|
exog : array_like
|
||
|
explanatory, right hand side variables, including explanatory variables
|
||
|
that are endogenous.
|
||
|
instruments : array_like
|
||
|
Instrumental variables, variables that are exogenous to the error
|
||
|
in the linear model containing both included and excluded exogenous
|
||
|
variables
|
||
|
func : callable
|
||
|
function for the mean or conditional expectation of the endogenous
|
||
|
variable. The function will be called with parameters and the array of
|
||
|
explanatory, right hand side variables, `func(params, exog)`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This class uses numerical differences to obtain the derivative of the
|
||
|
objective function. If the jacobian of the conditional mean function, `func`
|
||
|
is available, then it can be used by subclassing this class and defining
|
||
|
a method `jac_func`.
|
||
|
|
||
|
TODO: check required signature of jac_error and jac_func
|
||
|
"""
|
||
|
# This should be reversed:
|
||
|
# NonlinearIVGMM is IVGMM and need LinearIVGMM as special case (fit, predict)
|
||
|
|
||
|
|
||
|
def fitstart(self):
|
||
|
#might not make sense for more general functions
|
||
|
return np.zeros(self.exog.shape[1])
|
||
|
|
||
|
|
||
|
def __init__(self, endog, exog, instrument, func, **kwds):
|
||
|
self.func = func
|
||
|
super().__init__(endog, exog, instrument, **kwds)
|
||
|
|
||
|
|
||
|
def predict(self, params, exog=None):
|
||
|
if exog is None:
|
||
|
exog = self.exog
|
||
|
|
||
|
return self.func(params, exog)
|
||
|
|
||
|
#---------- the following a semi-general versions,
|
||
|
# TODO: move to higher class after testing
|
||
|
|
||
|
def jac_func(self, params, weights, args=None, centered=True, epsilon=None):
|
||
|
|
||
|
# TODO: Why are ther weights in the signature - copy-paste error?
|
||
|
deriv = approx_fprime(params, self.func, args=(self.exog,),
|
||
|
centered=centered, epsilon=epsilon)
|
||
|
|
||
|
return deriv
|
||
|
|
||
|
|
||
|
def jac_error(self, params, weights, args=None, centered=True,
|
||
|
epsilon=None):
|
||
|
|
||
|
jac_func = self.jac_func(params, weights, args=None, centered=True,
|
||
|
epsilon=None)
|
||
|
|
||
|
return -jac_func
|
||
|
|
||
|
|
||
|
def score(self, params, weights, **kwds):
|
||
|
# **kwds for compatibility not used
|
||
|
# Note: I coud use general formula with gradient_momcond instead
|
||
|
|
||
|
z = self.instrument
|
||
|
nobs = z.shape[0]
|
||
|
|
||
|
jac_u = self.jac_error(params, weights, args=None, epsilon=None,
|
||
|
centered=True)
|
||
|
x = -jac_u # alias, plays the same role as X in linear model
|
||
|
|
||
|
u = self.get_error(params)
|
||
|
|
||
|
score = -2 * np.dot(np.dot(x.T, z), weights).dot(np.dot(z.T, u))
|
||
|
score /= nobs * nobs
|
||
|
|
||
|
return score
|
||
|
|
||
|
|
||
|
class IVGMMResults(GMMResults):
|
||
|
"""Results class of IVGMM"""
|
||
|
# this assumes that we have an additive error model `(y - f(x, params))`
|
||
|
|
||
|
@cache_readonly
|
||
|
def fittedvalues(self):
|
||
|
"""Fitted values"""
|
||
|
return self.model.predict(self.params)
|
||
|
|
||
|
|
||
|
@cache_readonly
|
||
|
def resid(self):
|
||
|
"""Residuals"""
|
||
|
return self.model.endog - self.fittedvalues
|
||
|
|
||
|
|
||
|
@cache_readonly
|
||
|
def ssr(self):
|
||
|
"""Sum of square errors"""
|
||
|
return (self.resid * self.resid).sum(0)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def spec_hausman(params_e, params_i, cov_params_e, cov_params_i, dof=None):
|
||
|
'''Hausmans specification test
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params_e : ndarray
|
||
|
efficient and consistent under Null hypothesis,
|
||
|
inconsistent under alternative hypothesis
|
||
|
params_i : ndarray
|
||
|
consistent under Null hypothesis,
|
||
|
consistent under alternative hypothesis
|
||
|
cov_params_e : ndarray, 2d
|
||
|
covariance matrix of parameter estimates for params_e
|
||
|
cov_params_i : ndarray, 2d
|
||
|
covariance matrix of parameter estimates for params_i
|
||
|
|
||
|
example instrumental variables OLS estimator is `e`, IV estimator is `i`
|
||
|
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
Todos,Issues
|
||
|
- check dof calculations and verify for linear case
|
||
|
- check one-sided hypothesis
|
||
|
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Greene section 5.5 p.82/83
|
||
|
|
||
|
|
||
|
'''
|
||
|
params_diff = (params_i - params_e)
|
||
|
cov_diff = cov_params_i - cov_params_e
|
||
|
#TODO: the following is very inefficient, solves problem (svd) twice
|
||
|
#use linalg.lstsq or svd directly
|
||
|
#cov_diff will very often be in-definite (singular)
|
||
|
if not dof:
|
||
|
dof = np.linalg.matrix_rank(cov_diff)
|
||
|
cov_diffpinv = np.linalg.pinv(cov_diff)
|
||
|
H = np.dot(params_diff, np.dot(cov_diffpinv, params_diff))
|
||
|
pval = stats.chi2.sf(H, dof)
|
||
|
|
||
|
evals = np.linalg.eigvalsh(cov_diff)
|
||
|
|
||
|
return H, pval, dof, evals
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
###########
|
||
|
|
||
|
class DistQuantilesGMM(GMM):
|
||
|
'''
|
||
|
Estimate distribution parameters by GMM based on matching quantiles
|
||
|
|
||
|
Currently mainly to try out different requirements for GMM when we cannot
|
||
|
calculate the optimal weighting matrix.
|
||
|
|
||
|
'''
|
||
|
|
||
|
def __init__(self, endog, exog, instrument, **kwds):
|
||
|
#TODO: something wrong with super
|
||
|
super().__init__(endog, exog, instrument)
|
||
|
#self.func = func
|
||
|
self.epsilon_iter = 1e-5
|
||
|
|
||
|
self.distfn = kwds['distfn']
|
||
|
#done by super does not work yet
|
||
|
#TypeError: super does not take keyword arguments
|
||
|
self.endog = endog
|
||
|
|
||
|
#make this optional for fit
|
||
|
if 'pquant' not in kwds:
|
||
|
self.pquant = pquant = np.array([0.01, 0.05,0.1,0.4,0.6,0.9,0.95,0.99])
|
||
|
else:
|
||
|
self.pquant = pquant = kwds['pquant']
|
||
|
|
||
|
#TODO: vectorize this: use edf
|
||
|
self.xquant = np.array([stats.scoreatpercentile(endog, p) for p
|
||
|
in pquant*100])
|
||
|
self.nmoms = len(self.pquant)
|
||
|
|
||
|
#TODOcopied from GMM, make super work
|
||
|
self.endog = endog
|
||
|
self.exog = exog
|
||
|
self.instrument = instrument
|
||
|
self.results = GMMResults(model=self)
|
||
|
#self.__dict__.update(kwds)
|
||
|
self.epsilon_iter = 1e-6
|
||
|
|
||
|
def fitstart(self):
|
||
|
#todo: replace with or add call to distfn._fitstart
|
||
|
# added but not used during testing
|
||
|
distfn = self.distfn
|
||
|
if hasattr(distfn, '_fitstart'):
|
||
|
start = distfn._fitstart(self.endog)
|
||
|
else:
|
||
|
start = [1]*distfn.numargs + [0.,1.]
|
||
|
|
||
|
return np.asarray(start)
|
||
|
|
||
|
def momcond(self, params): #drop distfn as argument
|
||
|
#, mom2, quantile=None, shape=None
|
||
|
'''moment conditions for estimating distribution parameters by matching
|
||
|
quantiles, defines as many moment conditions as quantiles.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
difference : ndarray
|
||
|
difference between theoretical and empirical quantiles
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This can be used for method of moments or for generalized method of
|
||
|
moments.
|
||
|
|
||
|
'''
|
||
|
#this check looks redundant/unused know
|
||
|
if len(params) == 2:
|
||
|
loc, scale = params
|
||
|
elif len(params) == 3:
|
||
|
shape, loc, scale = params
|
||
|
else:
|
||
|
#raise NotImplementedError
|
||
|
pass #see whether this might work, seems to work for beta with 2 shape args
|
||
|
|
||
|
#mom2diff = np.array(distfn.stats(*params)) - mom2
|
||
|
#if not quantile is None:
|
||
|
pq, xq = self.pquant, self.xquant
|
||
|
#ppfdiff = distfn.ppf(pq, alpha)
|
||
|
cdfdiff = self.distfn.cdf(xq, *params) - pq
|
||
|
#return np.concatenate([mom2diff, cdfdiff[:1]])
|
||
|
return np.atleast_2d(cdfdiff)
|
||
|
|
||
|
def fitonce(self, start=None, weights=None, has_optimal_weights=False):
|
||
|
'''fit without estimating an optimal weighting matrix and return results
|
||
|
|
||
|
This is a convenience function that calls fitgmm and covparams with
|
||
|
a given weight matrix or the identity weight matrix.
|
||
|
This is useful if the optimal weight matrix is know (or is analytically
|
||
|
given) or if an optimal weight matrix cannot be calculated.
|
||
|
|
||
|
(Developer Notes: this function could go into GMM, but is needed in this
|
||
|
class, at least at the moment.)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results : GMMResult instance
|
||
|
result instance with params and _cov_params attached
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fitgmm
|
||
|
cov_params
|
||
|
|
||
|
'''
|
||
|
if weights is None:
|
||
|
weights = np.eye(self.nmoms)
|
||
|
params = self.fitgmm(start=start)
|
||
|
# TODO: rewrite this old hack, should use fitgmm or fit maxiter=0
|
||
|
self.results.params = params #required before call to self.cov_params
|
||
|
self.results.wargs = {} #required before call to self.cov_params
|
||
|
self.results.options_other = {'weights_method':'cov'}
|
||
|
# TODO: which weights_method? There should not be any needed ?
|
||
|
_cov_params = self.results.cov_params(weights=weights,
|
||
|
has_optimal_weights=has_optimal_weights)
|
||
|
|
||
|
self.results.weights = weights
|
||
|
self.results.jval = self.gmmobjective(params, weights)
|
||
|
self.results.options_other.update({'has_optimal_weights':has_optimal_weights})
|
||
|
|
||
|
return self.results
|
||
|
|
||
|
|
||
|
results_class_dict = {'GMMResults': GMMResults,
|
||
|
'IVGMMResults': IVGMMResults,
|
||
|
'DistQuantilesGMM': GMMResults} #TODO: should be a default
|