AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/sandbox/regression/ar_panel.py

113 lines
3.5 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
'''Paneldata model with fixed effect (constants) and AR(1) errors
checking fast evaluation of groupar1filter
quickly written to try out grouparfilter without python loops
maybe the example has MA(1) not AR(1) errors, I'm not sure and changed this.
results look good, I'm also differencing the dummy variable (constants) ???
e.g. nobs = 35
true 0.6, 10, 20, 30 (alpha, mean_0, mean_1, mean_2)
estimate 0.369453125 [ 10.14646929 19.87135086 30.12706505]
Currently minimizes ssr but could switch to minimize llf, i.e. conditional MLE.
This should correspond to iterative FGLS, where data are AR(1) transformed
similar to GLSAR ?
Result statistic from GLS return by OLS on transformed data should be
asymptotically correct (check)
Could be extended to AR(p) errors, but then requires panel with larger T
'''
import numpy as np
from scipy import optimize
from statsmodels.regression.linear_model import OLS
class PanelAR1:
def __init__(self, endog, exog=None, groups=None):
#take this from a super class, no checking is done here
nobs = endog.shape[0]
self.endog = endog
if exog is not None:
self.exog = exog
self.groups_start = (np.diff(groups)!=0)
self.groups_valid = ~self.groups_start
def ar1filter(self, xy, alpha):
#print(alpha,)
return (xy[1:] - alpha * xy[:-1])[self.groups_valid]
def fit_conditional(self, alpha):
y = self.ar1filter(self.endog, alpha)
x = self.ar1filter(self.exog, alpha)
res = OLS(y, x).fit()
return res.ssr #res.llf
def fit(self):
alpha0 = 0.1 #startvalue
func = self.fit_conditional
fitres = optimize.fmin(func, alpha0)
# fit_conditional only returns ssr for now
alpha = fitres[0]
y = self.ar1filter(self.endog, alpha)
x = self.ar1filter(self.exog, alpha)
reso = OLS(y, x).fit()
return fitres, reso
if __name__ == '__main__':
#------------ development code for groupar1filter and example
groups = np.array([0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,
2,2,2,2,2,2,2,2])
nobs = len(groups)
data0 = np.arange(nobs)
data = np.arange(1,nobs+1) - 0.5*np.arange(nobs) + 0.1*np.random.randn(nobs)
y00 = 0.5*np.random.randn(nobs+1)
# I do not think a trend is handled yet
data = np.arange(nobs) + y00[1:] + 0.2*y00[:-1] + 0.1*np.random.randn(nobs)
#Are these AR(1) or MA(1) errors ???
data = y00[1:] + 0.6*y00[:-1] #+ 0.1*np.random.randn(nobs)
group_codes = np.unique(groups)
group_dummy = (groups[:,None] == group_codes).astype(int)
groups_start = (np.diff(groups)!=0)
groups_valid = (np.diff(groups)==0) #this applies to y with length for AR(1)
#could use np.nonzero for index instead
y = data + np.dot(group_dummy, np.array([10, 20, 30]))
y0 = data0 + np.dot(group_dummy, np.array([10, 20, 30]))
print(groups_valid)
print(np.diff(y)[groups_valid])
alpha = 1 #test with 1
print((y0[1:] - alpha*y0[:-1])[groups_valid])
alpha = 0.2 #test with 1
print((y0[1:] - alpha*y0[:-1] + 0.001)[groups_valid])
#this is now AR(1) for each group separately
#------------
#fitting the example
exog = np.ones(nobs)
exog = group_dummy
mod = PanelAR1(y, exog, groups=groups)
#mod = PanelAR1(data, exog, groups=groups) #data does not contain different means
#print(mod.ar1filter(mod.endog, 1))
resa, reso = mod.fit()
print(resa[0], reso.params)