AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/sandbox/pca.py

225 lines
6.9 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
#Copyright (c) 2008 Erik Tollerud (etolleru@uci.edu)
import numpy as np
class Pca:
"""
A basic class for Principal Component Analysis (PCA).
p is the number of dimensions, while N is the number of data points
"""
_colors=('r','g','b','c','y','m','k') #defaults
def __calc(self):
A = self.A
M=A-np.mean(A,axis=0)
N=M/np.std(M,axis=0)
self.M = M
self.N = N
self._eig = None
def __init__(self,data,names=None):
"""
p X N matrix input
"""
A = np.array(data).T
n,p = A.shape
self.n,self.p = n,p
if p > n:
from warnings import warn
warn('p > n - intentional?', RuntimeWarning)
self.A = A
self._origA=A.copy()
self.__calc()
self._colors= np.tile(self._colors,int((p-1)/len(self._colors))+1)[:p]
if names is not None and len(names) != p:
raise ValueError('names must match data dimension')
self.names = None if names is None else tuple([str(x) for x in names])
def getCovarianceMatrix(self):
"""
returns the covariance matrix for the dataset
"""
return np.cov(self.N.T)
def getEigensystem(self):
"""
returns a tuple of (eigenvalues,eigenvectors) for the data set.
"""
if self._eig is None:
res = np.linalg.eig(self.getCovarianceMatrix())
sorti=np.argsort(res[0])[::-1]
res=(res[0][sorti],res[1][:,sorti])
self._eig=res
return self._eig
def getEigenvalues(self):
return self.getEigensystem()[0]
def getEigenvectors(self):
return self.getEigensystem()[1]
def getEnergies(self):
"""
"energies" are just normalized eigenvectors
"""
v=self.getEigenvalues()
return v/np.sum(v)
def plot2d(self,ix=0,iy=1,clf=True):
"""
Generates a 2-dimensional plot of the data set and principle components
using matplotlib.
ix specifies which p-dimension to put on the x-axis of the plot
and iy specifies which to put on the y-axis (0-indexed)
"""
import matplotlib.pyplot as plt
x,y=self.N[:,ix],self.N[:,iy]
if clf:
plt.clf()
plt.scatter(x,y)
vals,evs=self.getEigensystem()
#evx,evy=evs[:,ix],evs[:,iy]
xl,xu=plt.xlim()
yl,yu=plt.ylim()
dx,dy=(xu-xl),(yu-yl)
for val,vec,c in zip(vals,evs.T,self._colors):
plt.arrow(0,0,val*vec[ix],val*vec[iy],head_width=0.05*(dx*dy/4)**0.5,fc=c,ec=c)
#plt.arrow(0,0,vals[ix]*evs[ix,ix],vals[ix]*evs[iy,ix],head_width=0.05*(dx*dy/4)**0.5,fc='g',ec='g')
#plt.arrow(0,0,vals[iy]*evs[ix,iy],vals[iy]*evs[iy,iy],head_width=0.05*(dx*dy/4)**0.5,fc='r',ec='r')
if self.names is not None:
plt.xlabel('$'+self.names[ix]+'/\\sigma$')
plt.ylabel('$'+self.names[iy]+'/\\sigma$')
def plot3d(self,ix=0,iy=1,iz=2,clf=True):
"""
Generates a 3-dimensional plot of the data set and principle components
using mayavi.
ix, iy, and iz specify which of the input p-dimensions to place on each of
the x,y,z axes, respectively (0-indexed).
"""
import enthought.mayavi.mlab as M
if clf:
M.clf()
z3=np.zeros(3)
v=(self.getEigenvectors()*self.getEigenvalues())
M.quiver3d(z3,z3,z3,v[ix],v[iy],v[iz],scale_factor=5)
M.points3d(self.N[:,ix],self.N[:,iy],self.N[:,iz],scale_factor=0.3)
if self.names:
M.axes(xlabel=self.names[ix]+'/sigma',ylabel=self.names[iy]+'/sigma',zlabel=self.names[iz]+'/sigma')
else:
M.axes()
def sigclip(self,sigs):
"""
clips out all data points that are more than a certain number
of standard deviations from the mean.
sigs can be either a single value or a length-p sequence that
specifies the number of standard deviations along each of the
p dimensions.
"""
if np.isscalar(sigs):
sigs=sigs*np.ones(self.N.shape[1])
sigs = sigs*np.std(self.N,axis=1)
n = self.N.shape[0]
m = np.all(np.abs(self.N) < sigs,axis=1)
self.A=self.A[m]
self.__calc()
return n-sum(m)
def reset(self):
self.A = self._origA.copy()
self.__calc()
def project(self,vals=None,enthresh=None,nPCs=None,cumen=None):
"""
projects the normalized values onto the components
enthresh, nPCs, and cumen determine how many PCs to use
if vals is None, the normalized data vectors are the values to project.
Otherwise, it should be convertable to a p x N array
returns n,p(>threshold) dimension array
"""
nonnones = sum([e is not None for e in (enthresh, nPCs, cumen)])
if nonnones == 0:
m = slice(None)
elif nonnones > 1:
raise ValueError("cannot specify more than one threshold")
else:
if enthresh is not None:
m = self.energies() > enthresh
elif nPCs is not None:
m = slice(None,nPCs)
elif cumen is not None:
m = np.cumsum(self.energies()) < cumen
else:
raise RuntimeError('Should be unreachable')
if vals is None:
vals = self.N.T
else:
vals = np.array(vals,copy=False)
if self.N.T.shape[0] != vals.shape[0]:
raise ValueError("shape for vals does not match")
proj = np.matrix(self.getEigenvectors()).T*vals
return proj[m].T
def deproject(self,A,normed=True):
"""
input is an n X q array, where q <= p
output is p X n
"""
A=np.atleast_2d(A)
n,q = A.shape
p = self.A.shape[1]
if q > p :
raise ValueError("q > p")
evinv=np.linalg.inv(np.matrix(self.getEigenvectors()).T)
zs = np.zeros((n,p))
zs[:,:q]=A
proj = evinv*zs.T
if normed:
return np.array(proj.T).T
else:
mns=np.mean(self.A,axis=0)
sds=np.std(self.M,axis=0)
return (np.array(proj.T)*sds+mns).T
def subtractPC(self,pc,vals=None):
"""
pc can be a scalar or any sequence of pc indecies
if vals is None, the source data is self.A, else whatever is in vals
(which must be p x m)
"""
if vals is None:
vals = self.A
else:
vals = vals.T
if vals.shape[1]!= self.A.shape[1]:
raise ValueError("vals do not have the correct number of components")
pcs=self.project()
zpcs=np.zeros_like(pcs)
zpcs[:,pc]=pcs[:,pc]
upc=self.deproject(zpcs,False)
A = vals.T-upc
B = A.T*np.std(self.M,axis=0)
return B+np.mean(self.A,axis=0)