64 lines
1.6 KiB
Python
64 lines
1.6 KiB
Python
|
'''What's the origin of this file? It is not ours.
|
||
|
Does not run because of missing mtx files, now included
|
||
|
|
||
|
changes: JP corrections to imports so it runs, comment out print
|
||
|
'''
|
||
|
import numpy as np
|
||
|
from numpy import dot, outer, random
|
||
|
from scipy import io, linalg, optimize
|
||
|
from scipy.sparse import eye as speye
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
def R(v):
|
||
|
rq = dot(v.T,A*v)/dot(v.T,B*v)
|
||
|
res = (A*v-rq*B*v)/linalg.norm(B*v)
|
||
|
data.append(linalg.norm(res))
|
||
|
return rq
|
||
|
|
||
|
def Rp(v):
|
||
|
""" Gradient """
|
||
|
result = 2*(A*v-R(v)*B*v)/dot(v.T,B*v)
|
||
|
#print "Rp: ", result
|
||
|
return result
|
||
|
|
||
|
def Rpp(v):
|
||
|
""" Hessian """
|
||
|
result = 2*(A-R(v)*B-outer(B*v,Rp(v))-outer(Rp(v),B*v))/dot(v.T,B*v)
|
||
|
#print "Rpp: ", result
|
||
|
return result
|
||
|
|
||
|
|
||
|
A = io.mmread('nos4.mtx') # clustered eigenvalues
|
||
|
#B = io.mmread('bcsstm02.mtx.gz')
|
||
|
#A = io.mmread('bcsstk06.mtx.gz') # clustered eigenvalues
|
||
|
#B = io.mmread('bcsstm06.mtx.gz')
|
||
|
n = A.shape[0]
|
||
|
B = speye(n,n)
|
||
|
random.seed(1)
|
||
|
v_0=random.rand(n)
|
||
|
|
||
|
print("try fmin_bfgs")
|
||
|
full_output = 1
|
||
|
data=[]
|
||
|
v,fopt, gopt, Hopt, func_calls, grad_calls, warnflag, allvecs = \
|
||
|
optimize.fmin_bfgs(R,v_0,fprime=Rp,full_output=full_output,retall=1)
|
||
|
if warnflag == 0:
|
||
|
plt.semilogy(np.arange(0,len(data)),data)
|
||
|
print('Rayleigh quotient BFGS',R(v))
|
||
|
|
||
|
|
||
|
print("fmin_bfgs OK")
|
||
|
|
||
|
print("try fmin_ncg")
|
||
|
|
||
|
#
|
||
|
# WARNING: the program may hangs if fmin_ncg is used
|
||
|
#
|
||
|
data=[]
|
||
|
v,fopt, fcalls, gcalls, hcalls, warnflag, allvecs = \
|
||
|
optimize.fmin_ncg(R,v_0,fprime=Rp,fhess=Rpp,full_output=full_output,retall=1)
|
||
|
if warnflag==0:
|
||
|
plt.figure()
|
||
|
plt.semilogy(np.arange(0,len(data)),data)
|
||
|
print('Rayleigh quotient NCG',R(v))
|