870 lines
32 KiB
Python
870 lines
32 KiB
Python
|
"""
|
||
|
Recursive least squares model
|
||
|
|
||
|
Author: Chad Fulton
|
||
|
License: Simplified-BSD
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
|
||
|
from statsmodels.compat.pandas import Appender
|
||
|
|
||
|
from statsmodels.tools.data import _is_using_pandas
|
||
|
from statsmodels.tsa.statespace.mlemodel import (
|
||
|
MLEModel, MLEResults, MLEResultsWrapper, PredictionResults,
|
||
|
PredictionResultsWrapper)
|
||
|
from statsmodels.tsa.statespace.tools import concat
|
||
|
from statsmodels.tools.tools import Bunch
|
||
|
from statsmodels.tools.decorators import cache_readonly
|
||
|
import statsmodels.base.wrapper as wrap
|
||
|
|
||
|
# Columns are alpha = 0.1, 0.05, 0.025, 0.01, 0.005
|
||
|
_cusum_squares_scalars = np.array([
|
||
|
[1.0729830, 1.2238734, 1.3581015, 1.5174271, 1.6276236],
|
||
|
[-0.6698868, -0.6700069, -0.6701218, -0.6702672, -0.6703724],
|
||
|
[-0.5816458, -0.7351697, -0.8858694, -1.0847745, -1.2365861]
|
||
|
])
|
||
|
|
||
|
|
||
|
class RecursiveLS(MLEModel):
|
||
|
r"""
|
||
|
Recursive least squares
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
The observed time-series process :math:`y`
|
||
|
exog : array_like
|
||
|
Array of exogenous regressors, shaped nobs x k.
|
||
|
constraints : array_like, str, or tuple
|
||
|
- array : An r x k array where r is the number of restrictions to
|
||
|
test and k is the number of regressors. It is assumed that the
|
||
|
linear combination is equal to zero.
|
||
|
- str : The full hypotheses to test can be given as a string.
|
||
|
See the examples.
|
||
|
- tuple : A tuple of arrays in the form (R, q), ``q`` can be
|
||
|
either a scalar or a length p row vector.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Recursive least squares (RLS) corresponds to expanding window ordinary
|
||
|
least squares (OLS).
|
||
|
|
||
|
This model applies the Kalman filter to compute recursive estimates of the
|
||
|
coefficients and recursive residuals.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [*] Durbin, James, and Siem Jan Koopman. 2012.
|
||
|
Time Series Analysis by State Space Methods: Second Edition.
|
||
|
Oxford University Press.
|
||
|
"""
|
||
|
def __init__(self, endog, exog, constraints=None, **kwargs):
|
||
|
# Standardize data
|
||
|
endog_using_pandas = _is_using_pandas(endog, None)
|
||
|
if not endog_using_pandas:
|
||
|
endog = np.asanyarray(endog)
|
||
|
|
||
|
exog_is_using_pandas = _is_using_pandas(exog, None)
|
||
|
if not exog_is_using_pandas:
|
||
|
exog = np.asarray(exog)
|
||
|
|
||
|
# Make sure we have 2-dimensional array
|
||
|
if exog.ndim == 1:
|
||
|
if not exog_is_using_pandas:
|
||
|
exog = exog[:, None]
|
||
|
else:
|
||
|
exog = pd.DataFrame(exog)
|
||
|
|
||
|
self.k_exog = exog.shape[1]
|
||
|
|
||
|
# Handle constraints
|
||
|
self.k_constraints = 0
|
||
|
self._r_matrix = self._q_matrix = None
|
||
|
if constraints is not None:
|
||
|
from patsy import DesignInfo
|
||
|
from statsmodels.base.data import handle_data
|
||
|
data = handle_data(endog, exog, **kwargs)
|
||
|
names = data.param_names
|
||
|
LC = DesignInfo(names).linear_constraint(constraints)
|
||
|
self._r_matrix, self._q_matrix = LC.coefs, LC.constants
|
||
|
self.k_constraints = self._r_matrix.shape[0]
|
||
|
|
||
|
nobs = len(endog)
|
||
|
constraint_endog = np.zeros((nobs, len(self._r_matrix)))
|
||
|
if endog_using_pandas:
|
||
|
constraint_endog = pd.DataFrame(constraint_endog,
|
||
|
index=endog.index)
|
||
|
endog = concat([endog, constraint_endog], axis=1)
|
||
|
# Complexity needed to handle multiple version of pandas
|
||
|
# Pandas >= 2 can use endog.iloc[:, 1:] = self._q_matrix.T
|
||
|
endog.iloc[:, 1:] = np.tile(self._q_matrix.T, (nobs, 1))
|
||
|
else:
|
||
|
endog[:, 1:] = self._q_matrix[:, 0]
|
||
|
|
||
|
# Handle coefficient initialization
|
||
|
kwargs.setdefault('initialization', 'diffuse')
|
||
|
|
||
|
# Remove some formula-specific kwargs
|
||
|
formula_kwargs = ['missing', 'missing_idx', 'formula', 'design_info']
|
||
|
for name in formula_kwargs:
|
||
|
if name in kwargs:
|
||
|
del kwargs[name]
|
||
|
|
||
|
# Initialize the state space representation
|
||
|
super().__init__(
|
||
|
endog, k_states=self.k_exog, exog=exog, **kwargs
|
||
|
)
|
||
|
|
||
|
# Use univariate filtering by default
|
||
|
self.ssm.filter_univariate = True
|
||
|
|
||
|
# Concentrate the scale out of the likelihood function
|
||
|
self.ssm.filter_concentrated = True
|
||
|
|
||
|
# Setup the state space representation
|
||
|
self['design'] = np.zeros((self.k_endog, self.k_states, self.nobs))
|
||
|
self['design', 0] = self.exog[:, :, None].T
|
||
|
if self._r_matrix is not None:
|
||
|
self['design', 1:, :] = self._r_matrix[:, :, None]
|
||
|
self['transition'] = np.eye(self.k_states)
|
||
|
|
||
|
# Notice that the filter output does not depend on the measurement
|
||
|
# variance, so we set it here to 1
|
||
|
self['obs_cov', 0, 0] = 1.
|
||
|
self['transition'] = np.eye(self.k_states)
|
||
|
|
||
|
# Linear constraints are technically imposed by adding "fake" endog
|
||
|
# variables that are used during filtering, but for all model- and
|
||
|
# results-based purposes we want k_endog = 1.
|
||
|
if self._r_matrix is not None:
|
||
|
self.k_endog = 1
|
||
|
|
||
|
@classmethod
|
||
|
def from_formula(cls, formula, data, subset=None, constraints=None):
|
||
|
return super(MLEModel, cls).from_formula(formula, data, subset,
|
||
|
constraints=constraints)
|
||
|
|
||
|
def _validate_can_fix_params(self, param_names):
|
||
|
raise ValueError('Linear constraints on coefficients should be given'
|
||
|
' using the `constraints` argument in constructing.'
|
||
|
' the model. Other parameter constraints are not'
|
||
|
' available in the resursive least squares model.')
|
||
|
|
||
|
def fit(self):
|
||
|
"""
|
||
|
Fits the model by application of the Kalman filter
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
RecursiveLSResults
|
||
|
"""
|
||
|
smoother_results = self.smooth(return_ssm=True)
|
||
|
|
||
|
with self.ssm.fixed_scale(smoother_results.scale):
|
||
|
res = self.smooth()
|
||
|
|
||
|
return res
|
||
|
|
||
|
def filter(self, return_ssm=False, **kwargs):
|
||
|
# Get the state space output
|
||
|
result = super().filter([], transformed=True,
|
||
|
cov_type='none',
|
||
|
return_ssm=True, **kwargs)
|
||
|
|
||
|
# Wrap in a results object
|
||
|
if not return_ssm:
|
||
|
params = result.filtered_state[:, -1]
|
||
|
cov_kwds = {
|
||
|
'custom_cov_type': 'nonrobust',
|
||
|
'custom_cov_params': result.filtered_state_cov[:, :, -1],
|
||
|
'custom_description': ('Parameters and covariance matrix'
|
||
|
' estimates are RLS estimates'
|
||
|
' conditional on the entire sample.')
|
||
|
}
|
||
|
result = RecursiveLSResultsWrapper(
|
||
|
RecursiveLSResults(self, params, result, cov_type='custom',
|
||
|
cov_kwds=cov_kwds)
|
||
|
)
|
||
|
|
||
|
return result
|
||
|
|
||
|
def smooth(self, return_ssm=False, **kwargs):
|
||
|
# Get the state space output
|
||
|
result = super().smooth([], transformed=True,
|
||
|
cov_type='none',
|
||
|
return_ssm=True, **kwargs)
|
||
|
|
||
|
# Wrap in a results object
|
||
|
if not return_ssm:
|
||
|
params = result.filtered_state[:, -1]
|
||
|
cov_kwds = {
|
||
|
'custom_cov_type': 'nonrobust',
|
||
|
'custom_cov_params': result.filtered_state_cov[:, :, -1],
|
||
|
'custom_description': ('Parameters and covariance matrix'
|
||
|
' estimates are RLS estimates'
|
||
|
' conditional on the entire sample.')
|
||
|
}
|
||
|
result = RecursiveLSResultsWrapper(
|
||
|
RecursiveLSResults(self, params, result, cov_type='custom',
|
||
|
cov_kwds=cov_kwds)
|
||
|
)
|
||
|
|
||
|
return result
|
||
|
|
||
|
@property
|
||
|
def endog_names(self):
|
||
|
endog_names = super().endog_names
|
||
|
return endog_names[0] if isinstance(endog_names, list) else endog_names
|
||
|
|
||
|
@property
|
||
|
def param_names(self):
|
||
|
return self.exog_names
|
||
|
|
||
|
@property
|
||
|
def start_params(self):
|
||
|
# Only parameter is the measurement disturbance standard deviation
|
||
|
return np.zeros(0)
|
||
|
|
||
|
def update(self, params, **kwargs):
|
||
|
"""
|
||
|
Update the parameters of the model
|
||
|
|
||
|
Updates the representation matrices to fill in the new parameter
|
||
|
values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
Array of new parameters.
|
||
|
transformed : bool, optional
|
||
|
Whether or not `params` is already transformed. If set to False,
|
||
|
`transform_params` is called. Default is True..
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
params : array_like
|
||
|
Array of parameters.
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
|
||
|
class RecursiveLSResults(MLEResults):
|
||
|
"""
|
||
|
Class to hold results from fitting a recursive least squares model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
model : RecursiveLS instance
|
||
|
The fitted model instance
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
specification : dictionary
|
||
|
Dictionary including all attributes from the recursive least squares
|
||
|
model instance.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.tsa.statespace.kalman_filter.FilterResults
|
||
|
statsmodels.tsa.statespace.mlemodel.MLEResults
|
||
|
"""
|
||
|
|
||
|
def __init__(self, model, params, filter_results, cov_type='opg',
|
||
|
**kwargs):
|
||
|
super().__init__(
|
||
|
model, params, filter_results, cov_type, **kwargs
|
||
|
)
|
||
|
|
||
|
# Since we are overriding params with things that are not MLE params,
|
||
|
# need to adjust df's
|
||
|
q = max(self.loglikelihood_burn, self.k_diffuse_states)
|
||
|
self.df_model = q - self.model.k_constraints
|
||
|
self.df_resid = self.nobs_effective - self.df_model
|
||
|
|
||
|
# Save _init_kwds
|
||
|
self._init_kwds = self.model._get_init_kwds()
|
||
|
|
||
|
# Save the model specification
|
||
|
self.specification = Bunch(**{
|
||
|
'k_exog': self.model.k_exog,
|
||
|
'k_constraints': self.model.k_constraints})
|
||
|
|
||
|
# Adjust results to remove "faux" endog from the constraints
|
||
|
if self.model._r_matrix is not None:
|
||
|
for name in ['forecasts', 'forecasts_error',
|
||
|
'forecasts_error_cov', 'standardized_forecasts_error',
|
||
|
'forecasts_error_diffuse_cov']:
|
||
|
setattr(self, name, getattr(self, name)[0:1])
|
||
|
|
||
|
@property
|
||
|
def recursive_coefficients(self):
|
||
|
"""
|
||
|
Estimates of regression coefficients, recursively estimated
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out: Bunch
|
||
|
Has the following attributes:
|
||
|
|
||
|
- `filtered`: a time series array with the filtered estimate of
|
||
|
the component
|
||
|
- `filtered_cov`: a time series array with the filtered estimate of
|
||
|
the variance/covariance of the component
|
||
|
- `smoothed`: a time series array with the smoothed estimate of
|
||
|
the component
|
||
|
- `smoothed_cov`: a time series array with the smoothed estimate of
|
||
|
the variance/covariance of the component
|
||
|
- `offset`: an integer giving the offset in the state vector where
|
||
|
this component begins
|
||
|
"""
|
||
|
out = None
|
||
|
spec = self.specification
|
||
|
start = offset = 0
|
||
|
end = offset + spec.k_exog
|
||
|
out = Bunch(
|
||
|
filtered=self.filtered_state[start:end],
|
||
|
filtered_cov=self.filtered_state_cov[start:end, start:end],
|
||
|
smoothed=None, smoothed_cov=None,
|
||
|
offset=offset
|
||
|
)
|
||
|
if self.smoothed_state is not None:
|
||
|
out.smoothed = self.smoothed_state[start:end]
|
||
|
if self.smoothed_state_cov is not None:
|
||
|
out.smoothed_cov = (
|
||
|
self.smoothed_state_cov[start:end, start:end])
|
||
|
return out
|
||
|
|
||
|
@cache_readonly
|
||
|
def resid_recursive(self):
|
||
|
r"""
|
||
|
Recursive residuals
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
resid_recursive : array_like
|
||
|
An array of length `nobs` holding the recursive
|
||
|
residuals.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
These quantities are defined in, for example, Harvey (1989)
|
||
|
section 5.4. In fact, there he defines the standardized innovations in
|
||
|
equation 5.4.1, but in his version they have non-unit variance, whereas
|
||
|
the standardized forecast errors computed by the Kalman filter here
|
||
|
assume unit variance. To convert to Harvey's definition, we need to
|
||
|
multiply by the standard deviation.
|
||
|
|
||
|
Harvey notes that in smaller samples, "although the second moment
|
||
|
of the :math:`\tilde \sigma_*^{-1} \tilde v_t`'s is unity, the
|
||
|
variance is not necessarily equal to unity as the mean need not be
|
||
|
equal to zero", and he defines an alternative version (which are
|
||
|
not provided here).
|
||
|
"""
|
||
|
return (self.filter_results.standardized_forecasts_error[0] *
|
||
|
self.scale**0.5)
|
||
|
|
||
|
@cache_readonly
|
||
|
def cusum(self):
|
||
|
r"""
|
||
|
Cumulative sum of standardized recursive residuals statistics
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cusum : array_like
|
||
|
An array of length `nobs - k_exog` holding the
|
||
|
CUSUM statistics.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The CUSUM statistic takes the form:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
W_t = \frac{1}{\hat \sigma} \sum_{j=k+1}^t w_j
|
||
|
|
||
|
where :math:`w_j` is the recursive residual at time :math:`j` and
|
||
|
:math:`\hat \sigma` is the estimate of the standard deviation
|
||
|
from the full sample.
|
||
|
|
||
|
Excludes the first `k_exog` datapoints.
|
||
|
|
||
|
Due to differences in the way :math:`\hat \sigma` is calculated, the
|
||
|
output of this function differs slightly from the output in the
|
||
|
R package strucchange and the Stata contributed .ado file cusum6. The
|
||
|
calculation in this package is consistent with the description of
|
||
|
Brown et al. (1975)
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [*] Brown, R. L., J. Durbin, and J. M. Evans. 1975.
|
||
|
"Techniques for Testing the Constancy of
|
||
|
Regression Relationships over Time."
|
||
|
Journal of the Royal Statistical Society.
|
||
|
Series B (Methodological) 37 (2): 149-92.
|
||
|
"""
|
||
|
d = max(self.nobs_diffuse, self.loglikelihood_burn)
|
||
|
return (np.cumsum(self.resid_recursive[d:]) /
|
||
|
np.std(self.resid_recursive[d:], ddof=1))
|
||
|
|
||
|
@cache_readonly
|
||
|
def cusum_squares(self):
|
||
|
r"""
|
||
|
Cumulative sum of squares of standardized recursive residuals
|
||
|
statistics
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cusum_squares : array_like
|
||
|
An array of length `nobs - k_exog` holding the
|
||
|
CUSUM of squares statistics.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The CUSUM of squares statistic takes the form:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
s_t = \left ( \sum_{j=k+1}^t w_j^2 \right ) \Bigg /
|
||
|
\left ( \sum_{j=k+1}^T w_j^2 \right )
|
||
|
|
||
|
where :math:`w_j` is the recursive residual at time :math:`j`.
|
||
|
|
||
|
Excludes the first `k_exog` datapoints.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [*] Brown, R. L., J. Durbin, and J. M. Evans. 1975.
|
||
|
"Techniques for Testing the Constancy of
|
||
|
Regression Relationships over Time."
|
||
|
Journal of the Royal Statistical Society.
|
||
|
Series B (Methodological) 37 (2): 149-92.
|
||
|
"""
|
||
|
d = max(self.nobs_diffuse, self.loglikelihood_burn)
|
||
|
numer = np.cumsum(self.resid_recursive[d:]**2)
|
||
|
denom = numer[-1]
|
||
|
return numer / denom
|
||
|
|
||
|
@cache_readonly
|
||
|
def llf_recursive_obs(self):
|
||
|
"""
|
||
|
(float) Loglikelihood at observation, computed from recursive residuals
|
||
|
"""
|
||
|
from scipy.stats import norm
|
||
|
return np.log(norm.pdf(self.resid_recursive, loc=0,
|
||
|
scale=self.scale**0.5))
|
||
|
|
||
|
@cache_readonly
|
||
|
def llf_recursive(self):
|
||
|
"""
|
||
|
(float) Loglikelihood defined by recursive residuals, equivalent to OLS
|
||
|
"""
|
||
|
return np.sum(self.llf_recursive_obs)
|
||
|
|
||
|
@cache_readonly
|
||
|
def ssr(self):
|
||
|
"""ssr"""
|
||
|
d = max(self.nobs_diffuse, self.loglikelihood_burn)
|
||
|
return (self.nobs - d) * self.filter_results.obs_cov[0, 0, 0]
|
||
|
|
||
|
@cache_readonly
|
||
|
def centered_tss(self):
|
||
|
"""Centered tss"""
|
||
|
return np.sum((self.filter_results.endog[0] -
|
||
|
np.mean(self.filter_results.endog))**2)
|
||
|
|
||
|
@cache_readonly
|
||
|
def uncentered_tss(self):
|
||
|
"""uncentered tss"""
|
||
|
return np.sum((self.filter_results.endog[0])**2)
|
||
|
|
||
|
@cache_readonly
|
||
|
def ess(self):
|
||
|
"""ess"""
|
||
|
if self.k_constant:
|
||
|
return self.centered_tss - self.ssr
|
||
|
else:
|
||
|
return self.uncentered_tss - self.ssr
|
||
|
|
||
|
@cache_readonly
|
||
|
def rsquared(self):
|
||
|
"""rsquared"""
|
||
|
if self.k_constant:
|
||
|
return 1 - self.ssr / self.centered_tss
|
||
|
else:
|
||
|
return 1 - self.ssr / self.uncentered_tss
|
||
|
|
||
|
@cache_readonly
|
||
|
def mse_model(self):
|
||
|
"""mse_model"""
|
||
|
return self.ess / self.df_model
|
||
|
|
||
|
@cache_readonly
|
||
|
def mse_resid(self):
|
||
|
"""mse_resid"""
|
||
|
return self.ssr / self.df_resid
|
||
|
|
||
|
@cache_readonly
|
||
|
def mse_total(self):
|
||
|
"""mse_total"""
|
||
|
if self.k_constant:
|
||
|
return self.centered_tss / (self.df_resid + self.df_model)
|
||
|
else:
|
||
|
return self.uncentered_tss / (self.df_resid + self.df_model)
|
||
|
|
||
|
@Appender(MLEResults.get_prediction.__doc__)
|
||
|
def get_prediction(self, start=None, end=None, dynamic=False,
|
||
|
information_set='predicted', signal_only=False,
|
||
|
index=None, **kwargs):
|
||
|
# Note: need to override this, because we currently do not support
|
||
|
# dynamic prediction or forecasts when there are constraints.
|
||
|
if start is None:
|
||
|
start = self.model._index[0]
|
||
|
|
||
|
# Handle start, end, dynamic
|
||
|
start, end, out_of_sample, prediction_index = (
|
||
|
self.model._get_prediction_index(start, end, index))
|
||
|
|
||
|
# Handle `dynamic`
|
||
|
if isinstance(dynamic, (bytes, str)):
|
||
|
dynamic, _, _ = self.model._get_index_loc(dynamic)
|
||
|
|
||
|
if self.model._r_matrix is not None and (out_of_sample or dynamic):
|
||
|
raise NotImplementedError('Cannot yet perform out-of-sample or'
|
||
|
' dynamic prediction in models with'
|
||
|
' constraints.')
|
||
|
|
||
|
# Perform the prediction
|
||
|
# This is a (k_endog x npredictions) array; do not want to squeeze in
|
||
|
# case of npredictions = 1
|
||
|
prediction_results = self.filter_results.predict(
|
||
|
start, end + out_of_sample + 1, dynamic, **kwargs)
|
||
|
|
||
|
# Return a new mlemodel.PredictionResults object
|
||
|
res_obj = PredictionResults(self, prediction_results,
|
||
|
information_set=information_set,
|
||
|
signal_only=signal_only,
|
||
|
row_labels=prediction_index)
|
||
|
return PredictionResultsWrapper(res_obj)
|
||
|
|
||
|
def plot_recursive_coefficient(self, variables=0, alpha=0.05,
|
||
|
legend_loc='upper left', fig=None,
|
||
|
figsize=None):
|
||
|
r"""
|
||
|
Plot the recursively estimated coefficients on a given variable
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
variables : {int, str, list[int], list[str]}, optional
|
||
|
Integer index or string name of the variable whose coefficient will
|
||
|
be plotted. Can also be an iterable of integers or strings. Default
|
||
|
is the first variable.
|
||
|
alpha : float, optional
|
||
|
The confidence intervals for the coefficient are (1 - alpha) %
|
||
|
legend_loc : str, optional
|
||
|
The location of the legend in the plot. Default is upper left.
|
||
|
fig : Figure, optional
|
||
|
If given, subplots are created in this figure instead of in a new
|
||
|
figure. Note that the grid will be created in the provided
|
||
|
figure using `fig.add_subplot()`.
|
||
|
figsize : tuple, optional
|
||
|
If a figure is created, this argument allows specifying a size.
|
||
|
The tuple is (width, height).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
All plots contain (1 - `alpha`) % confidence intervals.
|
||
|
"""
|
||
|
# Get variables
|
||
|
if isinstance(variables, (int, str)):
|
||
|
variables = [variables]
|
||
|
k_variables = len(variables)
|
||
|
|
||
|
# If a string was given for `variable`, try to get it from exog names
|
||
|
exog_names = self.model.exog_names
|
||
|
for i in range(k_variables):
|
||
|
variable = variables[i]
|
||
|
if isinstance(variable, str):
|
||
|
variables[i] = exog_names.index(variable)
|
||
|
|
||
|
# Create the plot
|
||
|
from scipy.stats import norm
|
||
|
from statsmodels.graphics.utils import _import_mpl, create_mpl_fig
|
||
|
plt = _import_mpl()
|
||
|
fig = create_mpl_fig(fig, figsize)
|
||
|
|
||
|
for i in range(k_variables):
|
||
|
variable = variables[i]
|
||
|
ax = fig.add_subplot(k_variables, 1, i + 1)
|
||
|
|
||
|
# Get dates, if applicable
|
||
|
if hasattr(self.data, 'dates') and self.data.dates is not None:
|
||
|
dates = self.data.dates._mpl_repr()
|
||
|
else:
|
||
|
dates = np.arange(self.nobs)
|
||
|
d = max(self.nobs_diffuse, self.loglikelihood_burn)
|
||
|
|
||
|
# Plot the coefficient
|
||
|
coef = self.recursive_coefficients
|
||
|
ax.plot(dates[d:], coef.filtered[variable, d:],
|
||
|
label='Recursive estimates: %s' % exog_names[variable])
|
||
|
|
||
|
# Legend
|
||
|
handles, labels = ax.get_legend_handles_labels()
|
||
|
|
||
|
# Get the critical value for confidence intervals
|
||
|
if alpha is not None:
|
||
|
critical_value = norm.ppf(1 - alpha / 2.)
|
||
|
|
||
|
# Plot confidence intervals
|
||
|
std_errors = np.sqrt(coef.filtered_cov[variable, variable, :])
|
||
|
ci_lower = (
|
||
|
coef.filtered[variable] - critical_value * std_errors)
|
||
|
ci_upper = (
|
||
|
coef.filtered[variable] + critical_value * std_errors)
|
||
|
ci_poly = ax.fill_between(
|
||
|
dates[d:], ci_lower[d:], ci_upper[d:], alpha=0.2
|
||
|
)
|
||
|
ci_label = ('$%.3g \\%%$ confidence interval'
|
||
|
% ((1 - alpha)*100))
|
||
|
|
||
|
# Only add CI to legend for the first plot
|
||
|
if i == 0:
|
||
|
# Proxy artist for fill_between legend entry
|
||
|
# See https://matplotlib.org/1.3.1/users/legend_guide.html
|
||
|
p = plt.Rectangle((0, 0), 1, 1,
|
||
|
fc=ci_poly.get_facecolor()[0])
|
||
|
|
||
|
handles.append(p)
|
||
|
labels.append(ci_label)
|
||
|
|
||
|
ax.legend(handles, labels, loc=legend_loc)
|
||
|
|
||
|
# Remove xticks for all but the last plot
|
||
|
if i < k_variables - 1:
|
||
|
ax.xaxis.set_ticklabels([])
|
||
|
|
||
|
fig.tight_layout()
|
||
|
|
||
|
return fig
|
||
|
|
||
|
def _cusum_significance_bounds(self, alpha, ddof=0, points=None):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
alpha : float, optional
|
||
|
The significance bound is alpha %.
|
||
|
ddof : int, optional
|
||
|
The number of periods additional to `k_exog` to exclude in
|
||
|
constructing the bounds. Default is zero. This is usually used
|
||
|
only for testing purposes.
|
||
|
points : iterable, optional
|
||
|
The points at which to evaluate the significance bounds. Default is
|
||
|
two points, beginning and end of the sample.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Comparing against the cusum6 package for Stata, this does not produce
|
||
|
exactly the same confidence bands (which are produced in cusum6 by
|
||
|
lw, uw) because they burn the first k_exog + 1 periods instead of the
|
||
|
first k_exog. If this change is performed
|
||
|
(so that `tmp = (self.nobs - d - 1)**0.5`), then the output here
|
||
|
matches cusum6.
|
||
|
|
||
|
The cusum6 behavior does not seem to be consistent with
|
||
|
Brown et al. (1975); it is likely they did that because they needed
|
||
|
three initial observations to get the initial OLS estimates, whereas
|
||
|
we do not need to do that.
|
||
|
"""
|
||
|
# Get the constant associated with the significance level
|
||
|
if alpha == 0.01:
|
||
|
scalar = 1.143
|
||
|
elif alpha == 0.05:
|
||
|
scalar = 0.948
|
||
|
elif alpha == 0.10:
|
||
|
scalar = 0.950
|
||
|
else:
|
||
|
raise ValueError('Invalid significance level.')
|
||
|
|
||
|
# Get the points for the significance bound lines
|
||
|
d = max(self.nobs_diffuse, self.loglikelihood_burn)
|
||
|
tmp = (self.nobs - d - ddof)**0.5
|
||
|
|
||
|
def upper_line(x):
|
||
|
return scalar * tmp + 2 * scalar * (x - d) / tmp
|
||
|
|
||
|
if points is None:
|
||
|
points = np.array([d, self.nobs])
|
||
|
return -upper_line(points), upper_line(points)
|
||
|
|
||
|
def plot_cusum(self, alpha=0.05, legend_loc='upper left',
|
||
|
fig=None, figsize=None):
|
||
|
r"""
|
||
|
Plot the CUSUM statistic and significance bounds.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
alpha : float, optional
|
||
|
The plotted significance bounds are alpha %.
|
||
|
legend_loc : str, optional
|
||
|
The location of the legend in the plot. Default is upper left.
|
||
|
fig : Figure, optional
|
||
|
If given, subplots are created in this figure instead of in a new
|
||
|
figure. Note that the grid will be created in the provided
|
||
|
figure using `fig.add_subplot()`.
|
||
|
figsize : tuple, optional
|
||
|
If a figure is created, this argument allows specifying a size.
|
||
|
The tuple is (width, height).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Evidence of parameter instability may be found if the CUSUM statistic
|
||
|
moves out of the significance bounds.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [*] Brown, R. L., J. Durbin, and J. M. Evans. 1975.
|
||
|
"Techniques for Testing the Constancy of
|
||
|
Regression Relationships over Time."
|
||
|
Journal of the Royal Statistical Society.
|
||
|
Series B (Methodological) 37 (2): 149-92.
|
||
|
"""
|
||
|
# Create the plot
|
||
|
from statsmodels.graphics.utils import _import_mpl, create_mpl_fig
|
||
|
_import_mpl()
|
||
|
fig = create_mpl_fig(fig, figsize)
|
||
|
ax = fig.add_subplot(1, 1, 1)
|
||
|
|
||
|
# Get dates, if applicable
|
||
|
if hasattr(self.data, 'dates') and self.data.dates is not None:
|
||
|
dates = self.data.dates._mpl_repr()
|
||
|
else:
|
||
|
dates = np.arange(self.nobs)
|
||
|
d = max(self.nobs_diffuse, self.loglikelihood_burn)
|
||
|
|
||
|
# Plot cusum series and reference line
|
||
|
ax.plot(dates[d:], self.cusum, label='CUSUM')
|
||
|
ax.hlines(0, dates[d], dates[-1], color='k', alpha=0.3)
|
||
|
|
||
|
# Plot significance bounds
|
||
|
lower_line, upper_line = self._cusum_significance_bounds(alpha)
|
||
|
ax.plot([dates[d], dates[-1]], upper_line, 'k--',
|
||
|
label='%d%% significance' % (alpha * 100))
|
||
|
ax.plot([dates[d], dates[-1]], lower_line, 'k--')
|
||
|
|
||
|
ax.legend(loc=legend_loc)
|
||
|
|
||
|
return fig
|
||
|
|
||
|
def _cusum_squares_significance_bounds(self, alpha, points=None):
|
||
|
"""
|
||
|
Notes
|
||
|
-----
|
||
|
Comparing against the cusum6 package for Stata, this does not produce
|
||
|
exactly the same confidence bands (which are produced in cusum6 by
|
||
|
lww, uww) because they use a different method for computing the
|
||
|
critical value; in particular, they use tabled values from
|
||
|
Table C, pp. 364-365 of "The Econometric Analysis of Time Series"
|
||
|
Harvey, (1990), and use the value given to 99 observations for any
|
||
|
larger number of observations. In contrast, we use the approximating
|
||
|
critical values suggested in Edgerton and Wells (1994) which allows
|
||
|
computing relatively good approximations for any number of
|
||
|
observations.
|
||
|
"""
|
||
|
# Get the approximate critical value associated with the significance
|
||
|
# level
|
||
|
d = max(self.nobs_diffuse, self.loglikelihood_burn)
|
||
|
n = 0.5 * (self.nobs - d) - 1
|
||
|
try:
|
||
|
ix = [0.1, 0.05, 0.025, 0.01, 0.005].index(alpha / 2)
|
||
|
except ValueError:
|
||
|
raise ValueError('Invalid significance level.')
|
||
|
scalars = _cusum_squares_scalars[:, ix]
|
||
|
crit = scalars[0] / n**0.5 + scalars[1] / n + scalars[2] / n**1.5
|
||
|
|
||
|
# Get the points for the significance bound lines
|
||
|
if points is None:
|
||
|
points = np.array([d, self.nobs])
|
||
|
line = (points - d) / (self.nobs - d)
|
||
|
|
||
|
return line - crit, line + crit
|
||
|
|
||
|
def plot_cusum_squares(self, alpha=0.05, legend_loc='upper left',
|
||
|
fig=None, figsize=None):
|
||
|
r"""
|
||
|
Plot the CUSUM of squares statistic and significance bounds.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
alpha : float, optional
|
||
|
The plotted significance bounds are alpha %.
|
||
|
legend_loc : str, optional
|
||
|
The location of the legend in the plot. Default is upper left.
|
||
|
fig : Figure, optional
|
||
|
If given, subplots are created in this figure instead of in a new
|
||
|
figure. Note that the grid will be created in the provided
|
||
|
figure using `fig.add_subplot()`.
|
||
|
figsize : tuple, optional
|
||
|
If a figure is created, this argument allows specifying a size.
|
||
|
The tuple is (width, height).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Evidence of parameter instability may be found if the CUSUM of squares
|
||
|
statistic moves out of the significance bounds.
|
||
|
|
||
|
Critical values used in creating the significance bounds are computed
|
||
|
using the approximate formula of [1]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [*] Brown, R. L., J. Durbin, and J. M. Evans. 1975.
|
||
|
"Techniques for Testing the Constancy of
|
||
|
Regression Relationships over Time."
|
||
|
Journal of the Royal Statistical Society.
|
||
|
Series B (Methodological) 37 (2): 149-92.
|
||
|
.. [1] Edgerton, David, and Curt Wells. 1994.
|
||
|
"Critical Values for the Cusumsq Statistic
|
||
|
in Medium and Large Sized Samples."
|
||
|
Oxford Bulletin of Economics and Statistics 56 (3): 355-65.
|
||
|
"""
|
||
|
# Create the plot
|
||
|
from statsmodels.graphics.utils import _import_mpl, create_mpl_fig
|
||
|
_import_mpl()
|
||
|
fig = create_mpl_fig(fig, figsize)
|
||
|
ax = fig.add_subplot(1, 1, 1)
|
||
|
|
||
|
# Get dates, if applicable
|
||
|
if hasattr(self.data, 'dates') and self.data.dates is not None:
|
||
|
dates = self.data.dates._mpl_repr()
|
||
|
else:
|
||
|
dates = np.arange(self.nobs)
|
||
|
d = max(self.nobs_diffuse, self.loglikelihood_burn)
|
||
|
|
||
|
# Plot cusum series and reference line
|
||
|
ax.plot(dates[d:], self.cusum_squares, label='CUSUM of squares')
|
||
|
ref_line = (np.arange(d, self.nobs) - d) / (self.nobs - d)
|
||
|
ax.plot(dates[d:], ref_line, 'k', alpha=0.3)
|
||
|
|
||
|
# Plot significance bounds
|
||
|
lower_line, upper_line = self._cusum_squares_significance_bounds(alpha)
|
||
|
ax.plot([dates[d], dates[-1]], upper_line, 'k--',
|
||
|
label='%d%% significance' % (alpha * 100))
|
||
|
ax.plot([dates[d], dates[-1]], lower_line, 'k--')
|
||
|
|
||
|
ax.legend(loc=legend_loc)
|
||
|
|
||
|
return fig
|
||
|
|
||
|
|
||
|
class RecursiveLSResultsWrapper(MLEResultsWrapper):
|
||
|
_attrs = {}
|
||
|
_wrap_attrs = wrap.union_dicts(MLEResultsWrapper._wrap_attrs,
|
||
|
_attrs)
|
||
|
_methods = {}
|
||
|
_wrap_methods = wrap.union_dicts(MLEResultsWrapper._wrap_methods,
|
||
|
_methods)
|
||
|
wrap.populate_wrapper(RecursiveLSResultsWrapper, # noqa:E305
|
||
|
RecursiveLSResults)
|