232 lines
7.1 KiB
Python
232 lines
7.1 KiB
Python
|
"""Linear Model with Student-t distributed errors
|
||
|
|
||
|
Because the t distribution has fatter tails than the normal distribution, it
|
||
|
can be used to model observations with heavier tails and observations that have
|
||
|
some outliers. For the latter case, the t-distribution provides more robust
|
||
|
estimators for mean or mean parameters (what about var?).
|
||
|
|
||
|
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Kenneth L. Lange, Roderick J. A. Little, Jeremy M. G. Taylor (1989)
|
||
|
Robust Statistical Modeling Using the t Distribution
|
||
|
Journal of the American Statistical Association
|
||
|
Vol. 84, No. 408 (Dec., 1989), pp. 881-896
|
||
|
Published by: American Statistical Association
|
||
|
Stable URL: http://www.jstor.org/stable/2290063
|
||
|
|
||
|
not read yet
|
||
|
|
||
|
|
||
|
Created on 2010-09-24
|
||
|
Author: josef-pktd
|
||
|
License: BSD
|
||
|
|
||
|
TODO
|
||
|
----
|
||
|
* add starting values based on OLS
|
||
|
* bugs: store_params does not seem to be defined, I think this was a module
|
||
|
global for debugging - commented out
|
||
|
* parameter restriction: check whether version with some fixed parameters works
|
||
|
|
||
|
|
||
|
"""
|
||
|
#mostly copied from the examples directory written for trying out generic mle.
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import special, stats
|
||
|
|
||
|
from statsmodels.base.model import GenericLikelihoodModel
|
||
|
from statsmodels.tsa.arma_mle import Arma
|
||
|
|
||
|
|
||
|
#redefine some shortcuts
|
||
|
np_log = np.log
|
||
|
np_pi = np.pi
|
||
|
sps_gamln = special.gammaln
|
||
|
|
||
|
|
||
|
class TLinearModel(GenericLikelihoodModel):
|
||
|
'''Maximum Likelihood Estimation of Linear Model with t-distributed errors
|
||
|
|
||
|
This is an example for generic MLE.
|
||
|
|
||
|
Except for defining the negative log-likelihood method, all
|
||
|
methods and results are generic. Gradients and Hessian
|
||
|
and all resulting statistics are based on numerical
|
||
|
differentiation.
|
||
|
|
||
|
'''
|
||
|
|
||
|
def initialize(self):
|
||
|
print("running Tmodel initialize")
|
||
|
# TODO: here or in __init__
|
||
|
self.k_vars = self.exog.shape[1]
|
||
|
if not hasattr(self, 'fix_df'):
|
||
|
self.fix_df = False
|
||
|
|
||
|
if self.fix_df is False:
|
||
|
# df will be estimated, no parameter restrictions
|
||
|
self.fixed_params = None
|
||
|
self.fixed_paramsmask = None
|
||
|
self.k_params = self.exog.shape[1] + 2
|
||
|
extra_params_names = ['df', 'scale']
|
||
|
else:
|
||
|
# df fixed
|
||
|
self.k_params = self.exog.shape[1] + 1
|
||
|
fixdf = np.nan * np.zeros(self.exog.shape[1] + 2)
|
||
|
fixdf[-2] = self.fix_df
|
||
|
self.fixed_params = fixdf
|
||
|
self.fixed_paramsmask = np.isnan(fixdf)
|
||
|
extra_params_names = ['scale']
|
||
|
|
||
|
super().initialize()
|
||
|
|
||
|
# Note: this needs to be after super initialize
|
||
|
# super initialize sets default df_resid,
|
||
|
#_set_extra_params_names adjusts it
|
||
|
self._set_extra_params_names(extra_params_names)
|
||
|
self._set_start_params()
|
||
|
|
||
|
|
||
|
def _set_start_params(self, start_params=None, use_kurtosis=False):
|
||
|
if start_params is not None:
|
||
|
self.start_params = start_params
|
||
|
else:
|
||
|
from statsmodels.regression.linear_model import OLS
|
||
|
res_ols = OLS(self.endog, self.exog).fit()
|
||
|
start_params = 0.1*np.ones(self.k_params)
|
||
|
start_params[:self.k_vars] = res_ols.params
|
||
|
|
||
|
if self.fix_df is False:
|
||
|
|
||
|
if use_kurtosis:
|
||
|
kurt = stats.kurtosis(res_ols.resid)
|
||
|
df = 6./kurt + 4
|
||
|
else:
|
||
|
df = 5
|
||
|
|
||
|
start_params[-2] = df
|
||
|
#TODO adjust scale for df
|
||
|
start_params[-1] = np.sqrt(res_ols.scale)
|
||
|
|
||
|
self.start_params = start_params
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def loglike(self, params):
|
||
|
return -self.nloglikeobs(params).sum(0)
|
||
|
|
||
|
def nloglikeobs(self, params):
|
||
|
"""
|
||
|
Loglikelihood of linear model with t distributed errors.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
The parameters of the model. The last 2 parameters are degrees of
|
||
|
freedom and scale.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
loglike : ndarray
|
||
|
The log likelihood of the model evaluated at `params` for each
|
||
|
observation defined by self.endog and self.exog.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. math:: \\ln L=\\sum_{i=1}^{n}\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right]
|
||
|
|
||
|
The t distribution is the standard t distribution and not a standardized
|
||
|
t distribution, which means that the scale parameter is not equal to the
|
||
|
standard deviation.
|
||
|
|
||
|
self.fixed_params and self.expandparams can be used to fix some
|
||
|
parameters. (I doubt this has been tested in this model.)
|
||
|
"""
|
||
|
#print len(params),
|
||
|
#store_params.append(params)
|
||
|
if self.fixed_params is not None:
|
||
|
#print 'using fixed'
|
||
|
params = self.expandparams(params)
|
||
|
|
||
|
beta = params[:-2]
|
||
|
df = params[-2]
|
||
|
scale = np.abs(params[-1]) #TODO check behavior around zero
|
||
|
loc = np.dot(self.exog, beta)
|
||
|
endog = self.endog
|
||
|
x = (endog - loc)/scale
|
||
|
#next part is stats.t._logpdf
|
||
|
lPx = sps_gamln((df+1)/2) - sps_gamln(df/2.)
|
||
|
lPx -= 0.5*np_log(df*np_pi) + (df+1)/2.*np_log(1+(x**2)/df)
|
||
|
lPx -= np_log(scale) # correction for scale
|
||
|
return -lPx
|
||
|
|
||
|
def predict(self, params, exog=None):
|
||
|
if exog is None:
|
||
|
exog = self.exog
|
||
|
return np.dot(exog, params[:self.exog.shape[1]])
|
||
|
|
||
|
|
||
|
class TArma(Arma):
|
||
|
'''Univariate Arma Model with t-distributed errors
|
||
|
|
||
|
This inherit all methods except loglike from tsa.arma_mle.Arma
|
||
|
|
||
|
This uses the standard t-distribution, the implied variance of
|
||
|
the error is not equal to scale, but ::
|
||
|
|
||
|
error_variance = df/(df-2)*scale**2
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This might be replaced by a standardized t-distribution with scale**2
|
||
|
equal to variance
|
||
|
|
||
|
'''
|
||
|
|
||
|
def loglike(self, params):
|
||
|
return -self.nloglikeobs(params).sum(0)
|
||
|
|
||
|
|
||
|
#add for Jacobian calculation bsejac in GenericMLE, copied from loglike
|
||
|
def nloglikeobs(self, params):
|
||
|
"""
|
||
|
Loglikelihood for arma model for each observation, t-distribute
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The ancillary parameter is assumed to be the last element of
|
||
|
the params vector
|
||
|
"""
|
||
|
|
||
|
errorsest = self.geterrors(params[:-2])
|
||
|
#sigma2 = np.maximum(params[-1]**2, 1e-6) #do I need this
|
||
|
#axis = 0
|
||
|
#nobs = len(errorsest)
|
||
|
|
||
|
df = params[-2]
|
||
|
scale = np.abs(params[-1])
|
||
|
llike = - stats.t._logpdf(errorsest/scale, df) + np_log(scale)
|
||
|
return llike
|
||
|
|
||
|
#TODO rename fit_mle -> fit, fit -> fit_ls
|
||
|
def fit_mle(self, order, start_params=None, method='nm', maxiter=5000,
|
||
|
tol=1e-08, **kwds):
|
||
|
nar, nma = order
|
||
|
if start_params is not None:
|
||
|
if len(start_params) != nar + nma + 2:
|
||
|
raise ValueError('start_param need sum(order) + 2 elements')
|
||
|
else:
|
||
|
start_params = np.concatenate((0.05*np.ones(nar + nma), [5, 1]))
|
||
|
|
||
|
|
||
|
res = super().fit_mle(order=order,
|
||
|
start_params=start_params,
|
||
|
method=method, maxiter=maxiter,
|
||
|
tol=tol, **kwds)
|
||
|
|
||
|
return res
|