AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/miscmodels/nonlinls.py

310 lines
9.1 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
'''Non-linear least squares
Author: Josef Perktold based on scipy.optimize.curve_fit
'''
import numpy as np
from scipy import optimize
from statsmodels.base.model import Model
class Results:
'''just a dummy placeholder for now
most results from RegressionResults can be used here
'''
pass
##def getjaccov(retval, n):
## '''calculate something and raw covariance matrix from return of optimize.leastsq
##
## I cannot figure out how to recover the Jacobian, or whether it is even
## possible
##
## this is a partial copy of scipy.optimize.leastsq
## '''
## info = retval[-1]
## #n = len(x0) #nparams, where do I get this
## cov_x = None
## if info in [1,2,3,4]:
## from numpy.dual import inv
## from numpy.linalg import LinAlgError
## perm = np.take(np.eye(n), retval[1]['ipvt']-1,0)
## r = np.triu(np.transpose(retval[1]['fjac'])[:n,:])
## R = np.dot(r, perm)
## try:
## cov_x = inv(np.dot(np.transpose(R),R))
## except LinAlgError:
## print 'cov_x not available'
## pass
## return r, R, cov_x
##
##def _general_function(params, xdata, ydata, function):
## return function(xdata, *params) - ydata
##
##def _weighted_general_function(params, xdata, ydata, function, weights):
## return weights * (function(xdata, *params) - ydata)
##
class NonlinearLS(Model): #or subclass a model
r'''Base class for estimation of a non-linear model with least squares
This class is supposed to be subclassed, and the subclass has to provide a method
`_predict` that defines the non-linear function `f(params) that is predicting the endogenous
variable. The model is assumed to be
:math: y = f(params) + error
and the estimator minimizes the sum of squares of the estimated error.
:math: min_parmas \sum (y - f(params))**2
f has to return the prediction for each observation. Exogenous or explanatory variables
should be accessed as attributes of the class instance, and can be given as arguments
when the instance is created.
Warning:
Weights are not correctly handled yet in the results statistics,
but included when estimating the parameters.
similar to scipy.optimize.curve_fit
API difference: params are array_like not split up, need n_params information
includes now weights similar to curve_fit
no general sigma yet (OLS and WLS, but no GLS)
This is currently holding on to intermediate results that are not necessary
but useful for testing.
Fit returns and instance of RegressionResult, in contrast to the linear
model, results in this case are based on a local approximation, essentially
y = f(X, params) is replaced by y = grad * params where grad is the Gradient
or Jacobian with the shape (nobs, nparams). See for example Greene
Examples
--------
class Myfunc(NonlinearLS):
def _predict(self, params):
x = self.exog
a, b, c = params
return a*np.exp(-b*x) + c
Ff we have data (y, x), we can create an instance and fit it with
mymod = Myfunc(y, x)
myres = mymod.fit(nparams=3)
and use the non-linear regression results, for example
myres.params
myres.bse
myres.tvalues
'''
#NOTE: This needs to call super for data checking
def __init__(self, endog=None, exog=None, weights=None, sigma=None,
missing='none'):
self.endog = endog
self.exog = exog
if sigma is not None:
sigma = np.asarray(sigma)
if sigma.ndim < 2:
self.sigma = sigma
self.weights = 1./sigma
else:
raise ValueError('correlated errors are not handled yet')
else:
self.weights = None
def predict(self, exog, params=None):
#copied from GLS, Model has different signature
return self._predict(params)
def _predict(self, params):
pass
def start_value(self):
return None
def geterrors(self, params, weights=None):
if weights is None:
if self.weights is None:
return self.endog - self._predict(params)
else:
weights = self.weights
return weights * (self.endog - self._predict(params))
def errorsumsquares(self, params):
return (self.geterrors(params)**2).sum()
def fit(self, start_value=None, nparams=None, **kw):
#if hasattr(self, 'start_value'):
#I added start_value even if it's empty, not sure about it
#but it makes a visible placeholder
if start_value is not None:
p0 = start_value
else:
#nesting so that start_value is only calculated if it is needed
p0 = self.start_value()
if p0 is not None:
pass
elif nparams is not None:
p0 = 0.1 * np.ones(nparams)
else:
raise ValueError('need information about start values for' +
'optimization')
func = self.geterrors
res = optimize.leastsq(func, p0, full_output=1, **kw)
(popt, pcov, infodict, errmsg, ier) = res
if ier not in [1,2,3,4]:
msg = "Optimal parameters not found: " + errmsg
raise RuntimeError(msg)
err = infodict['fvec']
ydata = self.endog
if (len(ydata) > len(p0)) and pcov is not None:
#this can use the returned errors instead of recalculating
s_sq = (err**2).sum()/(len(ydata)-len(p0))
pcov = pcov * s_sq
else:
pcov = None
self.df_resid = len(ydata)-len(p0)
self.df_model = len(p0)
fitres = Results()
fitres.params = popt
fitres.pcov = pcov
fitres.rawres = res
self.wendog = self.endog #add weights
self.wexog = self.jac_predict(popt)
pinv_wexog = np.linalg.pinv(self.wexog)
self.normalized_cov_params = np.dot(pinv_wexog,
np.transpose(pinv_wexog))
#TODO: check effect of `weights` on result statistics
#I think they are correctly included in cov_params
#maybe not anymore, I'm not using pcov of leastsq
#direct calculation with jac_predict misses the weights
## if not weights is None
## fitres.wexogw = self.weights * self.jacpredict(popt)
from statsmodels.regression import RegressionResults
results = RegressionResults
beta = popt
lfit = RegressionResults(self, beta,
normalized_cov_params=self.normalized_cov_params)
lfit.fitres = fitres #mainly for testing
self._results = lfit
return lfit
def fit_minimal(self, start_value, **kwargs):
'''minimal fitting with no extra calculations'''
func = self.geterrors
res = optimize.leastsq(func, start_value, full_output=0, **kwargs)
return res
def fit_random(self, ntries=10, rvs_generator=None, nparams=None):
'''fit with random starting values
this could be replaced with a global fitter
'''
if nparams is None:
nparams = self.nparams
if rvs_generator is None:
rvs = np.random.uniform(low=-10, high=10, size=(ntries, nparams))
else:
rvs = rvs_generator(size=(ntries, nparams))
results = np.array([np.r_[self.fit_minimal(rv), rv] for rv in rvs])
#selct best results and check how many solutions are within 1e-6 of best
#not sure what leastsq returns
return results
def jac_predict(self, params):
'''jacobian of prediction function using complex step derivative
This assumes that the predict function does not use complex variable
but is designed to do so.
'''
from statsmodels.tools.numdiff import approx_fprime_cs
jaccs_err = approx_fprime_cs(params, self._predict)
return jaccs_err
class Myfunc(NonlinearLS):
#predict model.Model has a different signature
## def predict(self, params, exog=None):
## if not exog is None:
## x = exog
## else:
## x = self.exog
## a, b, c = params
## return a*np.exp(-b*x) + c
def _predict(self, params):
x = self.exog
a, b, c = params
return a*np.exp(-b*x) + c
if __name__ == '__main__':
def func0(x, a, b, c):
return a*np.exp(-b*x) + c
def func(params, x):
a, b, c = params
return a*np.exp(-b*x) + c
def error(params, x, y):
return y - func(params, x)
def error2(params, x, y):
return (y - func(params, x))**2
x = np.linspace(0,4,50)
params = np.array([2.5, 1.3, 0.5])
y0 = func(params, x)
y = y0 + 0.2*np.random.normal(size=len(x))
res = optimize.leastsq(error, params, args=(x, y), full_output=True)
## r, R, c = getjaccov(res[1:], 3)
mod = Myfunc(y, x)
resmy = mod.fit(nparams=3)
cf_params, cf_pcov = optimize.curve_fit(func0, x, y)
cf_bse = np.sqrt(np.diag(cf_pcov))
print(res[0])
print(cf_params)
print(resmy.params)
print(cf_bse)
print(resmy.bse)