1317 lines
44 KiB
Python
1317 lines
44 KiB
Python
|
"""
|
||
|
Overview
|
||
|
--------
|
||
|
|
||
|
This module implements the Multiple Imputation through Chained
|
||
|
Equations (MICE) approach to handling missing data in statistical data
|
||
|
analyses. The approach has the following steps:
|
||
|
|
||
|
0. Impute each missing value with the mean of the observed values of
|
||
|
the same variable.
|
||
|
|
||
|
1. For each variable in the data set with missing values (termed the
|
||
|
'focus variable'), do the following:
|
||
|
|
||
|
1a. Fit an 'imputation model', which is a regression model for the
|
||
|
focus variable, regressed on the observed and (current) imputed values
|
||
|
of some or all of the other variables.
|
||
|
|
||
|
1b. Impute the missing values for the focus variable. Currently this
|
||
|
imputation must use the 'predictive mean matching' (pmm) procedure.
|
||
|
|
||
|
2. Once all variables have been imputed, fit the 'analysis model' to
|
||
|
the data set.
|
||
|
|
||
|
3. Repeat steps 1-2 multiple times and combine the results using a
|
||
|
'combining rule' to produce point estimates of all parameters in the
|
||
|
analysis model and standard errors for them.
|
||
|
|
||
|
The imputations for each variable are based on an imputation model
|
||
|
that is specified via a model class and a formula for the regression
|
||
|
relationship. The default model is OLS, with a formula specifying
|
||
|
main effects for all other variables.
|
||
|
|
||
|
The MICE procedure can be used in one of two ways:
|
||
|
|
||
|
* If the goal is only to produce imputed data sets, the MICEData class
|
||
|
can be used to wrap a data frame, providing facilities for doing the
|
||
|
imputation. Summary plots are available for assessing the performance
|
||
|
of the imputation.
|
||
|
|
||
|
* If the imputed data sets are to be used to fit an additional
|
||
|
'analysis model', a MICE instance can be used. After specifying the
|
||
|
MICE instance and running it, the results are combined using the
|
||
|
`combine` method. Results and various summary plots are then
|
||
|
available.
|
||
|
|
||
|
Terminology
|
||
|
-----------
|
||
|
|
||
|
The primary goal of the analysis is usually to fit and perform
|
||
|
inference using an 'analysis model'. If an analysis model is not
|
||
|
specified, then imputed datasets are produced for later use.
|
||
|
|
||
|
The MICE procedure involves a family of imputation models. There is
|
||
|
one imputation model for each variable with missing values. An
|
||
|
imputation model may be conditioned on all or a subset of the
|
||
|
remaining variables, using main effects, transformations,
|
||
|
interactions, etc. as desired.
|
||
|
|
||
|
A 'perturbation method' is a method for setting the parameter estimate
|
||
|
in an imputation model. The 'gaussian' perturbation method first fits
|
||
|
the model (usually using maximum likelihood, but it could use any
|
||
|
statsmodels fit procedure), then sets the parameter vector equal to a
|
||
|
draw from the Gaussian approximation to the sampling distribution for
|
||
|
the fit. The 'bootstrap' perturbation method sets the parameter
|
||
|
vector equal to a fitted parameter vector obtained when fitting the
|
||
|
conditional model to a bootstrapped version of the data set.
|
||
|
|
||
|
Class structure
|
||
|
---------------
|
||
|
|
||
|
There are two main classes in the module:
|
||
|
|
||
|
* 'MICEData' wraps a Pandas dataframe, incorporating information about
|
||
|
the imputation model for each variable with missing values. It can
|
||
|
be used to produce multiply imputed data sets that are to be further
|
||
|
processed or distributed to other researchers. A number of plotting
|
||
|
procedures are provided to visualize the imputation results and
|
||
|
missing data patterns. The `history_func` hook allows any features
|
||
|
of interest of the imputed data sets to be saved for further
|
||
|
analysis.
|
||
|
|
||
|
* 'MICE' takes both a 'MICEData' object and an analysis model
|
||
|
specification. It runs the multiple imputation, fits the analysis
|
||
|
models, and combines the results to produce a `MICEResults` object.
|
||
|
The summary method of this results object can be used to see the key
|
||
|
estimands and inferential quantities.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
By default, to conserve memory 'MICEData' saves very little
|
||
|
information from one iteration to the next. The data set passed by
|
||
|
the user is copied on entry, but then is over-written each time new
|
||
|
imputations are produced. If using 'MICE', the fitted
|
||
|
analysis models and results are saved. MICEData includes a
|
||
|
`history_callback` hook that allows arbitrary information from the
|
||
|
intermediate datasets to be saved for future use.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
|
||
|
JL Schafer: 'Multiple Imputation: A Primer', Stat Methods Med Res,
|
||
|
1999.
|
||
|
|
||
|
TE Raghunathan et al.: 'A Multivariate Technique for Multiply
|
||
|
Imputing Missing Values Using a Sequence of Regression Models', Survey
|
||
|
Methodology, 2001.
|
||
|
|
||
|
SAS Institute: 'Predictive Mean Matching Method for Monotone Missing
|
||
|
Data', SAS 9.2 User's Guide, 2014.
|
||
|
|
||
|
A Gelman et al.: 'Multiple Imputation with Diagnostics (mi) in R:
|
||
|
Opening Windows into the Black Box', Journal of Statistical Software,
|
||
|
2009.
|
||
|
"""
|
||
|
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
import patsy
|
||
|
from statsmodels.base.model import LikelihoodModelResults
|
||
|
from statsmodels.regression.linear_model import OLS
|
||
|
from collections import defaultdict
|
||
|
|
||
|
|
||
|
_mice_data_example_1 = """
|
||
|
>>> imp = mice.MICEData(data)
|
||
|
>>> imp.set_imputer('x1', formula='x2 + np.square(x2) + x3')
|
||
|
>>> for j in range(20):
|
||
|
... imp.update_all()
|
||
|
... imp.data.to_csv('data%02d.csv' % j)"""
|
||
|
|
||
|
|
||
|
class PatsyFormula:
|
||
|
"""
|
||
|
A simple wrapper for a string to be interpreted as a Patsy formula.
|
||
|
"""
|
||
|
def __init__(self, formula):
|
||
|
self.formula = "0 + " + formula
|
||
|
|
||
|
|
||
|
class MICEData:
|
||
|
|
||
|
__doc__ = """\
|
||
|
Wrap a data set to allow missing data handling with MICE.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : Pandas data frame
|
||
|
The data set, which is copied internally.
|
||
|
perturbation_method : str
|
||
|
The default perturbation method
|
||
|
k_pmm : int
|
||
|
The number of nearest neighbors to use during predictive mean
|
||
|
matching. Can also be specified in `fit`.
|
||
|
history_callback : function
|
||
|
A function that is called after each complete imputation
|
||
|
cycle. The return value is appended to `history`. The
|
||
|
MICEData object is passed as the sole argument to
|
||
|
`history_callback`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Allowed perturbation methods are 'gaussian' (the model parameters
|
||
|
are set to a draw from the Gaussian approximation to the posterior
|
||
|
distribution), and 'boot' (the model parameters are set to the
|
||
|
estimated values obtained when fitting a bootstrapped version of
|
||
|
the data set).
|
||
|
|
||
|
`history_callback` can be implemented to have side effects such as
|
||
|
saving the current imputed data set to disk.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Draw 20 imputations from a data set called `data` and save them in
|
||
|
separate files with filename pattern `dataXX.csv`. The variables
|
||
|
other than `x1` are imputed using linear models fit with OLS, with
|
||
|
mean structures containing main effects of all other variables in
|
||
|
`data`. The variable named `x1` has a conditional mean structure
|
||
|
that includes an additional term for x2^2.
|
||
|
{_mice_data_example_1}
|
||
|
""".format(_mice_data_example_1=_mice_data_example_1)
|
||
|
|
||
|
def __init__(self, data, perturbation_method='gaussian',
|
||
|
k_pmm=20, history_callback=None):
|
||
|
|
||
|
if data.columns.dtype != np.dtype('O'):
|
||
|
msg = "MICEData data column names should be string type"
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
self.regularized = dict()
|
||
|
|
||
|
# Drop observations where all variables are missing. This
|
||
|
# also has the effect of copying the data frame.
|
||
|
self.data = data.dropna(how='all').reset_index(drop=True)
|
||
|
|
||
|
self.history_callback = history_callback
|
||
|
self.history = []
|
||
|
self.predict_kwds = {}
|
||
|
|
||
|
# Assign the same perturbation method for all variables.
|
||
|
# Can be overridden when calling 'set_imputer'.
|
||
|
self.perturbation_method = defaultdict(lambda:
|
||
|
perturbation_method)
|
||
|
|
||
|
# Map from variable name to indices of observed/missing
|
||
|
# values.
|
||
|
self.ix_obs = {}
|
||
|
self.ix_miss = {}
|
||
|
for col in self.data.columns:
|
||
|
ix_obs, ix_miss = self._split_indices(self.data[col])
|
||
|
self.ix_obs[col] = ix_obs
|
||
|
self.ix_miss[col] = ix_miss
|
||
|
|
||
|
# Most recent model instance and results instance for each variable.
|
||
|
self.models = {}
|
||
|
self.results = {}
|
||
|
|
||
|
# Map from variable names to the conditional formula.
|
||
|
self.conditional_formula = {}
|
||
|
|
||
|
# Map from variable names to init/fit args of the conditional
|
||
|
# models.
|
||
|
self.init_kwds = defaultdict(dict)
|
||
|
self.fit_kwds = defaultdict(dict)
|
||
|
|
||
|
# Map from variable names to the model class.
|
||
|
self.model_class = {}
|
||
|
|
||
|
# Map from variable names to most recent params update.
|
||
|
self.params = {}
|
||
|
|
||
|
# Set default imputers.
|
||
|
for vname in data.columns:
|
||
|
self.set_imputer(vname)
|
||
|
|
||
|
# The order in which variables are imputed in each cycle.
|
||
|
# Impute variables with the fewest missing values first.
|
||
|
vnames = list(data.columns)
|
||
|
nmiss = [len(self.ix_miss[v]) for v in vnames]
|
||
|
nmiss = np.asarray(nmiss)
|
||
|
ii = np.argsort(nmiss)
|
||
|
ii = ii[sum(nmiss == 0):]
|
||
|
self._cycle_order = [vnames[i] for i in ii]
|
||
|
|
||
|
self._initial_imputation()
|
||
|
|
||
|
self.k_pmm = k_pmm
|
||
|
|
||
|
def next_sample(self):
|
||
|
"""
|
||
|
Returns the next imputed dataset in the imputation process.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
data : array_like
|
||
|
An imputed dataset from the MICE chain.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`MICEData` does not have a `skip` parameter. Consecutive
|
||
|
values returned by `next_sample` are immediately consecutive
|
||
|
in the imputation chain.
|
||
|
|
||
|
The returned value is a reference to the data attribute of
|
||
|
the class and should be copied before making any changes.
|
||
|
"""
|
||
|
|
||
|
self.update_all(1)
|
||
|
return self.data
|
||
|
|
||
|
def _initial_imputation(self):
|
||
|
"""
|
||
|
Use a PMM-like procedure for initial imputed values.
|
||
|
|
||
|
For each variable, missing values are imputed as the observed
|
||
|
value that is closest to the mean over all observed values.
|
||
|
"""
|
||
|
# Changed for pandas 2.0 copy-on-write behavior to use a single
|
||
|
# in-place fill
|
||
|
imp_values = {}
|
||
|
for col in self.data.columns:
|
||
|
di = self.data[col] - self.data[col].mean()
|
||
|
di = np.abs(di)
|
||
|
ix = di.idxmin()
|
||
|
imp_values[col] = self.data[col].loc[ix]
|
||
|
self.data.fillna(imp_values, inplace=True)
|
||
|
|
||
|
def _split_indices(self, vec):
|
||
|
null = pd.isnull(vec)
|
||
|
ix_obs = np.flatnonzero(~null)
|
||
|
ix_miss = np.flatnonzero(null)
|
||
|
if len(ix_obs) == 0:
|
||
|
raise ValueError("variable to be imputed has no observed values")
|
||
|
return ix_obs, ix_miss
|
||
|
|
||
|
def set_imputer(self, endog_name, formula=None, model_class=None,
|
||
|
init_kwds=None, fit_kwds=None, predict_kwds=None,
|
||
|
k_pmm=20, perturbation_method=None, regularized=False):
|
||
|
"""
|
||
|
Specify the imputation process for a single variable.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog_name : str
|
||
|
Name of the variable to be imputed.
|
||
|
formula : str
|
||
|
Conditional formula for imputation. Defaults to a formula
|
||
|
with main effects for all other variables in dataset. The
|
||
|
formula should only include an expression for the mean
|
||
|
structure, e.g. use 'x1 + x2' not 'x4 ~ x1 + x2'.
|
||
|
model_class : statsmodels model
|
||
|
Conditional model for imputation. Defaults to OLS. See below
|
||
|
for more information.
|
||
|
init_kwds : dit-like
|
||
|
Keyword arguments passed to the model init method.
|
||
|
fit_kwds : dict-like
|
||
|
Keyword arguments passed to the model fit method.
|
||
|
predict_kwds : dict-like
|
||
|
Keyword arguments passed to the model predict method.
|
||
|
k_pmm : int
|
||
|
Determines number of neighboring observations from which
|
||
|
to randomly sample when using predictive mean matching.
|
||
|
perturbation_method : str
|
||
|
Either 'gaussian' or 'bootstrap'. Determines the method
|
||
|
for perturbing parameters in the imputation model. If
|
||
|
None, uses the default specified at class initialization.
|
||
|
regularized : dict
|
||
|
If regularized[name]=True, `fit_regularized` rather than
|
||
|
`fit` is called when fitting imputation models for this
|
||
|
variable. When regularized[name]=True for any variable,
|
||
|
perturbation_method must be set to boot.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The model class must meet the following conditions:
|
||
|
* A model must have a 'fit' method that returns an object.
|
||
|
* The object returned from `fit` must have a `params` attribute
|
||
|
that is an array-like object.
|
||
|
* The object returned from `fit` must have a cov_params method
|
||
|
that returns a square array-like object.
|
||
|
* The model must have a `predict` method.
|
||
|
"""
|
||
|
|
||
|
if formula is None:
|
||
|
main_effects = [x for x in self.data.columns
|
||
|
if x != endog_name]
|
||
|
fml = endog_name + " ~ " + " + ".join(main_effects)
|
||
|
self.conditional_formula[endog_name] = fml
|
||
|
else:
|
||
|
fml = endog_name + " ~ " + formula
|
||
|
self.conditional_formula[endog_name] = fml
|
||
|
|
||
|
if model_class is None:
|
||
|
self.model_class[endog_name] = OLS
|
||
|
else:
|
||
|
self.model_class[endog_name] = model_class
|
||
|
|
||
|
if init_kwds is not None:
|
||
|
self.init_kwds[endog_name] = init_kwds
|
||
|
|
||
|
if fit_kwds is not None:
|
||
|
self.fit_kwds[endog_name] = fit_kwds
|
||
|
|
||
|
if predict_kwds is not None:
|
||
|
self.predict_kwds[endog_name] = predict_kwds
|
||
|
|
||
|
if perturbation_method is not None:
|
||
|
self.perturbation_method[endog_name] = perturbation_method
|
||
|
|
||
|
self.k_pmm = k_pmm
|
||
|
self.regularized[endog_name] = regularized
|
||
|
|
||
|
def _store_changes(self, col, vals):
|
||
|
"""
|
||
|
Fill in dataset with imputed values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
col : str
|
||
|
Name of variable to be filled in.
|
||
|
vals : ndarray
|
||
|
Array of imputed values to use for filling-in missing values.
|
||
|
"""
|
||
|
|
||
|
ix = self.ix_miss[col]
|
||
|
if len(ix) > 0:
|
||
|
self.data.iloc[ix, self.data.columns.get_loc(col)] = np.atleast_1d(vals)
|
||
|
|
||
|
def update_all(self, n_iter=1):
|
||
|
"""
|
||
|
Perform a specified number of MICE iterations.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n_iter : int
|
||
|
The number of updates to perform. Only the result of the
|
||
|
final update will be available.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The imputed values are stored in the class attribute `self.data`.
|
||
|
"""
|
||
|
|
||
|
for k in range(n_iter):
|
||
|
for vname in self._cycle_order:
|
||
|
self.update(vname)
|
||
|
|
||
|
if self.history_callback is not None:
|
||
|
hv = self.history_callback(self)
|
||
|
self.history.append(hv)
|
||
|
|
||
|
def get_split_data(self, vname):
|
||
|
"""
|
||
|
Return endog and exog for imputation of a given variable.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
vname : str
|
||
|
The variable for which the split data is returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
endog_obs : DataFrame
|
||
|
Observed values of the variable to be imputed.
|
||
|
exog_obs : DataFrame
|
||
|
Current values of the predictors where the variable to be
|
||
|
imputed is observed.
|
||
|
exog_miss : DataFrame
|
||
|
Current values of the predictors where the variable to be
|
||
|
Imputed is missing.
|
||
|
init_kwds : dict-like
|
||
|
The init keyword arguments for `vname`, processed through Patsy
|
||
|
as required.
|
||
|
fit_kwds : dict-like
|
||
|
The fit keyword arguments for `vname`, processed through Patsy
|
||
|
as required.
|
||
|
"""
|
||
|
|
||
|
formula = self.conditional_formula[vname]
|
||
|
endog, exog = patsy.dmatrices(formula, self.data,
|
||
|
return_type="dataframe")
|
||
|
|
||
|
# Rows with observed endog
|
||
|
ixo = self.ix_obs[vname]
|
||
|
endog_obs = np.require(endog.iloc[ixo], requirements="W")
|
||
|
exog_obs = np.require(exog.iloc[ixo, :], requirements="W")
|
||
|
|
||
|
# Rows with missing endog
|
||
|
ixm = self.ix_miss[vname]
|
||
|
exog_miss = np.require(exog.iloc[ixm, :], requirements="W")
|
||
|
|
||
|
predict_obs_kwds = {}
|
||
|
if vname in self.predict_kwds:
|
||
|
kwds = self.predict_kwds[vname]
|
||
|
predict_obs_kwds = self._process_kwds(kwds, ixo)
|
||
|
|
||
|
predict_miss_kwds = {}
|
||
|
if vname in self.predict_kwds:
|
||
|
kwds = self.predict_kwds[vname]
|
||
|
predict_miss_kwds = self._process_kwds(kwds, ixo)
|
||
|
|
||
|
return (endog_obs, exog_obs, exog_miss, predict_obs_kwds,
|
||
|
predict_miss_kwds)
|
||
|
|
||
|
def _process_kwds(self, kwds, ix):
|
||
|
kwds = kwds.copy()
|
||
|
for k in kwds:
|
||
|
v = kwds[k]
|
||
|
if isinstance(v, PatsyFormula):
|
||
|
mat = patsy.dmatrix(v.formula, self.data,
|
||
|
return_type="dataframe")
|
||
|
mat = np.require(mat, requirements="W")[ix, :]
|
||
|
if mat.shape[1] == 1:
|
||
|
mat = mat[:, 0]
|
||
|
kwds[k] = mat
|
||
|
return kwds
|
||
|
|
||
|
def get_fitting_data(self, vname):
|
||
|
"""
|
||
|
Return the data needed to fit a model for imputation.
|
||
|
|
||
|
The data is used to impute variable `vname`, and therefore
|
||
|
only includes cases for which `vname` is observed.
|
||
|
|
||
|
Values of type `PatsyFormula` in `init_kwds` or `fit_kwds` are
|
||
|
processed through Patsy and subset to align with the model's
|
||
|
endog and exog.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
vname : str
|
||
|
The variable for which the fitting data is returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
endog : DataFrame
|
||
|
Observed values of `vname`.
|
||
|
exog : DataFrame
|
||
|
Regression design matrix for imputing `vname`.
|
||
|
init_kwds : dict-like
|
||
|
The init keyword arguments for `vname`, processed through Patsy
|
||
|
as required.
|
||
|
fit_kwds : dict-like
|
||
|
The fit keyword arguments for `vname`, processed through Patsy
|
||
|
as required.
|
||
|
"""
|
||
|
|
||
|
# Rows with observed endog
|
||
|
ix = self.ix_obs[vname]
|
||
|
|
||
|
formula = self.conditional_formula[vname]
|
||
|
endog, exog = patsy.dmatrices(formula, self.data,
|
||
|
return_type="dataframe")
|
||
|
|
||
|
endog = np.require(endog.iloc[ix, 0], requirements="W")
|
||
|
exog = np.require(exog.iloc[ix, :], requirements="W")
|
||
|
|
||
|
init_kwds = self._process_kwds(self.init_kwds[vname], ix)
|
||
|
fit_kwds = self._process_kwds(self.fit_kwds[vname], ix)
|
||
|
|
||
|
return endog, exog, init_kwds, fit_kwds
|
||
|
|
||
|
def plot_missing_pattern(self, ax=None, row_order="pattern",
|
||
|
column_order="pattern",
|
||
|
hide_complete_rows=False,
|
||
|
hide_complete_columns=False,
|
||
|
color_row_patterns=True):
|
||
|
"""
|
||
|
Generate an image showing the missing data pattern.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ax : AxesSubplot
|
||
|
Axes on which to draw the plot.
|
||
|
row_order : str
|
||
|
The method for ordering the rows. Must be one of 'pattern',
|
||
|
'proportion', or 'raw'.
|
||
|
column_order : str
|
||
|
The method for ordering the columns. Must be one of 'pattern',
|
||
|
'proportion', or 'raw'.
|
||
|
hide_complete_rows : bool
|
||
|
If True, rows with no missing values are not drawn.
|
||
|
hide_complete_columns : bool
|
||
|
If True, columns with no missing values are not drawn.
|
||
|
color_row_patterns : bool
|
||
|
If True, color the unique row patterns, otherwise use grey
|
||
|
and white as colors.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
A figure containing a plot of the missing data pattern.
|
||
|
"""
|
||
|
|
||
|
# Create an indicator matrix for missing values.
|
||
|
miss = np.zeros(self.data.shape)
|
||
|
cols = self.data.columns
|
||
|
for j, col in enumerate(cols):
|
||
|
ix = self.ix_miss[col]
|
||
|
miss[ix, j] = 1
|
||
|
|
||
|
# Order the columns as requested
|
||
|
if column_order == "proportion":
|
||
|
ix = np.argsort(miss.mean(0))
|
||
|
elif column_order == "pattern":
|
||
|
cv = np.cov(miss.T)
|
||
|
u, s, vt = np.linalg.svd(cv, 0)
|
||
|
ix = np.argsort(cv[:, 0])
|
||
|
elif column_order == "raw":
|
||
|
ix = np.arange(len(cols))
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
column_order + " is not an allowed value for `column_order`.")
|
||
|
miss = miss[:, ix]
|
||
|
cols = [cols[i] for i in ix]
|
||
|
|
||
|
# Order the rows as requested
|
||
|
if row_order == "proportion":
|
||
|
ix = np.argsort(miss.mean(1))
|
||
|
elif row_order == "pattern":
|
||
|
x = 2**np.arange(miss.shape[1])
|
||
|
rky = np.dot(miss, x)
|
||
|
ix = np.argsort(rky)
|
||
|
elif row_order == "raw":
|
||
|
ix = np.arange(miss.shape[0])
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
row_order + " is not an allowed value for `row_order`.")
|
||
|
miss = miss[ix, :]
|
||
|
|
||
|
if hide_complete_rows:
|
||
|
ix = np.flatnonzero((miss == 1).any(1))
|
||
|
miss = miss[ix, :]
|
||
|
|
||
|
if hide_complete_columns:
|
||
|
ix = np.flatnonzero((miss == 1).any(0))
|
||
|
miss = miss[:, ix]
|
||
|
cols = [cols[i] for i in ix]
|
||
|
|
||
|
from statsmodels.graphics import utils as gutils
|
||
|
from matplotlib.colors import LinearSegmentedColormap
|
||
|
|
||
|
if ax is None:
|
||
|
fig, ax = gutils.create_mpl_ax(ax)
|
||
|
else:
|
||
|
fig = ax.get_figure()
|
||
|
|
||
|
if color_row_patterns:
|
||
|
x = 2**np.arange(miss.shape[1])
|
||
|
rky = np.dot(miss, x)
|
||
|
_, rcol = np.unique(rky, return_inverse=True)
|
||
|
miss *= 1 + rcol[:, None]
|
||
|
ax.imshow(miss, aspect="auto", interpolation="nearest",
|
||
|
cmap='gist_ncar_r')
|
||
|
else:
|
||
|
cmap = LinearSegmentedColormap.from_list("_",
|
||
|
["white", "darkgrey"])
|
||
|
ax.imshow(miss, aspect="auto", interpolation="nearest",
|
||
|
cmap=cmap)
|
||
|
|
||
|
ax.set_ylabel("Cases")
|
||
|
ax.set_xticks(range(len(cols)))
|
||
|
ax.set_xticklabels(cols, rotation=90)
|
||
|
|
||
|
return fig
|
||
|
|
||
|
def plot_bivariate(self, col1_name, col2_name,
|
||
|
lowess_args=None, lowess_min_n=40,
|
||
|
jitter=None, plot_points=True, ax=None):
|
||
|
"""
|
||
|
Plot observed and imputed values for two variables.
|
||
|
|
||
|
Displays a scatterplot of one variable against another. The
|
||
|
points are colored according to whether the values are
|
||
|
observed or imputed.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
col1_name : str
|
||
|
The variable to be plotted on the horizontal axis.
|
||
|
col2_name : str
|
||
|
The variable to be plotted on the vertical axis.
|
||
|
lowess_args : dictionary
|
||
|
A dictionary of dictionaries, keys are 'ii', 'io', 'oi'
|
||
|
and 'oo', where 'o' denotes 'observed' and 'i' denotes
|
||
|
imputed. See Notes for details.
|
||
|
lowess_min_n : int
|
||
|
Minimum sample size to plot a lowess fit
|
||
|
jitter : float or tuple
|
||
|
Standard deviation for jittering points in the plot.
|
||
|
Either a single scalar applied to both axes, or a tuple
|
||
|
containing x-axis jitter and y-axis jitter, respectively.
|
||
|
plot_points : bool
|
||
|
If True, the data points are plotted.
|
||
|
ax : AxesSubplot
|
||
|
Axes on which to plot, created if not provided.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
The matplotlib figure on which the plot id drawn.
|
||
|
"""
|
||
|
|
||
|
from statsmodels.graphics import utils as gutils
|
||
|
from statsmodels.nonparametric.smoothers_lowess import lowess
|
||
|
|
||
|
if lowess_args is None:
|
||
|
lowess_args = {}
|
||
|
|
||
|
if ax is None:
|
||
|
fig, ax = gutils.create_mpl_ax(ax)
|
||
|
else:
|
||
|
fig = ax.get_figure()
|
||
|
|
||
|
ax.set_position([0.1, 0.1, 0.7, 0.8])
|
||
|
|
||
|
ix1i = self.ix_miss[col1_name]
|
||
|
ix1o = self.ix_obs[col1_name]
|
||
|
ix2i = self.ix_miss[col2_name]
|
||
|
ix2o = self.ix_obs[col2_name]
|
||
|
|
||
|
ix_ii = np.intersect1d(ix1i, ix2i)
|
||
|
ix_io = np.intersect1d(ix1i, ix2o)
|
||
|
ix_oi = np.intersect1d(ix1o, ix2i)
|
||
|
ix_oo = np.intersect1d(ix1o, ix2o)
|
||
|
|
||
|
vec1 = np.require(self.data[col1_name], requirements="W")
|
||
|
vec2 = np.require(self.data[col2_name], requirements="W")
|
||
|
|
||
|
if jitter is not None:
|
||
|
if np.isscalar(jitter):
|
||
|
jitter = (jitter, jitter)
|
||
|
vec1 += jitter[0] * np.random.normal(size=len(vec1))
|
||
|
vec2 += jitter[1] * np.random.normal(size=len(vec2))
|
||
|
|
||
|
# Plot the points
|
||
|
keys = ['oo', 'io', 'oi', 'ii']
|
||
|
lak = {'i': 'imp', 'o': 'obs'}
|
||
|
ixs = {'ii': ix_ii, 'io': ix_io, 'oi': ix_oi, 'oo': ix_oo}
|
||
|
color = {'oo': 'grey', 'ii': 'red', 'io': 'orange',
|
||
|
'oi': 'lime'}
|
||
|
if plot_points:
|
||
|
for ky in keys:
|
||
|
ix = ixs[ky]
|
||
|
lab = lak[ky[0]] + "/" + lak[ky[1]]
|
||
|
ax.plot(vec1[ix], vec2[ix], 'o', color=color[ky],
|
||
|
label=lab, alpha=0.6)
|
||
|
|
||
|
# Plot the lowess fits
|
||
|
for ky in keys:
|
||
|
ix = ixs[ky]
|
||
|
if len(ix) < lowess_min_n:
|
||
|
continue
|
||
|
if ky in lowess_args:
|
||
|
la = lowess_args[ky]
|
||
|
else:
|
||
|
la = {}
|
||
|
ix = ixs[ky]
|
||
|
lfit = lowess(vec2[ix], vec1[ix], **la)
|
||
|
if plot_points:
|
||
|
ax.plot(lfit[:, 0], lfit[:, 1], '-', color=color[ky],
|
||
|
alpha=0.6, lw=4)
|
||
|
else:
|
||
|
lab = lak[ky[0]] + "/" + lak[ky[1]]
|
||
|
ax.plot(lfit[:, 0], lfit[:, 1], '-', color=color[ky],
|
||
|
alpha=0.6, lw=4, label=lab)
|
||
|
|
||
|
ha, la = ax.get_legend_handles_labels()
|
||
|
pad = 0.0001 if plot_points else 0.5
|
||
|
leg = fig.legend(ha, la, loc='center right', numpoints=1,
|
||
|
handletextpad=pad)
|
||
|
leg.draw_frame(False)
|
||
|
|
||
|
ax.set_xlabel(col1_name)
|
||
|
ax.set_ylabel(col2_name)
|
||
|
|
||
|
return fig
|
||
|
|
||
|
def plot_fit_obs(self, col_name, lowess_args=None,
|
||
|
lowess_min_n=40, jitter=None,
|
||
|
plot_points=True, ax=None):
|
||
|
"""
|
||
|
Plot fitted versus imputed or observed values as a scatterplot.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
col_name : str
|
||
|
The variable to be plotted on the horizontal axis.
|
||
|
lowess_args : dict-like
|
||
|
Keyword arguments passed to lowess fit. A dictionary of
|
||
|
dictionaries, keys are 'o' and 'i' denoting 'observed' and
|
||
|
'imputed', respectively.
|
||
|
lowess_min_n : int
|
||
|
Minimum sample size to plot a lowess fit
|
||
|
jitter : float or tuple
|
||
|
Standard deviation for jittering points in the plot.
|
||
|
Either a single scalar applied to both axes, or a tuple
|
||
|
containing x-axis jitter and y-axis jitter, respectively.
|
||
|
plot_points : bool
|
||
|
If True, the data points are plotted.
|
||
|
ax : AxesSubplot
|
||
|
Axes on which to plot, created if not provided.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
The matplotlib figure on which the plot is drawn.
|
||
|
"""
|
||
|
|
||
|
from statsmodels.graphics import utils as gutils
|
||
|
from statsmodels.nonparametric.smoothers_lowess import lowess
|
||
|
|
||
|
if lowess_args is None:
|
||
|
lowess_args = {}
|
||
|
|
||
|
if ax is None:
|
||
|
fig, ax = gutils.create_mpl_ax(ax)
|
||
|
else:
|
||
|
fig = ax.get_figure()
|
||
|
|
||
|
ax.set_position([0.1, 0.1, 0.7, 0.8])
|
||
|
|
||
|
ixi = self.ix_miss[col_name]
|
||
|
ixo = self.ix_obs[col_name]
|
||
|
|
||
|
vec1 = np.require(self.data[col_name], requirements="W")
|
||
|
|
||
|
# Fitted values
|
||
|
formula = self.conditional_formula[col_name]
|
||
|
endog, exog = patsy.dmatrices(formula, self.data,
|
||
|
return_type="dataframe")
|
||
|
results = self.results[col_name]
|
||
|
vec2 = results.predict(exog=exog)
|
||
|
vec2 = self._get_predicted(vec2)
|
||
|
|
||
|
if jitter is not None:
|
||
|
if np.isscalar(jitter):
|
||
|
jitter = (jitter, jitter)
|
||
|
vec1 += jitter[0] * np.random.normal(size=len(vec1))
|
||
|
vec2 += jitter[1] * np.random.normal(size=len(vec2))
|
||
|
|
||
|
# Plot the points
|
||
|
keys = ['o', 'i']
|
||
|
ixs = {'o': ixo, 'i': ixi}
|
||
|
lak = {'o': 'obs', 'i': 'imp'}
|
||
|
color = {'o': 'orange', 'i': 'lime'}
|
||
|
if plot_points:
|
||
|
for ky in keys:
|
||
|
ix = ixs[ky]
|
||
|
ax.plot(vec1[ix], vec2[ix], 'o', color=color[ky],
|
||
|
label=lak[ky], alpha=0.6)
|
||
|
|
||
|
# Plot the lowess fits
|
||
|
for ky in keys:
|
||
|
ix = ixs[ky]
|
||
|
if len(ix) < lowess_min_n:
|
||
|
continue
|
||
|
if ky in lowess_args:
|
||
|
la = lowess_args[ky]
|
||
|
else:
|
||
|
la = {}
|
||
|
ix = ixs[ky]
|
||
|
lfit = lowess(vec2[ix], vec1[ix], **la)
|
||
|
ax.plot(lfit[:, 0], lfit[:, 1], '-', color=color[ky],
|
||
|
alpha=0.6, lw=4, label=lak[ky])
|
||
|
|
||
|
ha, la = ax.get_legend_handles_labels()
|
||
|
leg = fig.legend(ha, la, loc='center right', numpoints=1)
|
||
|
leg.draw_frame(False)
|
||
|
|
||
|
ax.set_xlabel(col_name + " observed or imputed")
|
||
|
ax.set_ylabel(col_name + " fitted")
|
||
|
|
||
|
return fig
|
||
|
|
||
|
def plot_imputed_hist(self, col_name, ax=None, imp_hist_args=None,
|
||
|
obs_hist_args=None, all_hist_args=None):
|
||
|
"""
|
||
|
Display imputed values for one variable as a histogram.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
col_name : str
|
||
|
The name of the variable to be plotted.
|
||
|
ax : AxesSubplot
|
||
|
An axes on which to draw the histograms. If not provided,
|
||
|
one is created.
|
||
|
imp_hist_args : dict
|
||
|
Keyword arguments to be passed to pyplot.hist when
|
||
|
creating the histogram for imputed values.
|
||
|
obs_hist_args : dict
|
||
|
Keyword arguments to be passed to pyplot.hist when
|
||
|
creating the histogram for observed values.
|
||
|
all_hist_args : dict
|
||
|
Keyword arguments to be passed to pyplot.hist when
|
||
|
creating the histogram for all values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
The matplotlib figure on which the histograms were drawn
|
||
|
"""
|
||
|
|
||
|
from statsmodels.graphics import utils as gutils
|
||
|
|
||
|
if imp_hist_args is None:
|
||
|
imp_hist_args = {}
|
||
|
if obs_hist_args is None:
|
||
|
obs_hist_args = {}
|
||
|
if all_hist_args is None:
|
||
|
all_hist_args = {}
|
||
|
|
||
|
if ax is None:
|
||
|
fig, ax = gutils.create_mpl_ax(ax)
|
||
|
else:
|
||
|
fig = ax.get_figure()
|
||
|
|
||
|
ax.set_position([0.1, 0.1, 0.7, 0.8])
|
||
|
|
||
|
ixm = self.ix_miss[col_name]
|
||
|
ixo = self.ix_obs[col_name]
|
||
|
|
||
|
imp = self.data[col_name].iloc[ixm]
|
||
|
obs = self.data[col_name].iloc[ixo]
|
||
|
|
||
|
for di in imp_hist_args, obs_hist_args, all_hist_args:
|
||
|
if 'histtype' not in di:
|
||
|
di['histtype'] = 'step'
|
||
|
|
||
|
ha, la = [], []
|
||
|
if len(imp) > 0:
|
||
|
h = ax.hist(np.asarray(imp), **imp_hist_args)
|
||
|
ha.append(h[-1][0])
|
||
|
la.append("Imp")
|
||
|
h1 = ax.hist(np.asarray(obs), **obs_hist_args)
|
||
|
h2 = ax.hist(np.asarray(self.data[col_name]), **all_hist_args)
|
||
|
ha.extend([h1[-1][0], h2[-1][0]])
|
||
|
la.extend(["Obs", "All"])
|
||
|
|
||
|
leg = fig.legend(ha, la, loc='center right', numpoints=1)
|
||
|
leg.draw_frame(False)
|
||
|
|
||
|
ax.set_xlabel(col_name)
|
||
|
ax.set_ylabel("Frequency")
|
||
|
|
||
|
return fig
|
||
|
|
||
|
# Try to identify any auxiliary arrays (e.g. status vector in
|
||
|
# PHReg) that need to be bootstrapped along with exog and endog.
|
||
|
def _boot_kwds(self, kwds, rix):
|
||
|
|
||
|
for k in kwds:
|
||
|
v = kwds[k]
|
||
|
|
||
|
# This is only relevant for ndarrays
|
||
|
if not isinstance(v, np.ndarray):
|
||
|
continue
|
||
|
|
||
|
# Handle 1d vectors
|
||
|
if (v.ndim == 1) and (v.shape[0] == len(rix)):
|
||
|
kwds[k] = v[rix]
|
||
|
|
||
|
# Handle 2d arrays
|
||
|
if (v.ndim == 2) and (v.shape[0] == len(rix)):
|
||
|
kwds[k] = v[rix, :]
|
||
|
|
||
|
return kwds
|
||
|
|
||
|
def _perturb_bootstrap(self, vname):
|
||
|
"""
|
||
|
Perturbs the model's parameters using a bootstrap.
|
||
|
"""
|
||
|
|
||
|
endog, exog, init_kwds, fit_kwds = self.get_fitting_data(vname)
|
||
|
|
||
|
m = len(endog)
|
||
|
rix = np.random.randint(0, m, m)
|
||
|
endog = endog[rix]
|
||
|
exog = exog[rix, :]
|
||
|
|
||
|
init_kwds = self._boot_kwds(init_kwds, rix)
|
||
|
fit_kwds = self._boot_kwds(fit_kwds, rix)
|
||
|
|
||
|
klass = self.model_class[vname]
|
||
|
self.models[vname] = klass(endog, exog, **init_kwds)
|
||
|
|
||
|
if vname in self.regularized and self.regularized[vname]:
|
||
|
self.results[vname] = (
|
||
|
self.models[vname].fit_regularized(**fit_kwds))
|
||
|
else:
|
||
|
self.results[vname] = self.models[vname].fit(**fit_kwds)
|
||
|
|
||
|
self.params[vname] = self.results[vname].params
|
||
|
|
||
|
def _perturb_gaussian(self, vname):
|
||
|
"""
|
||
|
Gaussian perturbation of model parameters.
|
||
|
|
||
|
The normal approximation to the sampling distribution of the
|
||
|
parameter estimates is used to define the mean and covariance
|
||
|
structure of the perturbation distribution.
|
||
|
"""
|
||
|
|
||
|
endog, exog, init_kwds, fit_kwds = self.get_fitting_data(vname)
|
||
|
|
||
|
klass = self.model_class[vname]
|
||
|
self.models[vname] = klass(endog, exog, **init_kwds)
|
||
|
self.results[vname] = self.models[vname].fit(**fit_kwds)
|
||
|
|
||
|
cov = self.results[vname].cov_params()
|
||
|
mu = self.results[vname].params
|
||
|
self.params[vname] = np.random.multivariate_normal(mean=mu, cov=cov)
|
||
|
|
||
|
def perturb_params(self, vname):
|
||
|
|
||
|
if self.perturbation_method[vname] == "gaussian":
|
||
|
self._perturb_gaussian(vname)
|
||
|
elif self.perturbation_method[vname] == "boot":
|
||
|
self._perturb_bootstrap(vname)
|
||
|
else:
|
||
|
raise ValueError("unknown perturbation method")
|
||
|
|
||
|
def impute(self, vname):
|
||
|
# Wrap this in case we later add additional imputation
|
||
|
# methods.
|
||
|
self.impute_pmm(vname)
|
||
|
|
||
|
def update(self, vname):
|
||
|
"""
|
||
|
Impute missing values for a single variable.
|
||
|
|
||
|
This is a two-step process in which first the parameters are
|
||
|
perturbed, then the missing values are re-imputed.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
vname : str
|
||
|
The name of the variable to be updated.
|
||
|
"""
|
||
|
|
||
|
self.perturb_params(vname)
|
||
|
self.impute(vname)
|
||
|
|
||
|
# work-around for inconsistent predict return values
|
||
|
def _get_predicted(self, obj):
|
||
|
|
||
|
if isinstance(obj, np.ndarray):
|
||
|
return obj
|
||
|
elif isinstance(obj, pd.Series):
|
||
|
return obj.values
|
||
|
elif hasattr(obj, 'predicted_values'):
|
||
|
return obj.predicted_values
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"cannot obtain predicted values from %s" % obj.__class__)
|
||
|
|
||
|
def impute_pmm(self, vname):
|
||
|
"""
|
||
|
Use predictive mean matching to impute missing values.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The `perturb_params` method must be called first to define the
|
||
|
model.
|
||
|
"""
|
||
|
|
||
|
k_pmm = self.k_pmm
|
||
|
|
||
|
endog_obs, exog_obs, exog_miss, predict_obs_kwds, predict_miss_kwds = (
|
||
|
self.get_split_data(vname))
|
||
|
|
||
|
# Predict imputed variable for both missing and non-missing
|
||
|
# observations
|
||
|
model = self.models[vname]
|
||
|
pendog_obs = model.predict(self.params[vname], exog_obs,
|
||
|
**predict_obs_kwds)
|
||
|
pendog_miss = model.predict(self.params[vname], exog_miss,
|
||
|
**predict_miss_kwds)
|
||
|
|
||
|
pendog_obs = self._get_predicted(pendog_obs)
|
||
|
pendog_miss = self._get_predicted(pendog_miss)
|
||
|
|
||
|
# Jointly sort the observed and predicted endog values for the
|
||
|
# cases with observed values.
|
||
|
ii = np.argsort(pendog_obs)
|
||
|
endog_obs = endog_obs[ii]
|
||
|
pendog_obs = pendog_obs[ii]
|
||
|
|
||
|
# Find the closest match to the predicted endog values for
|
||
|
# cases with missing endog values.
|
||
|
ix = np.searchsorted(pendog_obs, pendog_miss)
|
||
|
|
||
|
# Get the indices for the closest k_pmm values on
|
||
|
# either side of the closest index.
|
||
|
ixm = ix[:, None] + np.arange(-k_pmm, k_pmm)[None, :]
|
||
|
|
||
|
# Account for boundary effects
|
||
|
msk = np.nonzero((ixm < 0) | (ixm > len(endog_obs) - 1))
|
||
|
ixm = np.clip(ixm, 0, len(endog_obs) - 1)
|
||
|
|
||
|
# Get the distances
|
||
|
dx = pendog_miss[:, None] - pendog_obs[ixm]
|
||
|
dx = np.abs(dx)
|
||
|
dx[msk] = np.inf
|
||
|
|
||
|
# Closest positions in ix, row-wise.
|
||
|
dxi = np.argsort(dx, 1)[:, 0:k_pmm]
|
||
|
|
||
|
# Choose a column for each row.
|
||
|
ir = np.random.randint(0, k_pmm, len(pendog_miss))
|
||
|
|
||
|
# Unwind the indices
|
||
|
jj = np.arange(dxi.shape[0])
|
||
|
ix = dxi[(jj, ir)]
|
||
|
iz = ixm[(jj, ix)]
|
||
|
|
||
|
imputed_miss = np.array(endog_obs[iz]).squeeze()
|
||
|
self._store_changes(vname, imputed_miss)
|
||
|
|
||
|
|
||
|
_mice_example_1 = """
|
||
|
>>> imp = mice.MICEData(data)
|
||
|
>>> fml = 'y ~ x1 + x2 + x3 + x4'
|
||
|
>>> mice = mice.MICE(fml, sm.OLS, imp)
|
||
|
>>> results = mice.fit(10, 10)
|
||
|
>>> print(results.summary())
|
||
|
|
||
|
.. literalinclude:: ../plots/mice_example_1.txt
|
||
|
"""
|
||
|
|
||
|
_mice_example_2 = """
|
||
|
>>> imp = mice.MICEData(data)
|
||
|
>>> fml = 'y ~ x1 + x2 + x3 + x4'
|
||
|
>>> mice = mice.MICE(fml, sm.OLS, imp)
|
||
|
>>> results = []
|
||
|
>>> for k in range(10):
|
||
|
>>> x = mice.next_sample()
|
||
|
>>> results.append(x)
|
||
|
"""
|
||
|
|
||
|
|
||
|
class MICE:
|
||
|
|
||
|
__doc__ = """\
|
||
|
Multiple Imputation with Chained Equations.
|
||
|
|
||
|
This class can be used to fit most statsmodels models to data sets
|
||
|
with missing values using the 'multiple imputation with chained
|
||
|
equations' (MICE) approach..
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
model_formula : str
|
||
|
The model formula to be fit to the imputed data sets. This
|
||
|
formula is for the 'analysis model'.
|
||
|
model_class : statsmodels model
|
||
|
The model to be fit to the imputed data sets. This model
|
||
|
class if for the 'analysis model'.
|
||
|
data : MICEData instance
|
||
|
MICEData object containing the data set for which
|
||
|
missing values will be imputed
|
||
|
n_skip : int
|
||
|
The number of imputed datasets to skip between consecutive
|
||
|
imputed datasets that are used for analysis.
|
||
|
init_kwds : dict-like
|
||
|
Dictionary of keyword arguments passed to the init method
|
||
|
of the analysis model.
|
||
|
fit_kwds : dict-like
|
||
|
Dictionary of keyword arguments passed to the fit method
|
||
|
of the analysis model.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Run all MICE steps and obtain results:
|
||
|
{mice_example_1}
|
||
|
|
||
|
Obtain a sequence of fitted analysis models without combining
|
||
|
to obtain summary::
|
||
|
{mice_example_2}
|
||
|
""".format(mice_example_1=_mice_example_1,
|
||
|
mice_example_2=_mice_example_2)
|
||
|
|
||
|
def __init__(self, model_formula, model_class, data, n_skip=3,
|
||
|
init_kwds=None, fit_kwds=None):
|
||
|
|
||
|
self.model_formula = model_formula
|
||
|
self.model_class = model_class
|
||
|
self.n_skip = n_skip
|
||
|
self.data = data
|
||
|
self.results_list = []
|
||
|
|
||
|
self.init_kwds = init_kwds if init_kwds is not None else {}
|
||
|
self.fit_kwds = fit_kwds if fit_kwds is not None else {}
|
||
|
|
||
|
def next_sample(self):
|
||
|
"""
|
||
|
Perform one complete MICE iteration.
|
||
|
|
||
|
A single MICE iteration updates all missing values using their
|
||
|
respective imputation models, then fits the analysis model to
|
||
|
the imputed data.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
params : array_like
|
||
|
The model parameters for the analysis model.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function fits the analysis model and returns its
|
||
|
parameter estimate. The parameter vector is not stored by the
|
||
|
class and is not used in any subsequent calls to `combine`.
|
||
|
Use `fit` to run all MICE steps together and obtain summary
|
||
|
results.
|
||
|
|
||
|
The complete cycle of missing value imputation followed by
|
||
|
fitting the analysis model is repeated `n_skip + 1` times and
|
||
|
the analysis model parameters from the final fit are returned.
|
||
|
"""
|
||
|
|
||
|
# Impute missing values
|
||
|
self.data.update_all(self.n_skip + 1)
|
||
|
start_params = None
|
||
|
if len(self.results_list) > 0:
|
||
|
start_params = self.results_list[-1].params
|
||
|
|
||
|
# Fit the analysis model.
|
||
|
model = self.model_class.from_formula(self.model_formula,
|
||
|
self.data.data,
|
||
|
**self.init_kwds)
|
||
|
self.fit_kwds.update({"start_params": start_params})
|
||
|
result = model.fit(**self.fit_kwds)
|
||
|
|
||
|
return result
|
||
|
|
||
|
def fit(self, n_burnin=10, n_imputations=10):
|
||
|
"""
|
||
|
Fit a model using MICE.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n_burnin : int
|
||
|
The number of burn-in cycles to skip.
|
||
|
n_imputations : int
|
||
|
The number of data sets to impute
|
||
|
"""
|
||
|
|
||
|
# Run without fitting the analysis model
|
||
|
self.data.update_all(n_burnin)
|
||
|
|
||
|
for j in range(n_imputations):
|
||
|
result = self.next_sample()
|
||
|
self.results_list.append(result)
|
||
|
|
||
|
self.endog_names = result.model.endog_names
|
||
|
self.exog_names = result.model.exog_names
|
||
|
|
||
|
return self.combine()
|
||
|
|
||
|
def combine(self):
|
||
|
"""
|
||
|
Pools MICE imputation results.
|
||
|
|
||
|
This method can only be used after the `run` method has been
|
||
|
called. Returns estimates and standard errors of the analysis
|
||
|
model parameters.
|
||
|
|
||
|
Returns a MICEResults instance.
|
||
|
"""
|
||
|
|
||
|
# Extract a few things from the models that were fit to
|
||
|
# imputed data sets.
|
||
|
params_list = []
|
||
|
cov_within = 0.
|
||
|
scale_list = []
|
||
|
for results in self.results_list:
|
||
|
results_uw = results._results
|
||
|
params_list.append(results_uw.params)
|
||
|
cov_within += results_uw.cov_params()
|
||
|
scale_list.append(results.scale)
|
||
|
params_list = np.asarray(params_list)
|
||
|
scale_list = np.asarray(scale_list)
|
||
|
|
||
|
# The estimated parameters for the MICE analysis
|
||
|
params = params_list.mean(0)
|
||
|
|
||
|
# The average of the within-imputation covariances
|
||
|
cov_within /= len(self.results_list)
|
||
|
|
||
|
# The between-imputation covariance
|
||
|
cov_between = np.cov(params_list.T)
|
||
|
|
||
|
# The estimated covariance matrix for the MICE analysis
|
||
|
f = 1 + 1 / float(len(self.results_list))
|
||
|
cov_params = cov_within + f * cov_between
|
||
|
|
||
|
# Fraction of missing information
|
||
|
fmi = f * np.diag(cov_between) / np.diag(cov_params)
|
||
|
|
||
|
# Set up a results instance
|
||
|
scale = np.mean(scale_list)
|
||
|
results = MICEResults(self, params, cov_params / scale)
|
||
|
results.scale = scale
|
||
|
results.frac_miss_info = fmi
|
||
|
results.exog_names = self.exog_names
|
||
|
results.endog_names = self.endog_names
|
||
|
results.model_class = self.model_class
|
||
|
|
||
|
return results
|
||
|
|
||
|
|
||
|
class MICEResults(LikelihoodModelResults):
|
||
|
|
||
|
def __init__(self, model, params, normalized_cov_params):
|
||
|
|
||
|
super().__init__(model, params,
|
||
|
normalized_cov_params)
|
||
|
|
||
|
def summary(self, title=None, alpha=.05):
|
||
|
"""
|
||
|
Summarize the results of running MICE.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
title : str, optional
|
||
|
Title for the top table. If not None, then this replaces
|
||
|
the default title
|
||
|
alpha : float
|
||
|
Significance level for the confidence intervals
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
smry : Summary instance
|
||
|
This holds the summary tables and text, which can be
|
||
|
printed or converted to various output formats.
|
||
|
"""
|
||
|
|
||
|
from statsmodels.iolib import summary2
|
||
|
|
||
|
smry = summary2.Summary()
|
||
|
float_format = "%8.3f"
|
||
|
|
||
|
info = {}
|
||
|
info["Method:"] = "MICE"
|
||
|
info["Model:"] = self.model_class.__name__
|
||
|
info["Dependent variable:"] = self.endog_names
|
||
|
info["Sample size:"] = "%d" % self.model.data.data.shape[0]
|
||
|
info["Scale"] = "%.2f" % self.scale
|
||
|
info["Num. imputations"] = "%d" % len(self.model.results_list)
|
||
|
|
||
|
smry.add_dict(info, align='l', float_format=float_format)
|
||
|
|
||
|
param = summary2.summary_params(self, alpha=alpha)
|
||
|
param["FMI"] = self.frac_miss_info
|
||
|
|
||
|
smry.add_df(param, float_format=float_format)
|
||
|
smry.add_title(title=title, results=self)
|
||
|
|
||
|
return smry
|