112 lines
3.7 KiB
Python
112 lines
3.7 KiB
Python
|
import statsmodels.tools.data as data_util
|
||
|
from patsy import dmatrices, NAAction
|
||
|
import numpy as np
|
||
|
|
||
|
# if users want to pass in a different formula framework, they can
|
||
|
# add their handler here. how to do it interactively?
|
||
|
|
||
|
# this is a mutable object, so editing it should show up in the below
|
||
|
formula_handler = {}
|
||
|
|
||
|
|
||
|
class NAAction(NAAction):
|
||
|
# monkey-patch so we can handle missing values in 'extra' arrays later
|
||
|
def _handle_NA_drop(self, values, is_NAs, origins):
|
||
|
total_mask = np.zeros(is_NAs[0].shape[0], dtype=bool)
|
||
|
for is_NA in is_NAs:
|
||
|
total_mask |= is_NA
|
||
|
good_mask = ~total_mask
|
||
|
self.missing_mask = total_mask
|
||
|
# "..." to handle 1- versus 2-dim indexing
|
||
|
return [v[good_mask, ...] for v in values]
|
||
|
|
||
|
|
||
|
def handle_formula_data(Y, X, formula, depth=0, missing='drop'):
|
||
|
"""
|
||
|
Returns endog, exog, and the model specification from arrays and formula.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
Y : array_like
|
||
|
Either endog (the LHS) of a model specification or all of the data.
|
||
|
Y must define __getitem__ for now.
|
||
|
X : array_like
|
||
|
Either exog or None. If all the data for the formula is provided in
|
||
|
Y then you must explicitly set X to None.
|
||
|
formula : str or patsy.model_desc
|
||
|
You can pass a handler by import formula_handler and adding a
|
||
|
key-value pair where the key is the formula object class and
|
||
|
the value is a function that returns endog, exog, formula object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
endog : array_like
|
||
|
Should preserve the input type of Y,X.
|
||
|
exog : array_like
|
||
|
Should preserve the input type of Y,X. Could be None.
|
||
|
"""
|
||
|
# half ass attempt to handle other formula objects
|
||
|
if isinstance(formula, tuple(formula_handler.keys())):
|
||
|
return formula_handler[type(formula)]
|
||
|
|
||
|
na_action = NAAction(on_NA=missing)
|
||
|
|
||
|
if X is not None:
|
||
|
if data_util._is_using_pandas(Y, X):
|
||
|
result = dmatrices(formula, (Y, X), depth,
|
||
|
return_type='dataframe', NA_action=na_action)
|
||
|
else:
|
||
|
result = dmatrices(formula, (Y, X), depth,
|
||
|
return_type='dataframe', NA_action=na_action)
|
||
|
else:
|
||
|
if data_util._is_using_pandas(Y, None):
|
||
|
result = dmatrices(formula, Y, depth, return_type='dataframe',
|
||
|
NA_action=na_action)
|
||
|
else:
|
||
|
result = dmatrices(formula, Y, depth, return_type='dataframe',
|
||
|
NA_action=na_action)
|
||
|
|
||
|
# if missing == 'raise' there's not missing_mask
|
||
|
missing_mask = getattr(na_action, 'missing_mask', None)
|
||
|
if not np.any(missing_mask):
|
||
|
missing_mask = None
|
||
|
if len(result) > 1: # have RHS design
|
||
|
design_info = result[1].design_info # detach it from DataFrame
|
||
|
else:
|
||
|
design_info = None
|
||
|
# NOTE: is there ever a case where we'd need LHS design_info?
|
||
|
return result, missing_mask, design_info
|
||
|
|
||
|
|
||
|
def _remove_intercept_patsy(terms):
|
||
|
"""
|
||
|
Remove intercept from Patsy terms.
|
||
|
"""
|
||
|
from patsy.desc import INTERCEPT
|
||
|
if INTERCEPT in terms:
|
||
|
terms.remove(INTERCEPT)
|
||
|
return terms
|
||
|
|
||
|
|
||
|
def _has_intercept(design_info):
|
||
|
from patsy.desc import INTERCEPT
|
||
|
return INTERCEPT in design_info.terms
|
||
|
|
||
|
|
||
|
def _intercept_idx(design_info):
|
||
|
"""
|
||
|
Returns boolean array index indicating which column holds the intercept.
|
||
|
"""
|
||
|
from patsy.desc import INTERCEPT
|
||
|
from numpy import array
|
||
|
return array([INTERCEPT == i for i in design_info.terms])
|
||
|
|
||
|
|
||
|
def make_hypotheses_matrices(model_results, test_formula):
|
||
|
"""
|
||
|
"""
|
||
|
from patsy.constraint import linear_constraint
|
||
|
exog_names = model_results.model.exog_names
|
||
|
LC = linear_constraint(test_formula, exog_names)
|
||
|
return LC
|