AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/formula/formulatools.py

112 lines
3.7 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
import statsmodels.tools.data as data_util
from patsy import dmatrices, NAAction
import numpy as np
# if users want to pass in a different formula framework, they can
# add their handler here. how to do it interactively?
# this is a mutable object, so editing it should show up in the below
formula_handler = {}
class NAAction(NAAction):
# monkey-patch so we can handle missing values in 'extra' arrays later
def _handle_NA_drop(self, values, is_NAs, origins):
total_mask = np.zeros(is_NAs[0].shape[0], dtype=bool)
for is_NA in is_NAs:
total_mask |= is_NA
good_mask = ~total_mask
self.missing_mask = total_mask
# "..." to handle 1- versus 2-dim indexing
return [v[good_mask, ...] for v in values]
def handle_formula_data(Y, X, formula, depth=0, missing='drop'):
"""
Returns endog, exog, and the model specification from arrays and formula.
Parameters
----------
Y : array_like
Either endog (the LHS) of a model specification or all of the data.
Y must define __getitem__ for now.
X : array_like
Either exog or None. If all the data for the formula is provided in
Y then you must explicitly set X to None.
formula : str or patsy.model_desc
You can pass a handler by import formula_handler and adding a
key-value pair where the key is the formula object class and
the value is a function that returns endog, exog, formula object.
Returns
-------
endog : array_like
Should preserve the input type of Y,X.
exog : array_like
Should preserve the input type of Y,X. Could be None.
"""
# half ass attempt to handle other formula objects
if isinstance(formula, tuple(formula_handler.keys())):
return formula_handler[type(formula)]
na_action = NAAction(on_NA=missing)
if X is not None:
if data_util._is_using_pandas(Y, X):
result = dmatrices(formula, (Y, X), depth,
return_type='dataframe', NA_action=na_action)
else:
result = dmatrices(formula, (Y, X), depth,
return_type='dataframe', NA_action=na_action)
else:
if data_util._is_using_pandas(Y, None):
result = dmatrices(formula, Y, depth, return_type='dataframe',
NA_action=na_action)
else:
result = dmatrices(formula, Y, depth, return_type='dataframe',
NA_action=na_action)
# if missing == 'raise' there's not missing_mask
missing_mask = getattr(na_action, 'missing_mask', None)
if not np.any(missing_mask):
missing_mask = None
if len(result) > 1: # have RHS design
design_info = result[1].design_info # detach it from DataFrame
else:
design_info = None
# NOTE: is there ever a case where we'd need LHS design_info?
return result, missing_mask, design_info
def _remove_intercept_patsy(terms):
"""
Remove intercept from Patsy terms.
"""
from patsy.desc import INTERCEPT
if INTERCEPT in terms:
terms.remove(INTERCEPT)
return terms
def _has_intercept(design_info):
from patsy.desc import INTERCEPT
return INTERCEPT in design_info.terms
def _intercept_idx(design_info):
"""
Returns boolean array index indicating which column holds the intercept.
"""
from patsy.desc import INTERCEPT
from numpy import array
return array([INTERCEPT == i for i in design_info.terms])
def make_hypotheses_matrices(model_results, test_formula):
"""
"""
from patsy.constraint import linear_constraint
exog_names = model_results.model.exog_names
LC = linear_constraint(test_formula, exog_names)
return LC