AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/duration/_kernel_estimates.py

207 lines
6.1 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
import numpy as np
from statsmodels.duration.hazard_regression import PHReg
def _kernel_cumincidence(time, status, exog, kfunc, freq_weights,
dimred=True):
"""
Calculates cumulative incidence functions using kernels.
Parameters
----------
time : array_like
The observed time values
status : array_like
The status values. status == 0 indicates censoring,
status == 1, 2, ... are the events.
exog : array_like
Covariates such that censoring becomes independent of
outcome times conditioned on the covariate values.
kfunc : function
A kernel function
freq_weights : array_like
Optional frequency weights
dimred : bool
If True, proportional hazards regression models are used to
reduce exog to two columns by predicting overall events and
censoring in two separate models. If False, exog is used
directly for calculating kernel weights without dimension
reduction.
"""
# Reorder so time is ascending
ii = np.argsort(time)
time = time[ii]
status = status[ii]
exog = exog[ii, :]
nobs = len(time)
# Convert the unique times to ranks (0, 1, 2, ...)
utime, rtime = np.unique(time, return_inverse=True)
# Last index where each unique time occurs.
ie = np.searchsorted(time, utime, side='right') - 1
ngrp = int(status.max())
# All-cause status
statusa = (status >= 1).astype(np.float64)
if freq_weights is not None:
freq_weights = freq_weights / freq_weights.sum()
ip = []
sp = [None] * nobs
n_risk = [None] * nobs
kd = [None] * nobs
for k in range(ngrp):
status0 = (status == k + 1).astype(np.float64)
# Dimension reduction step
if dimred:
sfe = PHReg(time, exog, status0).fit()
fitval_e = sfe.predict().predicted_values
sfc = PHReg(time, exog, 1 - status0).fit()
fitval_c = sfc.predict().predicted_values
exog2d = np.hstack((fitval_e[:, None], fitval_c[:, None]))
exog2d -= exog2d.mean(0)
exog2d /= exog2d.std(0)
else:
exog2d = exog
ip0 = 0
for i in range(nobs):
if k == 0:
kd1 = exog2d - exog2d[i, :]
kd1 = kfunc(kd1)
kd[i] = kd1
# Get the local all-causes survival function
if k == 0:
denom = np.cumsum(kd[i][::-1])[::-1]
num = kd[i] * statusa
rat = num / denom
tr = 1e-15
ii = np.flatnonzero((denom < tr) & (num < tr))
rat[ii] = 0
ratc = 1 - rat
ratc = np.clip(ratc, 1e-10, np.inf)
lrat = np.log(ratc)
prat = np.cumsum(lrat)[ie]
sf = np.exp(prat)
sp[i] = np.r_[1, sf[:-1]]
n_risk[i] = denom[ie]
# Number of cause-specific deaths at each unique time.
d0 = np.bincount(rtime, weights=status0*kd[i],
minlength=len(utime))
# The cumulative incidence function probabilities. Carry
# forward once the effective sample size drops below 1.
ip1 = np.cumsum(sp[i] * d0 / n_risk[i])
jj = len(ip1) - np.searchsorted(n_risk[i][::-1], 1)
if jj < len(ip1):
ip1[jj:] = ip1[jj - 1]
if freq_weights is None:
ip0 += ip1
else:
ip0 += freq_weights[i] * ip1
if freq_weights is None:
ip0 /= nobs
ip.append(ip0)
return utime, ip
def _kernel_survfunc(time, status, exog, kfunc, freq_weights):
"""
Estimate the marginal survival function under dependent censoring.
Parameters
----------
time : array_like
The observed times for each subject
status : array_like
The status for each subject (1 indicates event, 0 indicates
censoring)
exog : array_like
Covariates such that censoring is independent conditional on
exog
kfunc : function
Kernel function
freq_weights : array_like
Optional frequency weights
Returns
-------
probs : array_like
The estimated survival probabilities
times : array_like
The times at which the survival probabilities are estimated
References
----------
Zeng, Donglin 2004. Estimating Marginal Survival Function by
Adjusting for Dependent Censoring Using Many Covariates. The
Annals of Statistics 32 (4): 1533 55.
doi:10.1214/009053604000000508.
https://arxiv.org/pdf/math/0409180.pdf
"""
# Dimension reduction step
sfe = PHReg(time, exog, status).fit()
fitval_e = sfe.predict().predicted_values
sfc = PHReg(time, exog, 1 - status).fit()
fitval_c = sfc.predict().predicted_values
exog2d = np.hstack((fitval_e[:, None], fitval_c[:, None]))
n = len(time)
ixd = np.flatnonzero(status == 1)
# For consistency with standard KM, only compute the survival
# function at the times of observed events.
utime = np.unique(time[ixd])
# Reorder everything so time is ascending
ii = np.argsort(time)
time = time[ii]
status = status[ii]
exog2d = exog2d[ii, :]
# Last index where each evaluation time occurs.
ie = np.searchsorted(time, utime, side='right') - 1
if freq_weights is not None:
freq_weights = freq_weights / freq_weights.sum()
sprob = 0.
for i in range(n):
kd = exog2d - exog2d[i, :]
kd = kfunc(kd)
denom = np.cumsum(kd[::-1])[::-1]
num = kd * status
rat = num / denom
tr = 1e-15
ii = np.flatnonzero((denom < tr) & (num < tr))
rat[ii] = 0
ratc = 1 - rat
ratc = np.clip(ratc, 1e-12, np.inf)
lrat = np.log(ratc)
prat = np.cumsum(lrat)[ie]
prat = np.exp(prat)
if freq_weights is None:
sprob += prat
else:
sprob += prat * freq_weights[i]
if freq_weights is None:
sprob /= n
return sprob, utime