329 lines
9.0 KiB
Python
329 lines
9.0 KiB
Python
|
""" Pickand's dependence functions as generators for EV-copulas
|
||
|
|
||
|
|
||
|
Created on Wed Jan 27 14:33:40 2021
|
||
|
|
||
|
Author: Josef Perktold
|
||
|
License: BSD-3
|
||
|
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import stats
|
||
|
from statsmodels.tools.numdiff import _approx_fprime_cs_scalar, approx_hess
|
||
|
|
||
|
|
||
|
class PickandDependence:
|
||
|
|
||
|
def __call__(self, *args, **kwargs):
|
||
|
return self.evaluate(*args, **kwargs)
|
||
|
|
||
|
def evaluate(self, t, *args):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def deriv(self, t, *args):
|
||
|
"""First derivative of the dependence function
|
||
|
|
||
|
implemented through numerical differentiation
|
||
|
"""
|
||
|
t = np.atleast_1d(t)
|
||
|
return _approx_fprime_cs_scalar(t, self.evaluate)
|
||
|
|
||
|
def deriv2(self, t, *args):
|
||
|
"""Second derivative of the dependence function
|
||
|
|
||
|
implemented through numerical differentiation
|
||
|
"""
|
||
|
if np.size(t) == 1:
|
||
|
d2 = approx_hess([t], self.evaluate, args=args)[0]
|
||
|
else:
|
||
|
d2 = np.array([approx_hess([ti], self.evaluate, args=args)[0, 0]
|
||
|
for ti in t])
|
||
|
return d2
|
||
|
|
||
|
|
||
|
class AsymLogistic(PickandDependence):
|
||
|
'''asymmetric logistic model of Tawn 1988
|
||
|
|
||
|
special case: a1=a2=1 : Gumbel
|
||
|
|
||
|
restrictions:
|
||
|
- theta in (0,1]
|
||
|
- a1, a2 in [0,1]
|
||
|
'''
|
||
|
k_args = 3
|
||
|
|
||
|
def _check_args(self, a1, a2, theta):
|
||
|
condth = (theta > 0) and (theta <= 1)
|
||
|
conda1 = (a1 >= 0) and (a1 <= 1)
|
||
|
conda2 = (a2 >= 0) and (a2 <= 1)
|
||
|
return condth and conda1 and conda2
|
||
|
|
||
|
def evaluate(self, t, a1, a2, theta):
|
||
|
|
||
|
# if not np.all(_check_args(a1, a2, theta)):
|
||
|
# raise ValueError('invalid args')
|
||
|
|
||
|
transf = (1 - a2) * (1-t)
|
||
|
transf += (1 - a1) * t
|
||
|
transf += ((a1 * t)**(1./theta) + (a2 * (1-t))**(1./theta))**theta
|
||
|
|
||
|
return transf
|
||
|
|
||
|
def deriv(self, t, a1, a2, theta):
|
||
|
b = theta
|
||
|
|
||
|
d1 = ((a1 * (a1 * t)**(1/b - 1) - a2 * (a2 * (1 - t))**(1/b - 1)) *
|
||
|
((a1 * t)**(1/b) + (a2 * (1 - t))**(1/b))**(b - 1) - a1 + a2)
|
||
|
return d1
|
||
|
|
||
|
def deriv2(self, t, a1, a2, theta):
|
||
|
b = theta
|
||
|
d2 = ((1 - b) * (a1 * t)**(1/b) * (a2 * (1 - t))**(1/b) *
|
||
|
((a1 * t)**(1/b) + (a2 * (1 - t))**(1/b))**(b - 2)
|
||
|
)/(b * (1 - t)**2 * t**2)
|
||
|
return d2
|
||
|
|
||
|
|
||
|
transform_tawn = AsymLogistic()
|
||
|
|
||
|
|
||
|
class AsymNegLogistic(PickandDependence):
|
||
|
'''asymmetric negative logistic model of Joe 1990
|
||
|
|
||
|
special case: a1=a2=1 : symmetric negative logistic of Galambos 1978
|
||
|
|
||
|
restrictions:
|
||
|
- theta in (0,inf)
|
||
|
- a1, a2 in (0,1]
|
||
|
'''
|
||
|
k_args = 3
|
||
|
|
||
|
def _check_args(self, a1, a2, theta):
|
||
|
condth = (theta > 0)
|
||
|
conda1 = (a1 > 0) and (a1 <= 1)
|
||
|
conda2 = (a2 > 0) and (a2 <= 1)
|
||
|
return condth and conda1 and conda2
|
||
|
|
||
|
def evaluate(self, t, a1, a2, theta):
|
||
|
# if not np.all(self._check_args(a1, a2, theta)):
|
||
|
# raise ValueError('invalid args')
|
||
|
|
||
|
a1, a2 = a2, a1
|
||
|
transf = 1 - ((a1 * (1-t))**(-1./theta) +
|
||
|
(a2 * t)**(-1./theta))**(-theta)
|
||
|
return transf
|
||
|
|
||
|
def deriv(self, t, a1, a2, theta):
|
||
|
a1, a2 = a2, a1
|
||
|
m1 = -1 / theta
|
||
|
m2 = m1 - 1
|
||
|
|
||
|
# (a1^(-1/θ) (1 - t)^(-1/θ - 1) - a2^(-1/θ) t^(-1/θ - 1))*
|
||
|
# (a1^(-1/θ) (1 - t)^(-1/θ) + (a2 t)^(-1/θ))^(-θ - 1)
|
||
|
|
||
|
d1 = (a1**m1 * (1 - t)**m2 - a2**m1 * t**m2) * (
|
||
|
(a1 * (1 - t))**m1 + (a2 * t)**m1)**(-theta - 1)
|
||
|
return d1
|
||
|
|
||
|
def deriv2(self, t, a1, a2, theta):
|
||
|
b = theta
|
||
|
a1, a2 = a2, a1
|
||
|
a1tp = (a1 * (1 - t))**(1/b)
|
||
|
a2tp = (a2 * t)**(1/b)
|
||
|
a1tn = (a1 * (1 - t))**(-1/b)
|
||
|
a2tn = (a2 * t)**(-1/b)
|
||
|
|
||
|
t1 = (b + 1) * a2tp * a1tp * (a1tn + a2tn)**(-b)
|
||
|
t2 = b * (1 - t)**2 * t**2 * (a1tp + a2tp)**2
|
||
|
d2 = t1 / t2
|
||
|
return d2
|
||
|
|
||
|
|
||
|
transform_joe = AsymNegLogistic()
|
||
|
|
||
|
|
||
|
class AsymMixed(PickandDependence):
|
||
|
'''asymmetric mixed model of Tawn 1988
|
||
|
|
||
|
special case: k=0, theta in [0,1] : symmetric mixed model of
|
||
|
Tiago de Oliveira 1980
|
||
|
|
||
|
restrictions:
|
||
|
- theta > 0
|
||
|
- theta + 3*k > 0
|
||
|
- theta + k <= 1
|
||
|
- theta + 2*k <= 1
|
||
|
'''
|
||
|
k_args = 2
|
||
|
|
||
|
def _check_args(self, theta, k):
|
||
|
condth = (theta >= 0)
|
||
|
cond1 = (theta + 3*k > 0) and (theta + k <= 1) and (theta + 2*k <= 1)
|
||
|
return condth & cond1
|
||
|
|
||
|
def evaluate(self, t, theta, k):
|
||
|
transf = 1 - (theta + k) * t + theta * t*t + k * t**3
|
||
|
return transf
|
||
|
|
||
|
def deriv(self, t, theta, k):
|
||
|
d_dt = - (theta + k) + 2 * theta * t + 3 * k * t**2
|
||
|
return d_dt
|
||
|
|
||
|
def deriv2(self, t, theta, k):
|
||
|
d2_dt2 = 2 * theta + 6 * k * t
|
||
|
return d2_dt2
|
||
|
|
||
|
|
||
|
# backwards compatibility for now
|
||
|
transform_tawn2 = AsymMixed()
|
||
|
|
||
|
|
||
|
class AsymBiLogistic(PickandDependence):
|
||
|
'''bilogistic model of Coles and Tawn 1994, Joe, Smith and Weissman 1992
|
||
|
|
||
|
restrictions:
|
||
|
- (beta, delta) in (0,1)^2 or
|
||
|
- (beta, delta) in (-inf,0)^2
|
||
|
|
||
|
not vectorized because of numerical integration
|
||
|
'''
|
||
|
k_args = 2
|
||
|
|
||
|
def _check_args(self, beta, delta):
|
||
|
cond1 = (beta > 0) and (beta <= 1) and (delta > 0) and (delta <= 1)
|
||
|
cond2 = (beta < 0) and (delta < 0)
|
||
|
return cond1 | cond2
|
||
|
|
||
|
def evaluate(self, t, beta, delta):
|
||
|
# if not np.all(_check_args(beta, delta)):
|
||
|
# raise ValueError('invalid args')
|
||
|
|
||
|
def _integrant(w):
|
||
|
term1 = (1 - beta) * np.power(w, -beta) * (1-t)
|
||
|
term2 = (1 - delta) * np.power(1-w, -delta) * t
|
||
|
return np.maximum(term1, term2)
|
||
|
|
||
|
from scipy.integrate import quad
|
||
|
transf = quad(_integrant, 0, 1)[0]
|
||
|
return transf
|
||
|
|
||
|
|
||
|
transform_bilogistic = AsymBiLogistic()
|
||
|
|
||
|
|
||
|
class HR(PickandDependence):
|
||
|
'''model of Huesler Reiss 1989
|
||
|
|
||
|
special case: a1=a2=1 : symmetric negative logistic of Galambos 1978
|
||
|
|
||
|
restrictions:
|
||
|
- lambda in (0,inf)
|
||
|
'''
|
||
|
k_args = 1
|
||
|
|
||
|
def _check_args(self, lamda):
|
||
|
cond = (lamda > 0)
|
||
|
return cond
|
||
|
|
||
|
def evaluate(self, t, lamda):
|
||
|
# if not np.all(self._check_args(lamda)):
|
||
|
# raise ValueError('invalid args')
|
||
|
|
||
|
term = np.log((1. - t) / t) * 0.5 / lamda
|
||
|
|
||
|
from scipy.stats import norm
|
||
|
# use special if I want to avoid stats import
|
||
|
transf = ((1 - t) * norm._cdf(lamda + term) +
|
||
|
t * norm._cdf(lamda - term))
|
||
|
return transf
|
||
|
|
||
|
def _derivs(self, t, lamda, order=(1, 2)):
|
||
|
if not isinstance(order, (int, np.integer)):
|
||
|
if (1 in order) and (2 in order):
|
||
|
order = -1
|
||
|
else:
|
||
|
raise ValueError("order should be 1, 2, or (1,2)")
|
||
|
|
||
|
dn = 1 / np.sqrt(2 * np.pi)
|
||
|
a = lamda
|
||
|
g = np.log((1. - t) / t) * 0.5 / a
|
||
|
gd1 = 1 / (2 * a * (t - 1) * t)
|
||
|
gd2 = (0.5 - t) / (a * ((1 - t) * t)**2)
|
||
|
# f = stats.norm.cdf(t)
|
||
|
# fd1 = np.exp(-t**2 / 2) / sqrt(2 * np.pi) # stats.norm.pdf(t)
|
||
|
# fd2 = fd1 * t
|
||
|
tp = a + g
|
||
|
fp = stats.norm.cdf(tp)
|
||
|
fd1p = np.exp(-tp**2 / 2) * dn # stats.norm.pdf(t)
|
||
|
fd2p = -fd1p * tp
|
||
|
tn = a - g
|
||
|
fn = stats.norm.cdf(tn)
|
||
|
fd1n = np.exp(-tn**2 / 2) * dn # stats.norm.pdf(t)
|
||
|
fd2n = -fd1n * tn
|
||
|
|
||
|
if order in (1, -1):
|
||
|
# d1 = g'(t) (-t f'(a - g(t)) - (t - 1) f'(a + g(t))) + f(a - g(t))
|
||
|
# - f(a + g(t))
|
||
|
d1 = gd1 * (-t * fd1n - (t - 1) * fd1p) + fn - fp
|
||
|
if order in (2, -1):
|
||
|
# d2 = g'(t)^2 (t f''(a - g(t)) - (t - 1) f''(a + g(t))) +
|
||
|
# (-(t - 1) g''(t) - 2 g'(t)) f'(a + g(t)) -
|
||
|
# (t g''(t) + 2 g'(t)) f'(a - g(t))
|
||
|
d2 = (gd1**2 * (t * fd2n - (t - 1) * fd2p) +
|
||
|
(-(t - 1) * gd2 - 2 * gd1) * fd1p -
|
||
|
(t * gd2 + 2 * gd1) * fd1n
|
||
|
)
|
||
|
|
||
|
if order == 1:
|
||
|
return d1
|
||
|
elif order == 2:
|
||
|
return d2
|
||
|
elif order == -1:
|
||
|
return (d1, d2)
|
||
|
|
||
|
def deriv(self, t, lamda):
|
||
|
return self._derivs(t, lamda, 1)
|
||
|
|
||
|
def deriv2(self, t, lamda):
|
||
|
return self._derivs(t, lamda, 2)
|
||
|
|
||
|
|
||
|
transform_hr = HR()
|
||
|
|
||
|
|
||
|
# def transform_tev(t, rho, df):
|
||
|
class TEV(PickandDependence):
|
||
|
'''t-EV model of Demarta and McNeil 2005
|
||
|
|
||
|
restrictions:
|
||
|
- rho in (-1,1)
|
||
|
- x > 0
|
||
|
'''
|
||
|
k_args = 2
|
||
|
|
||
|
def _check_args(self, rho, df):
|
||
|
x = df # alias, Genest and Segers use chi, copual package uses df
|
||
|
cond1 = (x > 0)
|
||
|
cond2 = (rho > 0) and (rho < 1)
|
||
|
return cond1 and cond2
|
||
|
|
||
|
def evaluate(self, t, rho, df):
|
||
|
x = df # alias, Genest and Segers use chi, copual package uses df
|
||
|
# if not np.all(self, _check_args(rho, x)):
|
||
|
# raise ValueError('invalid args')
|
||
|
|
||
|
from scipy.stats import t as stats_t
|
||
|
# use special if I want to avoid stats import
|
||
|
|
||
|
term1 = (np.power(t/(1.-t), 1./x) - rho) # for t
|
||
|
term2 = (np.power((1.-t)/t, 1./x) - rho) # for 1-t
|
||
|
term0 = np.sqrt(1. + x) / np.sqrt(1 - rho*rho)
|
||
|
z1 = term0 * term1
|
||
|
z2 = term0 * term2
|
||
|
transf = t * stats_t._cdf(z1, x+1) + (1 - t) * stats_t._cdf(z2, x+1)
|
||
|
return transf
|
||
|
|
||
|
|
||
|
transform_tev = TEV()
|