AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/discrete/tests/test_margins.py

133 lines
4.5 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
"""
Created on Thu Aug 3 21:08:49 2017
Author: Josef Perktold
"""
import numpy as np
from numpy.testing import assert_allclose
# load data into module namespace
from statsmodels.datasets.cpunish import load
from statsmodels.discrete.discrete_model import (
NegativeBinomial,
NegativeBinomialP,
Poisson,
)
import statsmodels.discrete.tests.results.results_count_margins as res_stata
from statsmodels.tools.tools import add_constant
cpunish_data = load()
cpunish_data.exog = np.asarray(cpunish_data.exog)
cpunish_data.endog = np.asarray(cpunish_data.endog)
cpunish_data.exog[:,3] = np.log(cpunish_data.exog[:,3])
exog = add_constant(cpunish_data.exog, prepend=False)
endog = cpunish_data.endog - 1 # avoid zero-truncation
exog /= np.round(exog.max(0), 3)
class CheckMarginMixin:
rtol_fac = 1
def test_margins_table(self):
res1 = self.res1
sl = self.res1_slice
rf = self.rtol_fac
assert_allclose(self.margeff.margeff, self.res1.params[sl], rtol=1e-5 * rf)
assert_allclose(self.margeff.margeff_se, self.res1.bse[sl], rtol=1e-6 * rf)
assert_allclose(self.margeff.pvalues, self.res1.pvalues[sl], rtol=5e-6 * rf)
assert_allclose(self.margeff.conf_int(), res1.margins_table[sl, 4:6],
rtol=1e-6 * rf)
class TestPoissonMargin(CheckMarginMixin):
@classmethod
def setup_class(cls):
# here we do not need to check convergence from default start_params
start_params = [14.1709, 0.7085, -3.4548, -0.539, 3.2368, -7.9299,
-5.0529]
mod_poi = Poisson(endog, exog)
res_poi = mod_poi.fit(start_params=start_params)
#res_poi = mod_poi.fit(maxiter=100)
marge_poi = res_poi.get_margeff()
cls.res = res_poi
cls.margeff = marge_poi
cls.rtol_fac = 1
cls.res1_slice = slice(None, None, None)
cls.res1 = res_stata.results_poisson_margins_cont
class TestPoissonMarginDummy(CheckMarginMixin):
@classmethod
def setup_class(cls):
# here we do not need to check convergence from default start_params
start_params = [14.1709, 0.7085, -3.4548, -0.539, 3.2368, -7.9299,
-5.0529]
mod_poi = Poisson(endog, exog)
res_poi = mod_poi.fit(start_params=start_params)
marge_poi = res_poi.get_margeff(dummy=True)
cls.res = res_poi
cls.margeff = marge_poi
cls.res1_slice = [0, 1, 2, 3, 5, 6]
cls.res1 = res_stata.results_poisson_margins_dummy
class TestNegBinMargin(CheckMarginMixin):
@classmethod
def setup_class(cls):
# here we do not need to check convergence from default start_params
start_params = [13.1996, 0.8582, -2.8005, -1.5031, 2.3849, -8.5552,
-2.88, 1.14]
mod = NegativeBinomial(endog, exog)
res = mod.fit(start_params=start_params, method='nm', maxiter=2000)
marge = res.get_margeff()
cls.res = res
cls.margeff = marge
cls.res1_slice = slice(None, None, None)
cls.res1 = res_stata.results_negbin_margins_cont
cls.rtol_fac = 5e1
# negbin has lower agreement with Stata in this case
class TestNegBinMarginDummy(CheckMarginMixin):
@classmethod
def setup_class(cls):
# here we do not need to check convergence from default start_params
start_params = [13.1996, 0.8582, -2.8005, -1.5031, 2.3849, -8.5552,
-2.88, 1.14]
mod = NegativeBinomial(endog, exog)
res = mod.fit(start_params=start_params, method='nm', maxiter=2000)
marge = res.get_margeff(dummy=True)
cls.res = res
cls.margeff = marge
cls.res1_slice = cls.res1_slice = [0, 1, 2, 3, 5, 6]
cls.res1 = res_stata.results_negbin_margins_dummy
cls.rtol_fac = 5e1
class TestNegBinPMargin(CheckMarginMixin):
# this is the same as the nb2 version above for NB-P, p=2
@classmethod
def setup_class(cls):
# here we do not need to check convergence from default start_params
start_params = [13.1996, 0.8582, -2.8005, -1.5031, 2.3849, -8.5552,
-2.88, 1.14]
mod = NegativeBinomialP(endog, exog) # checks also that default p=2
res = mod.fit(start_params=start_params, method='nm', maxiter=2000)
marge = res.get_margeff()
cls.res = res
cls.margeff = marge
cls.res1_slice = slice(None, None, None)
cls.res1 = res_stata.results_negbin_margins_cont
cls.rtol_fac = 5e1
# negbin has lower agreement with Stata in this case