AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/compat/pandas.py

189 lines
4.1 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
from typing import Optional
import numpy as np
from packaging.version import Version, parse
import pandas as pd
from pandas.util._decorators import (
Appender,
Substitution,
cache_readonly,
deprecate_kwarg,
)
__all__ = [
"assert_frame_equal",
"assert_index_equal",
"assert_series_equal",
"data_klasses",
"frequencies",
"is_numeric_dtype",
"testing",
"cache_readonly",
"deprecate_kwarg",
"Appender",
"Substitution",
"is_int_index",
"is_float_index",
"make_dataframe",
"to_numpy",
"PD_LT_1_0_0",
"get_cached_func",
"get_cached_doc",
"call_cached_func",
"PD_LT_1_4",
"PD_LT_2",
"MONTH_END",
"QUARTER_END",
"YEAR_END",
"FUTURE_STACK",
]
version = parse(pd.__version__)
PD_LT_2_2_0 = version < Version("2.1.99")
PD_LT_2_1_0 = version < Version("2.0.99")
PD_LT_1_0_0 = version < Version("0.99.0")
PD_LT_1_4 = version < Version("1.3.99")
PD_LT_2 = version < Version("1.9.99")
try:
from pandas.api.types import is_numeric_dtype
except ImportError:
from pandas.core.common import is_numeric_dtype
try:
from pandas.tseries import offsets as frequencies
except ImportError:
from pandas.tseries import frequencies
data_klasses = (pd.Series, pd.DataFrame)
try:
import pandas.testing as testing
except ImportError:
import pandas.util.testing as testing
assert_frame_equal = testing.assert_frame_equal
assert_index_equal = testing.assert_index_equal
assert_series_equal = testing.assert_series_equal
def is_int_index(index: pd.Index) -> bool:
"""
Check if an index is integral
Parameters
----------
index : pd.Index
Any numeric index
Returns
-------
bool
True if is an index with a standard integral type
"""
return (
isinstance(index, pd.Index)
and isinstance(index.dtype, np.dtype)
and np.issubdtype(index.dtype, np.integer)
)
def is_float_index(index: pd.Index) -> bool:
"""
Check if an index is floating
Parameters
----------
index : pd.Index
Any numeric index
Returns
-------
bool
True if an index with a standard numpy floating dtype
"""
return (
isinstance(index, pd.Index)
and isinstance(index.dtype, np.dtype)
and np.issubdtype(index.dtype, np.floating)
)
try:
from pandas._testing import makeDataFrame as make_dataframe
except ImportError:
import string
def rands_array(nchars, size, dtype="O"):
"""
Generate an array of byte strings.
"""
rands_chars = np.array(
list(string.ascii_letters + string.digits), dtype=(np.str_, 1)
)
retval = (
np.random.choice(rands_chars, size=nchars * np.prod(size))
.view((np.str_, nchars))
.reshape(size)
)
if dtype is None:
return retval
else:
return retval.astype(dtype)
def make_dataframe():
"""
Simple verion of pandas._testing.makeDataFrame
"""
n = 30
k = 4
index = pd.Index(rands_array(nchars=10, size=n), name=None)
data = {
c: pd.Series(np.random.randn(n), index=index)
for c in string.ascii_uppercase[:k]
}
return pd.DataFrame(data)
def to_numpy(po: pd.DataFrame) -> np.ndarray:
"""
Workaround legacy pandas lacking to_numpy
Parameters
----------
po : Pandas obkect
Returns
-------
ndarray
A numpy array
"""
try:
return po.to_numpy()
except AttributeError:
return po.values
def get_cached_func(cached_prop):
try:
return cached_prop.fget
except AttributeError:
return cached_prop.func
def call_cached_func(cached_prop, *args, **kwargs):
f = get_cached_func(cached_prop)
return f(*args, **kwargs)
def get_cached_doc(cached_prop) -> Optional[str]:
return get_cached_func(cached_prop).__doc__
MONTH_END = "M" if PD_LT_2_2_0 else "ME"
QUARTER_END = "Q" if PD_LT_2_2_0 else "QE"
YEAR_END = "Y" if PD_LT_2_2_0 else "YE"
FUTURE_STACK = {} if PD_LT_2_1_0 else {"future_stack": True}