AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/base/transform.py

227 lines
8.0 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
import numpy as np
from statsmodels.robust import mad
from scipy.optimize import minimize_scalar
class BoxCox:
"""
Mixin class to allow for a Box-Cox transformation.
"""
def transform_boxcox(self, x, lmbda=None, method='guerrero', **kwargs):
"""
Performs a Box-Cox transformation on the data array x. If lmbda is None,
the indicated method is used to estimate a suitable lambda parameter.
Parameters
----------
x : array_like
lmbda : float
The lambda parameter for the Box-Cox transform. If None, a value
will be estimated by means of the specified method.
method : {'guerrero', 'loglik'}
The method to estimate the lambda parameter. Will only be used if
lmbda is None, and defaults to 'guerrero', detailed in Guerrero
(1993). 'loglik' maximizes the profile likelihood.
**kwargs
Options for the specified method.
* For 'guerrero', this entails window_length, the grouping
parameter, scale, the dispersion measure, and options, to be
passed to the optimizer.
* For 'loglik': options, to be passed to the optimizer.
Returns
-------
y : array_like
The transformed series.
lmbda : float
The lmbda parameter used to transform the series.
References
----------
Guerrero, Victor M. 1993. "Time-series analysis supported by power
transformations". `Journal of Forecasting`. 12 (1): 37-48.
Guerrero, Victor M. and Perera, Rafael. 2004. "Variance Stabilizing
Power Transformation for Time Series," `Journal of Modern Applied
Statistical Methods`. 3 (2): 357-369.
Box, G. E. P., and D. R. Cox. 1964. "An Analysis of Transformations".
`Journal of the Royal Statistical Society`. 26 (2): 211-252.
"""
x = np.asarray(x)
if np.any(x <= 0):
raise ValueError("Non-positive x.")
if lmbda is None:
lmbda = self._est_lambda(x,
method=method,
**kwargs)
# if less than 0.01, treat lambda as zero.
if np.isclose(lmbda, 0.):
y = np.log(x)
else:
y = (np.power(x, lmbda) - 1.) / lmbda
return y, lmbda
def untransform_boxcox(self, x, lmbda, method='naive'):
"""
Back-transforms the Box-Cox transformed data array, by means of the
indicated method. The provided argument lmbda should be the lambda
parameter that was used to initially transform the data.
Parameters
----------
x : array_like
The transformed series.
lmbda : float
The lambda parameter that was used to transform the series.
method : {'naive'}
Indicates the method to be used in the untransformation. Defaults
to 'naive', which reverses the transformation.
NOTE: 'naive' is implemented natively, while other methods may be
available in subclasses!
Returns
-------
y : array_like
The untransformed series.
"""
method = method.lower()
x = np.asarray(x)
if method == 'naive':
if np.isclose(lmbda, 0.):
y = np.exp(x)
else:
y = np.power(lmbda * x + 1, 1. / lmbda)
else:
raise ValueError(f"Method '{method}' not understood.")
return y
def _est_lambda(self, x, bounds=(-1, 2), method='guerrero', **kwargs):
"""
Computes an estimate for the lambda parameter in the Box-Cox
transformation using method.
Parameters
----------
x : array_like
The untransformed data.
bounds : tuple
Numeric 2-tuple, that indicate the solution space for the lambda
parameter. Default (-1, 2).
method : {'guerrero', 'loglik'}
The method by which to estimate lambda. Defaults to 'guerrero', but
the profile likelihood ('loglik') is also available.
**kwargs
Options for the specified method.
* For 'guerrero': window_length (int), the seasonality/grouping
parameter. Scale ({'mad', 'sd'}), the dispersion measure. Options
(dict), to be passed to the optimizer.
* For 'loglik': Options (dict), to be passed to the optimizer.
Returns
-------
lmbda : float
The lambda parameter.
"""
method = method.lower()
if len(bounds) != 2:
raise ValueError("Bounds of length {} not understood."
.format(len(bounds)))
elif bounds[0] >= bounds[1]:
raise ValueError("Lower bound exceeds upper bound.")
if method == 'guerrero':
lmbda = self._guerrero_cv(x, bounds=bounds, **kwargs)
elif method == 'loglik':
lmbda = self._loglik_boxcox(x, bounds=bounds, **kwargs)
else:
raise ValueError(f"Method '{method}' not understood.")
return lmbda
def _guerrero_cv(self, x, bounds, window_length=4, scale='sd',
options={'maxiter': 25}):
"""
Computes lambda using guerrero's coefficient of variation. If no
seasonality is present in the data, window_length is set to 4 (as
per Guerrero and Perera, (2004)).
NOTE: Seasonality-specific auxiliaries *should* provide their own
seasonality parameter.
Parameters
----------
x : array_like
bounds : tuple
Numeric 2-tuple, that indicate the solution space for the lambda
parameter.
window_length : int
Seasonality/grouping parameter. Default 4, as per Guerrero and
Perera (2004). NOTE: this indicates the length of the individual
groups, not the total number of groups!
scale : {'sd', 'mad'}
The dispersion measure to be used. 'sd' indicates the sample
standard deviation, but the more robust 'mad' is also available.
options : dict
The options (as a dict) to be passed to the optimizer.
"""
nobs = len(x)
groups = int(nobs / window_length)
# remove the first n < window_length observations from consideration.
grouped_data = np.reshape(x[nobs - (groups * window_length): nobs],
(groups, window_length))
mean = np.mean(grouped_data, 1)
scale = scale.lower()
if scale == 'sd':
dispersion = np.std(grouped_data, 1, ddof=1)
elif scale == 'mad':
dispersion = mad(grouped_data, axis=1)
else:
raise ValueError(f"Scale '{scale}' not understood.")
def optim(lmbda):
rat = np.divide(dispersion, np.power(mean, 1 - lmbda)) # eq 6, p 40
return np.std(rat, ddof=1) / np.mean(rat)
res = minimize_scalar(optim,
bounds=bounds,
method='bounded',
options=options)
return res.x
def _loglik_boxcox(self, x, bounds, options={'maxiter': 25}):
"""
Taken from the Stata manual on Box-Cox regressions, where this is the
special case of 'lhs only'. As an estimator for the variance, the
sample variance is used, by means of the well-known formula.
Parameters
----------
x : array_like
options : dict
The options (as a dict) to be passed to the optimizer.
"""
sum_x = np.sum(np.log(x))
nobs = len(x)
def optim(lmbda):
y, lmbda = self.transform_boxcox(x, lmbda)
return (1 - lmbda) * sum_x + (nobs / 2.) * np.log(np.var(y))
res = minimize_scalar(optim,
bounds=bounds,
method='bounded',
options=options)
return res.x