2881 lines
110 KiB
Python
2881 lines
110 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from statsmodels.compat.python import lzip
|
||
|
|
||
|
from functools import reduce
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
from scipy import stats
|
||
|
|
||
|
from statsmodels.base.data import handle_data
|
||
|
from statsmodels.base.optimizer import Optimizer
|
||
|
import statsmodels.base.wrapper as wrap
|
||
|
from statsmodels.formula import handle_formula_data
|
||
|
from statsmodels.stats.contrast import (
|
||
|
ContrastResults,
|
||
|
WaldTestResults,
|
||
|
t_test_pairwise,
|
||
|
)
|
||
|
from statsmodels.tools.data import _is_using_pandas
|
||
|
from statsmodels.tools.decorators import (
|
||
|
cache_readonly,
|
||
|
cached_data,
|
||
|
cached_value,
|
||
|
)
|
||
|
from statsmodels.tools.numdiff import approx_fprime
|
||
|
from statsmodels.tools.sm_exceptions import (
|
||
|
HessianInversionWarning,
|
||
|
ValueWarning,
|
||
|
)
|
||
|
from statsmodels.tools.tools import nan_dot, recipr
|
||
|
from statsmodels.tools.validation import bool_like
|
||
|
|
||
|
ERROR_INIT_KWARGS = False
|
||
|
|
||
|
_model_params_doc = """Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
A 1-d endogenous response variable. The dependent variable.
|
||
|
exog : array_like
|
||
|
A nobs x k array where `nobs` is the number of observations and `k`
|
||
|
is the number of regressors. An intercept is not included by default
|
||
|
and should be added by the user. See
|
||
|
:func:`statsmodels.tools.add_constant`."""
|
||
|
|
||
|
_missing_param_doc = """\
|
||
|
missing : str
|
||
|
Available options are 'none', 'drop', and 'raise'. If 'none', no nan
|
||
|
checking is done. If 'drop', any observations with nans are dropped.
|
||
|
If 'raise', an error is raised. Default is 'none'."""
|
||
|
_extra_param_doc = """
|
||
|
hasconst : None or bool
|
||
|
Indicates whether the RHS includes a user-supplied constant. If True,
|
||
|
a constant is not checked for and k_constant is set to 1 and all
|
||
|
result statistics are calculated as if a constant is present. If
|
||
|
False, a constant is not checked for and k_constant is set to 0.
|
||
|
**kwargs
|
||
|
Extra arguments that are used to set model properties when using the
|
||
|
formula interface."""
|
||
|
|
||
|
|
||
|
class Model:
|
||
|
__doc__ = """
|
||
|
A (predictive) statistical model. Intended to be subclassed not used.
|
||
|
|
||
|
{params_doc}
|
||
|
{extra_params_doc}
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
exog_names
|
||
|
endog_names
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`endog` and `exog` are references to any data provided. So if the data is
|
||
|
already stored in numpy arrays and it is changed then `endog` and `exog`
|
||
|
will change as well.
|
||
|
""".format(params_doc=_model_params_doc,
|
||
|
extra_params_doc=_missing_param_doc + _extra_param_doc)
|
||
|
|
||
|
# Maximum number of endogenous variables when using a formula
|
||
|
# Default is 1, which is more common. Override in models when needed
|
||
|
# Set to None to skip check
|
||
|
_formula_max_endog = 1
|
||
|
# kwargs that are generically allowed, maybe not supported in all models
|
||
|
_kwargs_allowed = [
|
||
|
"missing", 'missing_idx', 'formula', 'design_info', "hasconst",
|
||
|
]
|
||
|
|
||
|
def __init__(self, endog, exog=None, **kwargs):
|
||
|
missing = kwargs.pop('missing', 'none')
|
||
|
hasconst = kwargs.pop('hasconst', None)
|
||
|
self.data = self._handle_data(endog, exog, missing, hasconst,
|
||
|
**kwargs)
|
||
|
self.k_constant = self.data.k_constant
|
||
|
self.exog = self.data.exog
|
||
|
self.endog = self.data.endog
|
||
|
self._data_attr = []
|
||
|
self._data_attr.extend(['exog', 'endog', 'data.exog', 'data.endog'])
|
||
|
if 'formula' not in kwargs: # will not be able to unpickle without these
|
||
|
self._data_attr.extend(['data.orig_endog', 'data.orig_exog'])
|
||
|
# store keys for extras if we need to recreate model instance
|
||
|
# we do not need 'missing', maybe we need 'hasconst'
|
||
|
self._init_keys = list(kwargs.keys())
|
||
|
if hasconst is not None:
|
||
|
self._init_keys.append('hasconst')
|
||
|
|
||
|
def _get_init_kwds(self):
|
||
|
"""return dictionary with extra keys used in model.__init__
|
||
|
"""
|
||
|
kwds = {key: getattr(self, key, None)
|
||
|
for key in self._init_keys}
|
||
|
|
||
|
return kwds
|
||
|
|
||
|
def _check_kwargs(self, kwargs, keys_extra=None, error=ERROR_INIT_KWARGS):
|
||
|
|
||
|
kwargs_allowed = [
|
||
|
"missing", 'missing_idx', 'formula', 'design_info', "hasconst",
|
||
|
]
|
||
|
if keys_extra:
|
||
|
kwargs_allowed.extend(keys_extra)
|
||
|
|
||
|
kwargs_invalid = [i for i in kwargs if i not in kwargs_allowed]
|
||
|
if kwargs_invalid:
|
||
|
msg = "unknown kwargs " + repr(kwargs_invalid)
|
||
|
if error is False:
|
||
|
warnings.warn(msg, ValueWarning)
|
||
|
else:
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
def _handle_data(self, endog, exog, missing, hasconst, **kwargs):
|
||
|
data = handle_data(endog, exog, missing, hasconst, **kwargs)
|
||
|
# kwargs arrays could have changed, easier to just attach here
|
||
|
for key in kwargs:
|
||
|
if key in ['design_info', 'formula']: # leave attached to data
|
||
|
continue
|
||
|
# pop so we do not start keeping all these twice or references
|
||
|
try:
|
||
|
setattr(self, key, data.__dict__.pop(key))
|
||
|
except KeyError: # panel already pops keys in data handling
|
||
|
pass
|
||
|
return data
|
||
|
|
||
|
@classmethod
|
||
|
def from_formula(cls, formula, data, subset=None, drop_cols=None,
|
||
|
*args, **kwargs):
|
||
|
"""
|
||
|
Create a Model from a formula and dataframe.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
formula : str or generic Formula object
|
||
|
The formula specifying the model.
|
||
|
data : array_like
|
||
|
The data for the model. See Notes.
|
||
|
subset : array_like
|
||
|
An array-like object of booleans, integers, or index values that
|
||
|
indicate the subset of df to use in the model. Assumes df is a
|
||
|
`pandas.DataFrame`.
|
||
|
drop_cols : array_like
|
||
|
Columns to drop from the design matrix. Cannot be used to
|
||
|
drop terms involving categoricals.
|
||
|
*args
|
||
|
Additional positional argument that are passed to the model.
|
||
|
**kwargs
|
||
|
These are passed to the model with one exception. The
|
||
|
``eval_env`` keyword is passed to patsy. It can be either a
|
||
|
:class:`patsy:patsy.EvalEnvironment` object or an integer
|
||
|
indicating the depth of the namespace to use. For example, the
|
||
|
default ``eval_env=0`` uses the calling namespace. If you wish
|
||
|
to use a "clean" environment set ``eval_env=-1``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
model
|
||
|
The model instance.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
data must define __getitem__ with the keys in the formula terms
|
||
|
args and kwargs are passed on to the model instantiation. E.g.,
|
||
|
a numpy structured or rec array, a dictionary, or a pandas DataFrame.
|
||
|
"""
|
||
|
# TODO: provide a docs template for args/kwargs from child models
|
||
|
# TODO: subset could use syntax. issue #469.
|
||
|
if subset is not None:
|
||
|
data = data.loc[subset]
|
||
|
eval_env = kwargs.pop('eval_env', None)
|
||
|
if eval_env is None:
|
||
|
eval_env = 2
|
||
|
elif eval_env == -1:
|
||
|
from patsy import EvalEnvironment
|
||
|
eval_env = EvalEnvironment({})
|
||
|
elif isinstance(eval_env, int):
|
||
|
eval_env += 1 # we're going down the stack again
|
||
|
missing = kwargs.get('missing', 'drop')
|
||
|
if missing == 'none': # with patsy it's drop or raise. let's raise.
|
||
|
missing = 'raise'
|
||
|
|
||
|
tmp = handle_formula_data(data, None, formula, depth=eval_env,
|
||
|
missing=missing)
|
||
|
((endog, exog), missing_idx, design_info) = tmp
|
||
|
max_endog = cls._formula_max_endog
|
||
|
if (max_endog is not None and
|
||
|
endog.ndim > 1 and endog.shape[1] > max_endog):
|
||
|
raise ValueError('endog has evaluated to an array with multiple '
|
||
|
'columns that has shape {}. This occurs when '
|
||
|
'the variable converted to endog is non-numeric'
|
||
|
' (e.g., bool or str).'.format(endog.shape))
|
||
|
if drop_cols is not None and len(drop_cols) > 0:
|
||
|
cols = [x for x in exog.columns if x not in drop_cols]
|
||
|
if len(cols) < len(exog.columns):
|
||
|
exog = exog[cols]
|
||
|
cols = list(design_info.term_names)
|
||
|
for col in drop_cols:
|
||
|
try:
|
||
|
cols.remove(col)
|
||
|
except ValueError:
|
||
|
pass # OK if not present
|
||
|
design_info = design_info.subset(cols)
|
||
|
|
||
|
kwargs.update({'missing_idx': missing_idx,
|
||
|
'missing': missing,
|
||
|
'formula': formula, # attach formula for unpckling
|
||
|
'design_info': design_info})
|
||
|
mod = cls(endog, exog, *args, **kwargs)
|
||
|
mod.formula = formula
|
||
|
# since we got a dataframe, attach the original
|
||
|
mod.data.frame = data
|
||
|
return mod
|
||
|
|
||
|
@property
|
||
|
def endog_names(self):
|
||
|
"""
|
||
|
Names of endogenous variables.
|
||
|
"""
|
||
|
return self.data.ynames
|
||
|
|
||
|
@property
|
||
|
def exog_names(self) -> list[str] | None:
|
||
|
"""
|
||
|
Names of exogenous variables.
|
||
|
"""
|
||
|
return self.data.xnames
|
||
|
|
||
|
def fit(self):
|
||
|
"""
|
||
|
Fit a model to data.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def predict(self, params, exog=None, *args, **kwargs):
|
||
|
"""
|
||
|
After a model has been fit predict returns the fitted values.
|
||
|
|
||
|
This is a placeholder intended to be overwritten by individual models.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
class LikelihoodModel(Model):
|
||
|
"""
|
||
|
Likelihood model is a subclass of Model.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, endog, exog=None, **kwargs):
|
||
|
super().__init__(endog, exog, **kwargs)
|
||
|
self.initialize()
|
||
|
|
||
|
def initialize(self):
|
||
|
"""
|
||
|
Initialize (possibly re-initialize) a Model instance.
|
||
|
|
||
|
For example, if the the design matrix of a linear model changes then
|
||
|
initialized can be used to recompute values using the modified design
|
||
|
matrix.
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
# TODO: if the intent is to re-initialize the model with new data then this
|
||
|
# method needs to take inputs...
|
||
|
|
||
|
def loglike(self, params):
|
||
|
"""
|
||
|
Log-likelihood of model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
The model parameters used to compute the log-likelihood.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Must be overridden by subclasses.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def score(self, params):
|
||
|
"""
|
||
|
Score vector of model.
|
||
|
|
||
|
The gradient of logL with respect to each parameter.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
The parameters to use when evaluating the Hessian.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
The score vector evaluated at the parameters.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def information(self, params):
|
||
|
"""
|
||
|
Fisher information matrix of model.
|
||
|
|
||
|
Returns -1 * Hessian of the log-likelihood evaluated at params.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
The model parameters.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def hessian(self, params):
|
||
|
"""
|
||
|
The Hessian matrix of the model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
The parameters to use when evaluating the Hessian.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
The hessian evaluated at the parameters.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def fit(self, start_params=None, method='newton', maxiter=100,
|
||
|
full_output=True, disp=True, fargs=(), callback=None, retall=False,
|
||
|
skip_hessian=False, **kwargs):
|
||
|
"""
|
||
|
Fit method for likelihood based models
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start_params : array_like, optional
|
||
|
Initial guess of the solution for the loglikelihood maximization.
|
||
|
The default is an array of zeros.
|
||
|
method : str, optional
|
||
|
The `method` determines which solver from `scipy.optimize`
|
||
|
is used, and it can be chosen from among the following strings:
|
||
|
|
||
|
- 'newton' for Newton-Raphson, 'nm' for Nelder-Mead
|
||
|
- 'bfgs' for Broyden-Fletcher-Goldfarb-Shanno (BFGS)
|
||
|
- 'lbfgs' for limited-memory BFGS with optional box constraints
|
||
|
- 'powell' for modified Powell's method
|
||
|
- 'cg' for conjugate gradient
|
||
|
- 'ncg' for Newton-conjugate gradient
|
||
|
- 'basinhopping' for global basin-hopping solver
|
||
|
- 'minimize' for generic wrapper of scipy minimize (BFGS by default)
|
||
|
|
||
|
The explicit arguments in `fit` are passed to the solver,
|
||
|
with the exception of the basin-hopping solver. Each
|
||
|
solver has several optional arguments that are not the same across
|
||
|
solvers. See the notes section below (or scipy.optimize) for the
|
||
|
available arguments and for the list of explicit arguments that the
|
||
|
basin-hopping solver supports.
|
||
|
maxiter : int, optional
|
||
|
The maximum number of iterations to perform.
|
||
|
full_output : bool, optional
|
||
|
Set to True to have all available output in the Results object's
|
||
|
mle_retvals attribute. The output is dependent on the solver.
|
||
|
See LikelihoodModelResults notes section for more information.
|
||
|
disp : bool, optional
|
||
|
Set to True to print convergence messages.
|
||
|
fargs : tuple, optional
|
||
|
Extra arguments passed to the likelihood function, i.e.,
|
||
|
loglike(x,*args)
|
||
|
callback : callable callback(xk), optional
|
||
|
Called after each iteration, as callback(xk), where xk is the
|
||
|
current parameter vector.
|
||
|
retall : bool, optional
|
||
|
Set to True to return list of solutions at each iteration.
|
||
|
Available in Results object's mle_retvals attribute.
|
||
|
skip_hessian : bool, optional
|
||
|
If False (default), then the negative inverse hessian is calculated
|
||
|
after the optimization. If True, then the hessian will not be
|
||
|
calculated. However, it will be available in methods that use the
|
||
|
hessian in the optimization (currently only with `"newton"`).
|
||
|
kwargs : keywords
|
||
|
All kwargs are passed to the chosen solver with one exception. The
|
||
|
following keyword controls what happens after the fit::
|
||
|
|
||
|
warn_convergence : bool, optional
|
||
|
If True, checks the model for the converged flag. If the
|
||
|
converged flag is False, a ConvergenceWarning is issued.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The 'basinhopping' solver ignores `maxiter`, `retall`, `full_output`
|
||
|
explicit arguments.
|
||
|
|
||
|
Optional arguments for solvers (see returned Results.mle_settings)::
|
||
|
|
||
|
'newton'
|
||
|
tol : float
|
||
|
Relative error in params acceptable for convergence.
|
||
|
'nm' -- Nelder Mead
|
||
|
xtol : float
|
||
|
Relative error in params acceptable for convergence
|
||
|
ftol : float
|
||
|
Relative error in loglike(params) acceptable for
|
||
|
convergence
|
||
|
maxfun : int
|
||
|
Maximum number of function evaluations to make.
|
||
|
'bfgs'
|
||
|
gtol : float
|
||
|
Stop when norm of gradient is less than gtol.
|
||
|
norm : float
|
||
|
Order of norm (np.inf is max, -np.inf is min)
|
||
|
epsilon
|
||
|
If fprime is approximated, use this value for the step
|
||
|
size. Only relevant if LikelihoodModel.score is None.
|
||
|
'lbfgs'
|
||
|
m : int
|
||
|
This many terms are used for the Hessian approximation.
|
||
|
factr : float
|
||
|
A stop condition that is a variant of relative error.
|
||
|
pgtol : float
|
||
|
A stop condition that uses the projected gradient.
|
||
|
epsilon
|
||
|
If fprime is approximated, use this value for the step
|
||
|
size. Only relevant if LikelihoodModel.score is None.
|
||
|
maxfun : int
|
||
|
Maximum number of function evaluations to make.
|
||
|
bounds : sequence
|
||
|
(min, max) pairs for each element in x,
|
||
|
defining the bounds on that parameter.
|
||
|
Use None for one of min or max when there is no bound
|
||
|
in that direction.
|
||
|
'cg'
|
||
|
gtol : float
|
||
|
Stop when norm of gradient is less than gtol.
|
||
|
norm : float
|
||
|
Order of norm (np.inf is max, -np.inf is min)
|
||
|
epsilon : float
|
||
|
If fprime is approximated, use this value for the step
|
||
|
size. Can be scalar or vector. Only relevant if
|
||
|
Likelihoodmodel.score is None.
|
||
|
'ncg'
|
||
|
fhess_p : callable f'(x,*args)
|
||
|
Function which computes the Hessian of f times an arbitrary
|
||
|
vector, p. Should only be supplied if
|
||
|
LikelihoodModel.hessian is None.
|
||
|
avextol : float
|
||
|
Stop when the average relative error in the minimizer
|
||
|
falls below this amount.
|
||
|
epsilon : float or ndarray
|
||
|
If fhess is approximated, use this value for the step size.
|
||
|
Only relevant if Likelihoodmodel.hessian is None.
|
||
|
'powell'
|
||
|
xtol : float
|
||
|
Line-search error tolerance
|
||
|
ftol : float
|
||
|
Relative error in loglike(params) for acceptable for
|
||
|
convergence.
|
||
|
maxfun : int
|
||
|
Maximum number of function evaluations to make.
|
||
|
start_direc : ndarray
|
||
|
Initial direction set.
|
||
|
'basinhopping'
|
||
|
niter : int
|
||
|
The number of basin hopping iterations.
|
||
|
niter_success : int
|
||
|
Stop the run if the global minimum candidate remains the
|
||
|
same for this number of iterations.
|
||
|
T : float
|
||
|
The "temperature" parameter for the accept or reject
|
||
|
criterion. Higher "temperatures" mean that larger jumps
|
||
|
in function value will be accepted. For best results
|
||
|
`T` should be comparable to the separation (in function
|
||
|
value) between local minima.
|
||
|
stepsize : float
|
||
|
Initial step size for use in the random displacement.
|
||
|
interval : int
|
||
|
The interval for how often to update the `stepsize`.
|
||
|
minimizer : dict
|
||
|
Extra keyword arguments to be passed to the minimizer
|
||
|
`scipy.optimize.minimize()`, for example 'method' - the
|
||
|
minimization method (e.g. 'L-BFGS-B'), or 'tol' - the
|
||
|
tolerance for termination. Other arguments are mapped from
|
||
|
explicit argument of `fit`:
|
||
|
- `args` <- `fargs`
|
||
|
- `jac` <- `score`
|
||
|
- `hess` <- `hess`
|
||
|
'minimize'
|
||
|
min_method : str, optional
|
||
|
Name of minimization method to use.
|
||
|
Any method specific arguments can be passed directly.
|
||
|
For a list of methods and their arguments, see
|
||
|
documentation of `scipy.optimize.minimize`.
|
||
|
If no method is specified, then BFGS is used.
|
||
|
"""
|
||
|
Hinv = None # JP error if full_output=0, Hinv not defined
|
||
|
|
||
|
if start_params is None:
|
||
|
if hasattr(self, 'start_params'):
|
||
|
start_params = self.start_params
|
||
|
elif self.exog is not None:
|
||
|
# fails for shape (K,)?
|
||
|
start_params = [0.0] * self.exog.shape[1]
|
||
|
else:
|
||
|
raise ValueError("If exog is None, then start_params should "
|
||
|
"be specified")
|
||
|
|
||
|
# TODO: separate args from nonarg taking score and hessian, ie.,
|
||
|
# user-supplied and numerically evaluated estimate frprime does not take
|
||
|
# args in most (any?) of the optimize function
|
||
|
|
||
|
nobs = self.endog.shape[0]
|
||
|
# f = lambda params, *args: -self.loglike(params, *args) / nobs
|
||
|
|
||
|
def f(params, *args):
|
||
|
return -self.loglike(params, *args) / nobs
|
||
|
|
||
|
if method == 'newton':
|
||
|
# TODO: why are score and hess positive?
|
||
|
def score(params, *args):
|
||
|
return self.score(params, *args) / nobs
|
||
|
|
||
|
def hess(params, *args):
|
||
|
return self.hessian(params, *args) / nobs
|
||
|
else:
|
||
|
def score(params, *args):
|
||
|
return -self.score(params, *args) / nobs
|
||
|
|
||
|
def hess(params, *args):
|
||
|
return -self.hessian(params, *args) / nobs
|
||
|
|
||
|
warn_convergence = kwargs.pop('warn_convergence', True)
|
||
|
|
||
|
# Remove covariance args before calling fir to allow strict checking
|
||
|
if 'cov_type' in kwargs:
|
||
|
cov_kwds = kwargs.get('cov_kwds', {})
|
||
|
kwds = {'cov_type': kwargs['cov_type'], 'cov_kwds': cov_kwds}
|
||
|
if cov_kwds:
|
||
|
del kwargs["cov_kwds"]
|
||
|
del kwargs["cov_type"]
|
||
|
else:
|
||
|
kwds = {}
|
||
|
if 'use_t' in kwargs:
|
||
|
kwds['use_t'] = kwargs['use_t']
|
||
|
del kwargs["use_t"]
|
||
|
|
||
|
optimizer = Optimizer()
|
||
|
xopt, retvals, optim_settings = optimizer._fit(f, score, start_params,
|
||
|
fargs, kwargs,
|
||
|
hessian=hess,
|
||
|
method=method,
|
||
|
disp=disp,
|
||
|
maxiter=maxiter,
|
||
|
callback=callback,
|
||
|
retall=retall,
|
||
|
full_output=full_output)
|
||
|
# Restore cov_type, cov_kwds and use_t
|
||
|
optim_settings.update(kwds)
|
||
|
# NOTE: this is for fit_regularized and should be generalized
|
||
|
cov_params_func = kwargs.setdefault('cov_params_func', None)
|
||
|
if cov_params_func:
|
||
|
Hinv = cov_params_func(self, xopt, retvals)
|
||
|
elif method == 'newton' and full_output:
|
||
|
Hinv = np.linalg.inv(-retvals['Hessian']) / nobs
|
||
|
elif not skip_hessian:
|
||
|
H = -1 * self.hessian(xopt)
|
||
|
invertible = False
|
||
|
if np.all(np.isfinite(H)):
|
||
|
eigvals, eigvecs = np.linalg.eigh(H)
|
||
|
if np.min(eigvals) > 0:
|
||
|
invertible = True
|
||
|
|
||
|
if invertible:
|
||
|
Hinv = eigvecs.dot(np.diag(1.0 / eigvals)).dot(eigvecs.T)
|
||
|
Hinv = np.asfortranarray((Hinv + Hinv.T) / 2.0)
|
||
|
else:
|
||
|
warnings.warn('Inverting hessian failed, no bse or cov_params '
|
||
|
'available', HessianInversionWarning)
|
||
|
Hinv = None
|
||
|
|
||
|
# TODO: add Hessian approximation and change the above if needed
|
||
|
mlefit = LikelihoodModelResults(self, xopt, Hinv, scale=1., **kwds)
|
||
|
|
||
|
# TODO: hardcode scale?
|
||
|
mlefit.mle_retvals = retvals
|
||
|
if isinstance(retvals, dict):
|
||
|
if warn_convergence and not retvals['converged']:
|
||
|
from statsmodels.tools.sm_exceptions import ConvergenceWarning
|
||
|
warnings.warn("Maximum Likelihood optimization failed to "
|
||
|
"converge. Check mle_retvals",
|
||
|
ConvergenceWarning)
|
||
|
|
||
|
mlefit.mle_settings = optim_settings
|
||
|
return mlefit
|
||
|
|
||
|
def _fit_zeros(self, keep_index=None, start_params=None,
|
||
|
return_auxiliary=False, k_params=None, **fit_kwds):
|
||
|
"""experimental, fit the model subject to zero constraints
|
||
|
|
||
|
Intended for internal use cases until we know what we need.
|
||
|
API will need to change to handle models with two exog.
|
||
|
This is not yet supported by all model subclasses.
|
||
|
|
||
|
This is essentially a simplified version of `fit_constrained`, and
|
||
|
does not need to use `offset`.
|
||
|
|
||
|
The estimation creates a new model with transformed design matrix,
|
||
|
exog, and converts the results back to the original parameterization.
|
||
|
|
||
|
Some subclasses could use a more efficient calculation than using a
|
||
|
new model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
keep_index : array_like (int or bool) or slice
|
||
|
variables that should be dropped.
|
||
|
start_params : None or array_like
|
||
|
starting values for the optimization. `start_params` needs to be
|
||
|
given in the original parameter space and are internally
|
||
|
transformed.
|
||
|
k_params : int or None
|
||
|
If None, then we try to infer from start_params or model.
|
||
|
**fit_kwds : keyword arguments
|
||
|
fit_kwds are used in the optimization of the transformed model.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results : Results instance
|
||
|
"""
|
||
|
# we need to append index of extra params to keep_index as in
|
||
|
# NegativeBinomial
|
||
|
if hasattr(self, 'k_extra') and self.k_extra > 0:
|
||
|
# we cannot change the original, TODO: should we add keep_index_params?
|
||
|
keep_index = np.array(keep_index, copy=True)
|
||
|
k = self.exog.shape[1]
|
||
|
extra_index = np.arange(k, k + self.k_extra)
|
||
|
keep_index_p = np.concatenate((keep_index, extra_index))
|
||
|
else:
|
||
|
keep_index_p = keep_index
|
||
|
|
||
|
# not all models support start_params, drop if None, hide them in fit_kwds
|
||
|
if start_params is not None:
|
||
|
fit_kwds['start_params'] = start_params[keep_index_p]
|
||
|
k_params = len(start_params)
|
||
|
# ignore k_params in this case, or verify consisteny?
|
||
|
|
||
|
# build auxiliary model and fit
|
||
|
init_kwds = self._get_init_kwds()
|
||
|
mod_constr = self.__class__(self.endog, self.exog[:, keep_index],
|
||
|
**init_kwds)
|
||
|
res_constr = mod_constr.fit(**fit_kwds)
|
||
|
# switch name, only need keep_index for params below
|
||
|
keep_index = keep_index_p
|
||
|
|
||
|
if k_params is None:
|
||
|
k_params = self.exog.shape[1]
|
||
|
k_params += getattr(self, 'k_extra', 0)
|
||
|
|
||
|
params_full = np.zeros(k_params)
|
||
|
params_full[keep_index] = res_constr.params
|
||
|
|
||
|
# create dummy results Instance, TODO: wire up properly
|
||
|
# TODO: this could be moved into separate private method if needed
|
||
|
# discrete L1 fit_regularized doens't reestimate AFAICS
|
||
|
# RLM does not have method, disp nor warn_convergence keywords
|
||
|
# OLS, WLS swallows extra kwds with **kwargs, but does not have method='nm'
|
||
|
try:
|
||
|
# Note: addding full_output=False causes exceptions
|
||
|
res = self.fit(maxiter=0, disp=0, method='nm', skip_hessian=True,
|
||
|
warn_convergence=False, start_params=params_full)
|
||
|
# we get a wrapper back
|
||
|
except (TypeError, ValueError):
|
||
|
res = self.fit()
|
||
|
|
||
|
# Warning: make sure we are not just changing the wrapper instead of
|
||
|
# results #2400
|
||
|
# TODO: do we need to change res._results.scale in some models?
|
||
|
if hasattr(res_constr.model, 'scale'):
|
||
|
# Note: res.model is self
|
||
|
# GLM problem, see #2399,
|
||
|
# TODO: remove from model if not needed anymore
|
||
|
res.model.scale = res._results.scale = res_constr.model.scale
|
||
|
|
||
|
if hasattr(res_constr, 'mle_retvals'):
|
||
|
res._results.mle_retvals = res_constr.mle_retvals
|
||
|
# not available for not scipy optimization, e.g. glm irls
|
||
|
# TODO: what retvals should be required?
|
||
|
# res.mle_retvals['fcall'] = res_constr.mle_retvals.get('fcall', np.nan)
|
||
|
# res.mle_retvals['iterations'] = res_constr.mle_retvals.get(
|
||
|
# 'iterations', np.nan)
|
||
|
# res.mle_retvals['converged'] = res_constr.mle_retvals['converged']
|
||
|
# overwrite all mle_settings
|
||
|
if hasattr(res_constr, 'mle_settings'):
|
||
|
res._results.mle_settings = res_constr.mle_settings
|
||
|
|
||
|
res._results.params = params_full
|
||
|
if (not hasattr(res._results, 'normalized_cov_params') or
|
||
|
res._results.normalized_cov_params is None):
|
||
|
res._results.normalized_cov_params = np.zeros((k_params, k_params))
|
||
|
else:
|
||
|
res._results.normalized_cov_params[...] = 0
|
||
|
|
||
|
# fancy indexing requires integer array
|
||
|
keep_index = np.array(keep_index)
|
||
|
res._results.normalized_cov_params[keep_index[:, None], keep_index] = \
|
||
|
res_constr.normalized_cov_params
|
||
|
k_constr = res_constr.df_resid - res._results.df_resid
|
||
|
if hasattr(res_constr, 'cov_params_default'):
|
||
|
res._results.cov_params_default = np.zeros((k_params, k_params))
|
||
|
res._results.cov_params_default[keep_index[:, None], keep_index] = \
|
||
|
res_constr.cov_params_default
|
||
|
if hasattr(res_constr, 'cov_type'):
|
||
|
res._results.cov_type = res_constr.cov_type
|
||
|
res._results.cov_kwds = res_constr.cov_kwds
|
||
|
|
||
|
res._results.keep_index = keep_index
|
||
|
res._results.df_resid = res_constr.df_resid
|
||
|
res._results.df_model = res_constr.df_model
|
||
|
|
||
|
res._results.k_constr = k_constr
|
||
|
res._results.results_constrained = res_constr
|
||
|
|
||
|
# special temporary workaround for RLM
|
||
|
# need to be able to override robust covariances
|
||
|
if hasattr(res.model, 'M'):
|
||
|
del res._results._cache['resid']
|
||
|
del res._results._cache['fittedvalues']
|
||
|
del res._results._cache['sresid']
|
||
|
cov = res._results._cache['bcov_scaled']
|
||
|
# inplace adjustment
|
||
|
cov[...] = 0
|
||
|
cov[keep_index[:, None], keep_index] = res_constr.bcov_scaled
|
||
|
res._results.cov_params_default = cov
|
||
|
|
||
|
return res
|
||
|
|
||
|
def _fit_collinear(self, atol=1e-14, rtol=1e-13, **kwds):
|
||
|
"""experimental, fit of the model without collinear variables
|
||
|
|
||
|
This currently uses QR to drop variables based on the given
|
||
|
sequence.
|
||
|
Options will be added in future, when the supporting functions
|
||
|
to identify collinear variables become available.
|
||
|
"""
|
||
|
|
||
|
# ------ copied from PR #2380 remove when merged
|
||
|
x = self.exog
|
||
|
tol = atol + rtol * x.var(0)
|
||
|
r = np.linalg.qr(x, mode='r')
|
||
|
mask = np.abs(r.diagonal()) < np.sqrt(tol)
|
||
|
# TODO add to results instance
|
||
|
# idx_collinear = np.where(mask)[0]
|
||
|
idx_keep = np.where(~mask)[0]
|
||
|
return self._fit_zeros(keep_index=idx_keep, **kwds)
|
||
|
|
||
|
|
||
|
# TODO: the below is unfinished
|
||
|
class GenericLikelihoodModel(LikelihoodModel):
|
||
|
"""
|
||
|
Allows the fitting of any likelihood function via maximum likelihood.
|
||
|
|
||
|
A subclass needs to specify at least the log-likelihood
|
||
|
If the log-likelihood is specified for each observation, then results that
|
||
|
require the Jacobian will be available. (The other case is not tested yet.)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Optimization methods that require only a likelihood function are 'nm' and
|
||
|
'powell'
|
||
|
|
||
|
Optimization methods that require a likelihood function and a
|
||
|
score/gradient are 'bfgs', 'cg', and 'ncg'. A function to compute the
|
||
|
Hessian is optional for 'ncg'.
|
||
|
|
||
|
Optimization method that require a likelihood function, a score/gradient,
|
||
|
and a Hessian is 'newton'
|
||
|
|
||
|
If they are not overwritten by a subclass, then numerical gradient,
|
||
|
Jacobian and Hessian of the log-likelihood are calculated by numerical
|
||
|
forward differentiation. This might results in some cases in precision
|
||
|
problems, and the Hessian might not be positive definite. Even if the
|
||
|
Hessian is not positive definite the covariance matrix of the parameter
|
||
|
estimates based on the outer product of the Jacobian might still be valid.
|
||
|
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
see also subclasses in directory miscmodels
|
||
|
|
||
|
import statsmodels.api as sm
|
||
|
data = sm.datasets.spector.load()
|
||
|
data.exog = sm.add_constant(data.exog)
|
||
|
# in this dir
|
||
|
from model import GenericLikelihoodModel
|
||
|
probit_mod = sm.Probit(data.endog, data.exog)
|
||
|
probit_res = probit_mod.fit()
|
||
|
loglike = probit_mod.loglike
|
||
|
score = probit_mod.score
|
||
|
mod = GenericLikelihoodModel(data.endog, data.exog, loglike, score)
|
||
|
res = mod.fit(method="nm", maxiter = 500)
|
||
|
import numpy as np
|
||
|
np.allclose(res.params, probit_res.params)
|
||
|
"""
|
||
|
def __init__(self, endog, exog=None, loglike=None, score=None,
|
||
|
hessian=None, missing='none', extra_params_names=None,
|
||
|
**kwds):
|
||
|
# let them be none in case user wants to use inheritance
|
||
|
if loglike is not None:
|
||
|
self.loglike = loglike
|
||
|
if score is not None:
|
||
|
self.score = score
|
||
|
if hessian is not None:
|
||
|
self.hessian = hessian
|
||
|
|
||
|
hasconst = kwds.pop("hasconst", None)
|
||
|
self.__dict__.update(kwds)
|
||
|
|
||
|
# TODO: data structures?
|
||
|
|
||
|
# TODO temporary solution, force approx normal
|
||
|
# self.df_model = 9999
|
||
|
# somewhere: CacheWriteWarning: 'df_model' cannot be overwritten
|
||
|
super().__init__(
|
||
|
endog, exog, missing=missing, hasconst=hasconst, **kwds
|
||
|
)
|
||
|
|
||
|
# this will not work for ru2nmnl, maybe np.ndim of a dict?
|
||
|
if exog is not None:
|
||
|
self.nparams = (exog.shape[1] if np.ndim(exog) == 2 else 1)
|
||
|
|
||
|
if extra_params_names is not None:
|
||
|
self._set_extra_params_names(extra_params_names)
|
||
|
|
||
|
def _set_extra_params_names(self, extra_params_names):
|
||
|
# check param_names
|
||
|
if extra_params_names is not None:
|
||
|
if self.exog is not None:
|
||
|
self.exog_names.extend(extra_params_names)
|
||
|
else:
|
||
|
self.data.xnames = extra_params_names
|
||
|
|
||
|
self.k_extra = len(extra_params_names)
|
||
|
if hasattr(self, "df_resid"):
|
||
|
self.df_resid -= self.k_extra
|
||
|
|
||
|
self.nparams = len(self.exog_names)
|
||
|
|
||
|
# this is redundant and not used when subclassing
|
||
|
def initialize(self):
|
||
|
"""
|
||
|
Initialize (possibly re-initialize) a Model instance. For
|
||
|
instance, the design matrix of a linear model may change
|
||
|
and some things must be recomputed.
|
||
|
"""
|
||
|
if not self.score: # right now score is not optional
|
||
|
self.score = lambda x: approx_fprime(x, self.loglike)
|
||
|
if not self.hessian:
|
||
|
pass
|
||
|
else: # can use approx_hess_p if we have a gradient
|
||
|
if not self.hessian:
|
||
|
pass
|
||
|
# Initialize is called by
|
||
|
# statsmodels.model.LikelihoodModel.__init__
|
||
|
# and should contain any preprocessing that needs to be done for a model
|
||
|
if self.exog is not None:
|
||
|
# assume constant
|
||
|
er = np.linalg.matrix_rank(self.exog)
|
||
|
self.df_model = float(er - 1)
|
||
|
self.df_resid = float(self.exog.shape[0] - er)
|
||
|
else:
|
||
|
self.df_model = np.nan
|
||
|
self.df_resid = np.nan
|
||
|
super().initialize()
|
||
|
|
||
|
def expandparams(self, params):
|
||
|
"""
|
||
|
expand to full parameter array when some parameters are fixed
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
reduced parameter array
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
paramsfull : ndarray
|
||
|
expanded parameter array where fixed parameters are included
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Calling this requires that self.fixed_params and self.fixed_paramsmask
|
||
|
are defined.
|
||
|
|
||
|
*developer notes:*
|
||
|
|
||
|
This can be used in the log-likelihood to ...
|
||
|
|
||
|
this could also be replaced by a more general parameter
|
||
|
transformation.
|
||
|
"""
|
||
|
paramsfull = self.fixed_params.copy()
|
||
|
paramsfull[self.fixed_paramsmask] = params
|
||
|
return paramsfull
|
||
|
|
||
|
def reduceparams(self, params):
|
||
|
"""Reduce parameters"""
|
||
|
return params[self.fixed_paramsmask]
|
||
|
|
||
|
def loglike(self, params):
|
||
|
"""Log-likelihood of model at params"""
|
||
|
return self.loglikeobs(params).sum(0)
|
||
|
|
||
|
def nloglike(self, params):
|
||
|
"""Negative log-likelihood of model at params"""
|
||
|
return -self.loglikeobs(params).sum(0)
|
||
|
|
||
|
def loglikeobs(self, params):
|
||
|
"""
|
||
|
Log-likelihood of the model for all observations at params.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
The parameters of the model.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
loglike : array_like
|
||
|
The log likelihood of the model evaluated at `params`.
|
||
|
"""
|
||
|
return -self.nloglikeobs(params)
|
||
|
|
||
|
def score(self, params):
|
||
|
"""
|
||
|
Gradient of log-likelihood evaluated at params
|
||
|
"""
|
||
|
kwds = {}
|
||
|
kwds.setdefault('centered', True)
|
||
|
return approx_fprime(params, self.loglike, **kwds).ravel()
|
||
|
|
||
|
def score_obs(self, params, **kwds):
|
||
|
"""
|
||
|
Jacobian/Gradient of log-likelihood evaluated at params for each
|
||
|
observation.
|
||
|
"""
|
||
|
# kwds.setdefault('epsilon', 1e-4)
|
||
|
kwds.setdefault('centered', True)
|
||
|
return approx_fprime(params, self.loglikeobs, **kwds)
|
||
|
|
||
|
def hessian(self, params):
|
||
|
"""
|
||
|
Hessian of log-likelihood evaluated at params
|
||
|
"""
|
||
|
from statsmodels.tools.numdiff import approx_hess
|
||
|
|
||
|
# need options for hess (epsilon)
|
||
|
return approx_hess(params, self.loglike)
|
||
|
|
||
|
def hessian_factor(self, params, scale=None, observed=True):
|
||
|
"""Weights for calculating Hessian
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray
|
||
|
parameter at which Hessian is evaluated
|
||
|
scale : None or float
|
||
|
If scale is None, then the default scale will be calculated.
|
||
|
Default scale is defined by `self.scaletype` and set in fit.
|
||
|
If scale is not None, then it is used as a fixed scale.
|
||
|
observed : bool
|
||
|
If True, then the observed Hessian is returned. If false then the
|
||
|
expected information matrix is returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
hessian_factor : ndarray, 1d
|
||
|
A 1d weight vector used in the calculation of the Hessian.
|
||
|
The hessian is obtained by `(exog.T * hessian_factor).dot(exog)`
|
||
|
"""
|
||
|
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def fit(self, start_params=None, method='nm', maxiter=500, full_output=1,
|
||
|
disp=1, callback=None, retall=0, **kwargs):
|
||
|
|
||
|
if start_params is None:
|
||
|
if hasattr(self, 'start_params'):
|
||
|
start_params = self.start_params
|
||
|
else:
|
||
|
start_params = 0.1 * np.ones(self.nparams)
|
||
|
|
||
|
if "cov_type" not in kwargs:
|
||
|
# this will add default cov_type name and description
|
||
|
kwargs["cov_type"] = 'nonrobust'
|
||
|
|
||
|
fit_method = super().fit
|
||
|
mlefit = fit_method(start_params=start_params,
|
||
|
method=method, maxiter=maxiter,
|
||
|
full_output=full_output,
|
||
|
disp=disp, callback=callback, **kwargs)
|
||
|
|
||
|
results_class = getattr(self, 'results_class',
|
||
|
GenericLikelihoodModelResults)
|
||
|
genericmlefit = results_class(self, mlefit)
|
||
|
|
||
|
# amend param names
|
||
|
exog_names = [] if (self.exog_names is None) else self.exog_names
|
||
|
k_miss = len(exog_names) - len(mlefit.params)
|
||
|
if not k_miss == 0:
|
||
|
if k_miss < 0:
|
||
|
self._set_extra_params_names(['par%d' % i
|
||
|
for i in range(-k_miss)])
|
||
|
else:
|
||
|
# I do not want to raise after we have already fit()
|
||
|
warnings.warn('more exog_names than parameters', ValueWarning)
|
||
|
|
||
|
return genericmlefit
|
||
|
|
||
|
|
||
|
class Results:
|
||
|
"""
|
||
|
Class to contain model results
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
model : class instance
|
||
|
the previously specified model instance
|
||
|
params : ndarray
|
||
|
parameter estimates from the fit model
|
||
|
"""
|
||
|
def __init__(self, model, params, **kwd):
|
||
|
self.__dict__.update(kwd)
|
||
|
self.initialize(model, params, **kwd)
|
||
|
self._data_attr = []
|
||
|
# Variables to clear from cache
|
||
|
self._data_in_cache = ['fittedvalues', 'resid', 'wresid']
|
||
|
|
||
|
def initialize(self, model, params, **kwargs):
|
||
|
"""
|
||
|
Initialize (possibly re-initialize) a Results instance.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
model : Model
|
||
|
The model instance.
|
||
|
params : ndarray
|
||
|
The model parameters.
|
||
|
**kwargs
|
||
|
Any additional keyword arguments required to initialize the model.
|
||
|
"""
|
||
|
self.params = params
|
||
|
self.model = model
|
||
|
if hasattr(model, 'k_constant'):
|
||
|
self.k_constant = model.k_constant
|
||
|
|
||
|
def _transform_predict_exog(self, exog, transform=True):
|
||
|
|
||
|
is_pandas = _is_using_pandas(exog, None)
|
||
|
exog_index = None
|
||
|
if is_pandas:
|
||
|
if exog.ndim == 2 or self.params.size == 1:
|
||
|
exog_index = exog.index
|
||
|
else:
|
||
|
exog_index = [exog.index.name]
|
||
|
|
||
|
if transform and hasattr(self.model, 'formula') and (exog is not None):
|
||
|
# allow both location of design_info, see #7043
|
||
|
design_info = (getattr(self.model, "design_info", None) or
|
||
|
self.model.data.design_info)
|
||
|
from patsy import dmatrix
|
||
|
if isinstance(exog, pd.Series):
|
||
|
# we are guessing whether it should be column or row
|
||
|
if (hasattr(exog, 'name') and isinstance(exog.name, str) and
|
||
|
exog.name in design_info.describe()):
|
||
|
# assume we need one column
|
||
|
exog = pd.DataFrame(exog)
|
||
|
else:
|
||
|
# assume we need a row
|
||
|
exog = pd.DataFrame(exog).T
|
||
|
exog_index = exog.index
|
||
|
orig_exog_len = len(exog)
|
||
|
is_dict = isinstance(exog, dict)
|
||
|
try:
|
||
|
exog = dmatrix(design_info, exog, return_type="dataframe")
|
||
|
except Exception as exc:
|
||
|
msg = ('predict requires that you use a DataFrame when '
|
||
|
'predicting from a model\nthat was created using the '
|
||
|
'formula api.'
|
||
|
'\n\nThe original error message returned by patsy is:\n'
|
||
|
'{}'.format(str(str(exc))))
|
||
|
raise exc.__class__(msg)
|
||
|
if orig_exog_len > len(exog) and not is_dict:
|
||
|
if exog_index is None:
|
||
|
warnings.warn('nan values have been dropped', ValueWarning)
|
||
|
else:
|
||
|
exog = exog.reindex(exog_index)
|
||
|
exog_index = exog.index
|
||
|
|
||
|
if exog is not None:
|
||
|
exog = np.asarray(exog)
|
||
|
if exog.ndim == 1 and (self.model.exog.ndim == 1 or
|
||
|
self.model.exog.shape[1] == 1):
|
||
|
exog = exog[:, None]
|
||
|
exog = np.atleast_2d(exog) # needed in count model shape[1]
|
||
|
|
||
|
return exog, exog_index
|
||
|
|
||
|
def predict(self, exog=None, transform=True, *args, **kwargs):
|
||
|
"""
|
||
|
Call self.model.predict with self.params as the first argument.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
exog : array_like, optional
|
||
|
The values for which you want to predict. see Notes below.
|
||
|
transform : bool, optional
|
||
|
If the model was fit via a formula, do you want to pass
|
||
|
exog through the formula. Default is True. E.g., if you fit
|
||
|
a model y ~ log(x1) + log(x2), and transform is True, then
|
||
|
you can pass a data structure that contains x1 and x2 in
|
||
|
their original form. Otherwise, you'd need to log the data
|
||
|
first.
|
||
|
*args
|
||
|
Additional arguments to pass to the model, see the
|
||
|
predict method of the model for the details.
|
||
|
**kwargs
|
||
|
Additional keywords arguments to pass to the model, see the
|
||
|
predict method of the model for the details.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
array_like
|
||
|
See self.model.predict.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The types of exog that are supported depends on whether a formula
|
||
|
was used in the specification of the model.
|
||
|
|
||
|
If a formula was used, then exog is processed in the same way as
|
||
|
the original data. This transformation needs to have key access to the
|
||
|
same variable names, and can be a pandas DataFrame or a dict like
|
||
|
object that contains numpy arrays.
|
||
|
|
||
|
If no formula was used, then the provided exog needs to have the
|
||
|
same number of columns as the original exog in the model. No
|
||
|
transformation of the data is performed except converting it to
|
||
|
a numpy array.
|
||
|
|
||
|
Row indices as in pandas data frames are supported, and added to the
|
||
|
returned prediction.
|
||
|
"""
|
||
|
exog, exog_index = self._transform_predict_exog(exog,
|
||
|
transform=transform)
|
||
|
|
||
|
predict_results = self.model.predict(self.params, exog, *args,
|
||
|
**kwargs)
|
||
|
|
||
|
if exog_index is not None and not hasattr(predict_results,
|
||
|
'predicted_values'):
|
||
|
if predict_results.ndim == 1:
|
||
|
return pd.Series(predict_results, index=exog_index)
|
||
|
else:
|
||
|
return pd.DataFrame(predict_results, index=exog_index)
|
||
|
else:
|
||
|
return predict_results
|
||
|
|
||
|
def summary(self):
|
||
|
"""
|
||
|
Summary
|
||
|
|
||
|
Not implemented
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
# TODO: public method?
|
||
|
class LikelihoodModelResults(Results):
|
||
|
"""
|
||
|
Class to contain results from likelihood models
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
model : LikelihoodModel instance or subclass instance
|
||
|
LikelihoodModelResults holds a reference to the model that is fit.
|
||
|
params : 1d array_like
|
||
|
parameter estimates from estimated model
|
||
|
normalized_cov_params : 2d array
|
||
|
Normalized (before scaling) covariance of params. (dot(X.T,X))**-1
|
||
|
scale : float
|
||
|
For (some subset of models) scale will typically be the
|
||
|
mean square error from the estimated model (sigma^2)
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
mle_retvals : dict
|
||
|
Contains the values returned from the chosen optimization method if
|
||
|
full_output is True during the fit. Available only if the model
|
||
|
is fit by maximum likelihood. See notes below for the output from
|
||
|
the different methods.
|
||
|
mle_settings : dict
|
||
|
Contains the arguments passed to the chosen optimization method.
|
||
|
Available if the model is fit by maximum likelihood. See
|
||
|
LikelihoodModel.fit for more information.
|
||
|
model : model instance
|
||
|
LikelihoodResults contains a reference to the model that is fit.
|
||
|
params : ndarray
|
||
|
The parameters estimated for the model.
|
||
|
scale : float
|
||
|
The scaling factor of the model given during instantiation.
|
||
|
tvalues : ndarray
|
||
|
The t-values of the standard errors.
|
||
|
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The covariance of params is given by scale times normalized_cov_params.
|
||
|
|
||
|
Return values by solver if full_output is True during fit:
|
||
|
|
||
|
'newton'
|
||
|
fopt : float
|
||
|
The value of the (negative) loglikelihood at its
|
||
|
minimum.
|
||
|
iterations : int
|
||
|
Number of iterations performed.
|
||
|
score : ndarray
|
||
|
The score vector at the optimum.
|
||
|
Hessian : ndarray
|
||
|
The Hessian at the optimum.
|
||
|
warnflag : int
|
||
|
1 if maxiter is exceeded. 0 if successful convergence.
|
||
|
converged : bool
|
||
|
True: converged. False: did not converge.
|
||
|
allvecs : list
|
||
|
List of solutions at each iteration.
|
||
|
'nm'
|
||
|
fopt : float
|
||
|
The value of the (negative) loglikelihood at its
|
||
|
minimum.
|
||
|
iterations : int
|
||
|
Number of iterations performed.
|
||
|
warnflag : int
|
||
|
1: Maximum number of function evaluations made.
|
||
|
2: Maximum number of iterations reached.
|
||
|
converged : bool
|
||
|
True: converged. False: did not converge.
|
||
|
allvecs : list
|
||
|
List of solutions at each iteration.
|
||
|
'bfgs'
|
||
|
fopt : float
|
||
|
Value of the (negative) loglikelihood at its minimum.
|
||
|
gopt : float
|
||
|
Value of gradient at minimum, which should be near 0.
|
||
|
Hinv : ndarray
|
||
|
value of the inverse Hessian matrix at minimum. Note
|
||
|
that this is just an approximation and will often be
|
||
|
different from the value of the analytic Hessian.
|
||
|
fcalls : int
|
||
|
Number of calls to loglike.
|
||
|
gcalls : int
|
||
|
Number of calls to gradient/score.
|
||
|
warnflag : int
|
||
|
1: Maximum number of iterations exceeded. 2: Gradient
|
||
|
and/or function calls are not changing.
|
||
|
converged : bool
|
||
|
True: converged. False: did not converge.
|
||
|
allvecs : list
|
||
|
Results at each iteration.
|
||
|
'lbfgs'
|
||
|
fopt : float
|
||
|
Value of the (negative) loglikelihood at its minimum.
|
||
|
gopt : float
|
||
|
Value of gradient at minimum, which should be near 0.
|
||
|
fcalls : int
|
||
|
Number of calls to loglike.
|
||
|
warnflag : int
|
||
|
Warning flag:
|
||
|
|
||
|
- 0 if converged
|
||
|
- 1 if too many function evaluations or too many iterations
|
||
|
- 2 if stopped for another reason
|
||
|
|
||
|
converged : bool
|
||
|
True: converged. False: did not converge.
|
||
|
'powell'
|
||
|
fopt : float
|
||
|
Value of the (negative) loglikelihood at its minimum.
|
||
|
direc : ndarray
|
||
|
Current direction set.
|
||
|
iterations : int
|
||
|
Number of iterations performed.
|
||
|
fcalls : int
|
||
|
Number of calls to loglike.
|
||
|
warnflag : int
|
||
|
1: Maximum number of function evaluations. 2: Maximum number
|
||
|
of iterations.
|
||
|
converged : bool
|
||
|
True : converged. False: did not converge.
|
||
|
allvecs : list
|
||
|
Results at each iteration.
|
||
|
'cg'
|
||
|
fopt : float
|
||
|
Value of the (negative) loglikelihood at its minimum.
|
||
|
fcalls : int
|
||
|
Number of calls to loglike.
|
||
|
gcalls : int
|
||
|
Number of calls to gradient/score.
|
||
|
warnflag : int
|
||
|
1: Maximum number of iterations exceeded. 2: Gradient and/
|
||
|
or function calls not changing.
|
||
|
converged : bool
|
||
|
True: converged. False: did not converge.
|
||
|
allvecs : list
|
||
|
Results at each iteration.
|
||
|
'ncg'
|
||
|
fopt : float
|
||
|
Value of the (negative) loglikelihood at its minimum.
|
||
|
fcalls : int
|
||
|
Number of calls to loglike.
|
||
|
gcalls : int
|
||
|
Number of calls to gradient/score.
|
||
|
hcalls : int
|
||
|
Number of calls to hessian.
|
||
|
warnflag : int
|
||
|
1: Maximum number of iterations exceeded.
|
||
|
converged : bool
|
||
|
True: converged. False: did not converge.
|
||
|
allvecs : list
|
||
|
Results at each iteration.
|
||
|
"""
|
||
|
|
||
|
# by default we use normal distribution
|
||
|
# can be overwritten by instances or subclasses
|
||
|
|
||
|
def __init__(self, model, params, normalized_cov_params=None, scale=1.,
|
||
|
**kwargs):
|
||
|
super().__init__(model, params)
|
||
|
self.normalized_cov_params = normalized_cov_params
|
||
|
self.scale = scale
|
||
|
self._use_t = False
|
||
|
# robust covariance
|
||
|
# We put cov_type in kwargs so subclasses can decide in fit whether to
|
||
|
# use this generic implementation
|
||
|
if 'use_t' in kwargs:
|
||
|
use_t = kwargs['use_t']
|
||
|
self.use_t = use_t if use_t is not None else False
|
||
|
if 'cov_type' in kwargs:
|
||
|
cov_type = kwargs.get('cov_type', 'nonrobust')
|
||
|
cov_kwds = kwargs.get('cov_kwds', {})
|
||
|
|
||
|
if cov_type == 'nonrobust':
|
||
|
self.cov_type = 'nonrobust'
|
||
|
self.cov_kwds = {'description': 'Standard Errors assume that the ' +
|
||
|
'covariance matrix of the errors is correctly ' +
|
||
|
'specified.'}
|
||
|
else:
|
||
|
from statsmodels.base.covtype import get_robustcov_results
|
||
|
if cov_kwds is None:
|
||
|
cov_kwds = {}
|
||
|
use_t = self.use_t
|
||
|
# TODO: we should not need use_t in get_robustcov_results
|
||
|
get_robustcov_results(self, cov_type=cov_type, use_self=True,
|
||
|
use_t=use_t, **cov_kwds)
|
||
|
|
||
|
def normalized_cov_params(self):
|
||
|
"""See specific model class docstring"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def _get_robustcov_results(self, cov_type='nonrobust', use_self=True,
|
||
|
use_t=None, **cov_kwds):
|
||
|
if use_self is False:
|
||
|
raise ValueError("use_self should have been removed long ago. "
|
||
|
"See GH#4401")
|
||
|
from statsmodels.base.covtype import get_robustcov_results
|
||
|
if cov_kwds is None:
|
||
|
cov_kwds = {}
|
||
|
|
||
|
if cov_type == 'nonrobust':
|
||
|
self.cov_type = 'nonrobust'
|
||
|
self.cov_kwds = {'description': 'Standard Errors assume that the ' +
|
||
|
'covariance matrix of the errors is correctly ' +
|
||
|
'specified.'}
|
||
|
else:
|
||
|
# TODO: we should not need use_t in get_robustcov_results
|
||
|
get_robustcov_results(self, cov_type=cov_type, use_self=True,
|
||
|
use_t=use_t, **cov_kwds)
|
||
|
@property
|
||
|
def use_t(self):
|
||
|
"""Flag indicating to use the Student's distribution in inference."""
|
||
|
return self._use_t
|
||
|
|
||
|
@use_t.setter
|
||
|
def use_t(self, value):
|
||
|
self._use_t = bool(value)
|
||
|
|
||
|
@cached_value
|
||
|
def llf(self):
|
||
|
"""Log-likelihood of model"""
|
||
|
return self.model.loglike(self.params)
|
||
|
|
||
|
@cached_value
|
||
|
def bse(self):
|
||
|
"""The standard errors of the parameter estimates."""
|
||
|
# Issue 3299
|
||
|
if ((not hasattr(self, 'cov_params_default')) and
|
||
|
(self.normalized_cov_params is None)):
|
||
|
bse_ = np.empty(len(self.params))
|
||
|
bse_[:] = np.nan
|
||
|
else:
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("ignore", RuntimeWarning)
|
||
|
bse_ = np.sqrt(np.diag(self.cov_params()))
|
||
|
return bse_
|
||
|
|
||
|
@cached_value
|
||
|
def tvalues(self):
|
||
|
"""
|
||
|
Return the t-statistic for a given parameter estimate.
|
||
|
"""
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("ignore", RuntimeWarning)
|
||
|
return self.params / self.bse
|
||
|
|
||
|
@cached_value
|
||
|
def pvalues(self):
|
||
|
"""The two-tailed p values for the t-stats of the params."""
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("ignore", RuntimeWarning)
|
||
|
if self.use_t:
|
||
|
df_resid = getattr(self, 'df_resid_inference', self.df_resid)
|
||
|
return stats.t.sf(np.abs(self.tvalues), df_resid) * 2
|
||
|
else:
|
||
|
return stats.norm.sf(np.abs(self.tvalues)) * 2
|
||
|
|
||
|
def cov_params(self, r_matrix=None, column=None, scale=None, cov_p=None,
|
||
|
other=None):
|
||
|
"""
|
||
|
Compute the variance/covariance matrix.
|
||
|
|
||
|
The variance/covariance matrix can be of a linear contrast of the
|
||
|
estimated parameters or all params multiplied by scale which will
|
||
|
usually be an estimate of sigma^2. Scale is assumed to be a scalar.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
r_matrix : array_like
|
||
|
Can be 1d, or 2d. Can be used alone or with other.
|
||
|
column : array_like, optional
|
||
|
Must be used on its own. Can be 0d or 1d see below.
|
||
|
scale : float, optional
|
||
|
Can be specified or not. Default is None, which means that
|
||
|
the scale argument is taken from the model.
|
||
|
cov_p : ndarray, optional
|
||
|
The covariance of the parameters. If not provided, this value is
|
||
|
read from `self.normalized_cov_params` or
|
||
|
`self.cov_params_default`.
|
||
|
other : array_like, optional
|
||
|
Can be used when r_matrix is specified.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
The covariance matrix of the parameter estimates or of linear
|
||
|
combination of parameter estimates. See Notes.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
(The below are assumed to be in matrix notation.)
|
||
|
|
||
|
If no argument is specified returns the covariance matrix of a model
|
||
|
``(scale)*(X.T X)^(-1)``
|
||
|
|
||
|
If contrast is specified it pre and post-multiplies as follows
|
||
|
``(scale) * r_matrix (X.T X)^(-1) r_matrix.T``
|
||
|
|
||
|
If contrast and other are specified returns
|
||
|
``(scale) * r_matrix (X.T X)^(-1) other.T``
|
||
|
|
||
|
If column is specified returns
|
||
|
``(scale) * (X.T X)^(-1)[column,column]`` if column is 0d
|
||
|
|
||
|
OR
|
||
|
|
||
|
``(scale) * (X.T X)^(-1)[column][:,column]`` if column is 1d
|
||
|
"""
|
||
|
if (hasattr(self, 'mle_settings') and
|
||
|
self.mle_settings['optimizer'] in ['l1', 'l1_cvxopt_cp']):
|
||
|
dot_fun = nan_dot
|
||
|
else:
|
||
|
dot_fun = np.dot
|
||
|
|
||
|
if (cov_p is None and self.normalized_cov_params is None and
|
||
|
not hasattr(self, 'cov_params_default')):
|
||
|
raise ValueError('need covariance of parameters for computing '
|
||
|
'(unnormalized) covariances')
|
||
|
if column is not None and (r_matrix is not None or other is not None):
|
||
|
raise ValueError('Column should be specified without other '
|
||
|
'arguments.')
|
||
|
if other is not None and r_matrix is None:
|
||
|
raise ValueError('other can only be specified with r_matrix')
|
||
|
|
||
|
if cov_p is None:
|
||
|
if hasattr(self, 'cov_params_default'):
|
||
|
cov_p = self.cov_params_default
|
||
|
else:
|
||
|
if scale is None:
|
||
|
scale = self.scale
|
||
|
cov_p = self.normalized_cov_params * scale
|
||
|
|
||
|
if column is not None:
|
||
|
column = np.asarray(column)
|
||
|
if column.shape == ():
|
||
|
return cov_p[column, column]
|
||
|
else:
|
||
|
return cov_p[column[:, None], column]
|
||
|
elif r_matrix is not None:
|
||
|
r_matrix = np.asarray(r_matrix)
|
||
|
if r_matrix.shape == ():
|
||
|
raise ValueError("r_matrix should be 1d or 2d")
|
||
|
if other is None:
|
||
|
other = r_matrix
|
||
|
else:
|
||
|
other = np.asarray(other)
|
||
|
tmp = dot_fun(r_matrix, dot_fun(cov_p, np.transpose(other)))
|
||
|
return tmp
|
||
|
else: # if r_matrix is None and column is None:
|
||
|
return cov_p
|
||
|
|
||
|
# TODO: make sure this works as needed for GLMs
|
||
|
def t_test(self, r_matrix, cov_p=None, use_t=None):
|
||
|
"""
|
||
|
Compute a t-test for a each linear hypothesis of the form Rb = q.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
r_matrix : {array_like, str, tuple}
|
||
|
One of:
|
||
|
|
||
|
- array : If an array is given, a p x k 2d array or length k 1d
|
||
|
array specifying the linear restrictions. It is assumed
|
||
|
that the linear combination is equal to zero.
|
||
|
- str : The full hypotheses to test can be given as a string.
|
||
|
See the examples.
|
||
|
- tuple : A tuple of arrays in the form (R, q). If q is given,
|
||
|
can be either a scalar or a length p row vector.
|
||
|
|
||
|
cov_p : array_like, optional
|
||
|
An alternative estimate for the parameter covariance matrix.
|
||
|
If None is given, self.normalized_cov_params is used.
|
||
|
use_t : bool, optional
|
||
|
If use_t is None, then the default of the model is used. If use_t
|
||
|
is True, then the p-values are based on the t distribution. If
|
||
|
use_t is False, then the p-values are based on the normal
|
||
|
distribution.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ContrastResults
|
||
|
The results for the test are attributes of this results instance.
|
||
|
The available results have the same elements as the parameter table
|
||
|
in `summary()`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
tvalues : Individual t statistics for the estimated parameters.
|
||
|
f_test : Perform an F tests on model parameters.
|
||
|
patsy.DesignInfo.linear_constraint : Specify a linear constraint.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import statsmodels.api as sm
|
||
|
>>> data = sm.datasets.longley.load()
|
||
|
>>> data.exog = sm.add_constant(data.exog)
|
||
|
>>> results = sm.OLS(data.endog, data.exog).fit()
|
||
|
>>> r = np.zeros_like(results.params)
|
||
|
>>> r[5:] = [1,-1]
|
||
|
>>> print(r)
|
||
|
[ 0. 0. 0. 0. 0. 1. -1.]
|
||
|
|
||
|
r tests that the coefficients on the 5th and 6th independent
|
||
|
variable are the same.
|
||
|
|
||
|
>>> T_test = results.t_test(r)
|
||
|
>>> print(T_test)
|
||
|
Test for Constraints
|
||
|
==============================================================================
|
||
|
coef std err t P>|t| [0.025 0.975]
|
||
|
------------------------------------------------------------------------------
|
||
|
c0 -1829.2026 455.391 -4.017 0.003 -2859.368 -799.037
|
||
|
==============================================================================
|
||
|
>>> T_test.effect
|
||
|
-1829.2025687192481
|
||
|
>>> T_test.sd
|
||
|
455.39079425193762
|
||
|
>>> T_test.tvalue
|
||
|
-4.0167754636411717
|
||
|
>>> T_test.pvalue
|
||
|
0.0015163772380899498
|
||
|
|
||
|
Alternatively, you can specify the hypothesis tests using a string
|
||
|
|
||
|
>>> from statsmodels.formula.api import ols
|
||
|
>>> dta = sm.datasets.longley.load_pandas().data
|
||
|
>>> formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR'
|
||
|
>>> results = ols(formula, dta).fit()
|
||
|
>>> hypotheses = 'GNPDEFL = GNP, UNEMP = 2, YEAR/1829 = 1'
|
||
|
>>> t_test = results.t_test(hypotheses)
|
||
|
>>> print(t_test)
|
||
|
Test for Constraints
|
||
|
==============================================================================
|
||
|
coef std err t P>|t| [0.025 0.975]
|
||
|
------------------------------------------------------------------------------
|
||
|
c0 15.0977 84.937 0.178 0.863 -177.042 207.238
|
||
|
c1 -2.0202 0.488 -8.231 0.000 -3.125 -0.915
|
||
|
c2 1.0001 0.249 0.000 1.000 0.437 1.563
|
||
|
==============================================================================
|
||
|
"""
|
||
|
from patsy import DesignInfo
|
||
|
use_t = bool_like(use_t, "use_t", strict=True, optional=True)
|
||
|
if self.params.ndim == 2:
|
||
|
names = [f'y{i[0]}_{i[1]}'
|
||
|
for i in self.model.data.cov_names]
|
||
|
else:
|
||
|
names = self.model.data.cov_names
|
||
|
LC = DesignInfo(names).linear_constraint(r_matrix)
|
||
|
r_matrix, q_matrix = LC.coefs, LC.constants
|
||
|
num_ttests = r_matrix.shape[0]
|
||
|
num_params = r_matrix.shape[1]
|
||
|
|
||
|
if (cov_p is None and self.normalized_cov_params is None and
|
||
|
not hasattr(self, 'cov_params_default')):
|
||
|
raise ValueError('Need covariance of parameters for computing '
|
||
|
'T statistics')
|
||
|
params = self.params.ravel(order="F")
|
||
|
if num_params != params.shape[0]:
|
||
|
raise ValueError('r_matrix and params are not aligned')
|
||
|
if q_matrix is None:
|
||
|
q_matrix = np.zeros(num_ttests)
|
||
|
else:
|
||
|
q_matrix = np.asarray(q_matrix)
|
||
|
q_matrix = q_matrix.squeeze()
|
||
|
if q_matrix.size > 1:
|
||
|
if q_matrix.shape[0] != num_ttests:
|
||
|
raise ValueError("r_matrix and q_matrix must have the same "
|
||
|
"number of rows")
|
||
|
|
||
|
if use_t is None:
|
||
|
# switch to use_t false if undefined
|
||
|
use_t = (hasattr(self, 'use_t') and self.use_t)
|
||
|
|
||
|
_effect = np.dot(r_matrix, params)
|
||
|
|
||
|
# Perform the test
|
||
|
if num_ttests > 1:
|
||
|
_sd = np.sqrt(np.diag(self.cov_params(
|
||
|
r_matrix=r_matrix, cov_p=cov_p)))
|
||
|
else:
|
||
|
_sd = np.sqrt(self.cov_params(r_matrix=r_matrix, cov_p=cov_p))
|
||
|
_t = (_effect - q_matrix) * recipr(_sd)
|
||
|
|
||
|
df_resid = getattr(self, 'df_resid_inference', self.df_resid)
|
||
|
|
||
|
if use_t:
|
||
|
return ContrastResults(effect=_effect, t=_t, sd=_sd,
|
||
|
df_denom=df_resid)
|
||
|
else:
|
||
|
return ContrastResults(effect=_effect, statistic=_t, sd=_sd,
|
||
|
df_denom=df_resid,
|
||
|
distribution='norm')
|
||
|
|
||
|
def f_test(self, r_matrix, cov_p=None, invcov=None):
|
||
|
"""
|
||
|
Compute the F-test for a joint linear hypothesis.
|
||
|
|
||
|
This is a special case of `wald_test` that always uses the F
|
||
|
distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
r_matrix : {array_like, str, tuple}
|
||
|
One of:
|
||
|
|
||
|
- array : An r x k array where r is the number of restrictions to
|
||
|
test and k is the number of regressors. It is assumed
|
||
|
that the linear combination is equal to zero.
|
||
|
- str : The full hypotheses to test can be given as a string.
|
||
|
See the examples.
|
||
|
- tuple : A tuple of arrays in the form (R, q), ``q`` can be
|
||
|
either a scalar or a length k row vector.
|
||
|
|
||
|
cov_p : array_like, optional
|
||
|
An alternative estimate for the parameter covariance matrix.
|
||
|
If None is given, self.normalized_cov_params is used.
|
||
|
invcov : array_like, optional
|
||
|
A q x q array to specify an inverse covariance matrix based on a
|
||
|
restrictions matrix.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ContrastResults
|
||
|
The results for the test are attributes of this results instance.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
t_test : Perform a single hypothesis test.
|
||
|
wald_test : Perform a Wald-test using a quadratic form.
|
||
|
statsmodels.stats.contrast.ContrastResults : Test results.
|
||
|
patsy.DesignInfo.linear_constraint : Specify a linear constraint.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The matrix `r_matrix` is assumed to be non-singular. More precisely,
|
||
|
|
||
|
r_matrix (pX pX.T) r_matrix.T
|
||
|
|
||
|
is assumed invertible. Here, pX is the generalized inverse of the
|
||
|
design matrix of the model. There can be problems in non-OLS models
|
||
|
where the rank of the covariance of the noise is not full.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import statsmodels.api as sm
|
||
|
>>> data = sm.datasets.longley.load()
|
||
|
>>> data.exog = sm.add_constant(data.exog)
|
||
|
>>> results = sm.OLS(data.endog, data.exog).fit()
|
||
|
>>> A = np.identity(len(results.params))
|
||
|
>>> A = A[1:,:]
|
||
|
|
||
|
This tests that each coefficient is jointly statistically
|
||
|
significantly different from zero.
|
||
|
|
||
|
>>> print(results.f_test(A))
|
||
|
<F test: F=array([[ 330.28533923]]), p=4.984030528700946e-10, df_denom=9, df_num=6>
|
||
|
|
||
|
Compare this to
|
||
|
|
||
|
>>> results.fvalue
|
||
|
330.2853392346658
|
||
|
>>> results.f_pvalue
|
||
|
4.98403096572e-10
|
||
|
|
||
|
>>> B = np.array(([0,0,1,-1,0,0,0],[0,0,0,0,0,1,-1]))
|
||
|
|
||
|
This tests that the coefficient on the 2nd and 3rd regressors are
|
||
|
equal and jointly that the coefficient on the 5th and 6th regressors
|
||
|
are equal.
|
||
|
|
||
|
>>> print(results.f_test(B))
|
||
|
<F test: F=array([[ 9.74046187]]), p=0.005605288531708235, df_denom=9, df_num=2>
|
||
|
|
||
|
Alternatively, you can specify the hypothesis tests using a string
|
||
|
|
||
|
>>> from statsmodels.datasets import longley
|
||
|
>>> from statsmodels.formula.api import ols
|
||
|
>>> dta = longley.load_pandas().data
|
||
|
>>> formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR'
|
||
|
>>> results = ols(formula, dta).fit()
|
||
|
>>> hypotheses = '(GNPDEFL = GNP), (UNEMP = 2), (YEAR/1829 = 1)'
|
||
|
>>> f_test = results.f_test(hypotheses)
|
||
|
>>> print(f_test)
|
||
|
<F test: F=array([[ 144.17976065]]), p=6.322026217355609e-08, df_denom=9, df_num=3>
|
||
|
"""
|
||
|
res = self.wald_test(r_matrix, cov_p=cov_p, invcov=invcov, use_f=True, scalar=True)
|
||
|
return res
|
||
|
|
||
|
# TODO: untested for GLMs?
|
||
|
def wald_test(self, r_matrix, cov_p=None, invcov=None,
|
||
|
use_f=None, df_constraints=None, scalar=None):
|
||
|
"""
|
||
|
Compute a Wald-test for a joint linear hypothesis.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
r_matrix : {array_like, str, tuple}
|
||
|
One of:
|
||
|
|
||
|
- array : An r x k array where r is the number of restrictions to
|
||
|
test and k is the number of regressors. It is assumed that the
|
||
|
linear combination is equal to zero.
|
||
|
- str : The full hypotheses to test can be given as a string.
|
||
|
See the examples.
|
||
|
- tuple : A tuple of arrays in the form (R, q), ``q`` can be
|
||
|
either a scalar or a length p row vector.
|
||
|
|
||
|
cov_p : array_like, optional
|
||
|
An alternative estimate for the parameter covariance matrix.
|
||
|
If None is given, self.normalized_cov_params is used.
|
||
|
invcov : array_like, optional
|
||
|
A q x q array to specify an inverse covariance matrix based on a
|
||
|
restrictions matrix.
|
||
|
use_f : bool
|
||
|
If True, then the F-distribution is used. If False, then the
|
||
|
asymptotic distribution, chisquare is used. If use_f is None, then
|
||
|
the F distribution is used if the model specifies that use_t is True.
|
||
|
The test statistic is proportionally adjusted for the distribution
|
||
|
by the number of constraints in the hypothesis.
|
||
|
df_constraints : int, optional
|
||
|
The number of constraints. If not provided the number of
|
||
|
constraints is determined from r_matrix.
|
||
|
scalar : bool, optional
|
||
|
Flag indicating whether the Wald test statistic should be returned
|
||
|
as a sclar float. The current behavior is to return an array.
|
||
|
This will switch to a scalar float after 0.14 is released. To
|
||
|
get the future behavior now, set scalar to True. To silence
|
||
|
the warning and retain the legacy behavior, set scalar to
|
||
|
False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ContrastResults
|
||
|
The results for the test are attributes of this results instance.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
f_test : Perform an F tests on model parameters.
|
||
|
t_test : Perform a single hypothesis test.
|
||
|
statsmodels.stats.contrast.ContrastResults : Test results.
|
||
|
patsy.DesignInfo.linear_constraint : Specify a linear constraint.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The matrix `r_matrix` is assumed to be non-singular. More precisely,
|
||
|
|
||
|
r_matrix (pX pX.T) r_matrix.T
|
||
|
|
||
|
is assumed invertible. Here, pX is the generalized inverse of the
|
||
|
design matrix of the model. There can be problems in non-OLS models
|
||
|
where the rank of the covariance of the noise is not full.
|
||
|
"""
|
||
|
use_f = bool_like(use_f, "use_f", strict=True, optional=True)
|
||
|
scalar = bool_like(scalar, "scalar", strict=True, optional=True)
|
||
|
if use_f is None:
|
||
|
# switch to use_t false if undefined
|
||
|
use_f = (hasattr(self, 'use_t') and self.use_t)
|
||
|
|
||
|
from patsy import DesignInfo
|
||
|
if self.params.ndim == 2:
|
||
|
names = [f'y{i[0]}_{i[1]}'
|
||
|
for i in self.model.data.cov_names]
|
||
|
else:
|
||
|
names = self.model.data.cov_names
|
||
|
params = self.params.ravel(order="F")
|
||
|
LC = DesignInfo(names).linear_constraint(r_matrix)
|
||
|
r_matrix, q_matrix = LC.coefs, LC.constants
|
||
|
|
||
|
if (self.normalized_cov_params is None and cov_p is None and
|
||
|
invcov is None and not hasattr(self, 'cov_params_default')):
|
||
|
raise ValueError('need covariance of parameters for computing '
|
||
|
'F statistics')
|
||
|
|
||
|
cparams = np.dot(r_matrix, params[:, None])
|
||
|
J = float(r_matrix.shape[0]) # number of restrictions
|
||
|
|
||
|
if q_matrix is None:
|
||
|
q_matrix = np.zeros(J)
|
||
|
else:
|
||
|
q_matrix = np.asarray(q_matrix)
|
||
|
if q_matrix.ndim == 1:
|
||
|
q_matrix = q_matrix[:, None]
|
||
|
if q_matrix.shape[0] != J:
|
||
|
raise ValueError("r_matrix and q_matrix must have the same "
|
||
|
"number of rows")
|
||
|
Rbq = cparams - q_matrix
|
||
|
if invcov is None:
|
||
|
cov_p = self.cov_params(r_matrix=r_matrix, cov_p=cov_p)
|
||
|
if np.isnan(cov_p).max():
|
||
|
raise ValueError("r_matrix performs f_test for using "
|
||
|
"dimensions that are asymptotically "
|
||
|
"non-normal")
|
||
|
invcov = np.linalg.pinv(cov_p)
|
||
|
J_ = np.linalg.matrix_rank(cov_p)
|
||
|
if J_ < J:
|
||
|
warnings.warn('covariance of constraints does not have full '
|
||
|
'rank. The number of constraints is %d, but '
|
||
|
'rank is %d' % (J, J_), ValueWarning)
|
||
|
J = J_
|
||
|
|
||
|
# TODO streamline computation, we do not need to compute J if given
|
||
|
if df_constraints is not None:
|
||
|
# let caller override J by df_constraint
|
||
|
J = df_constraints
|
||
|
|
||
|
if (hasattr(self, 'mle_settings') and
|
||
|
self.mle_settings['optimizer'] in ['l1', 'l1_cvxopt_cp']):
|
||
|
F = nan_dot(nan_dot(Rbq.T, invcov), Rbq)
|
||
|
else:
|
||
|
F = np.dot(np.dot(Rbq.T, invcov), Rbq)
|
||
|
|
||
|
df_resid = getattr(self, 'df_resid_inference', self.df_resid)
|
||
|
if scalar is None:
|
||
|
warnings.warn(
|
||
|
"The behavior of wald_test will change after 0.14 to returning "
|
||
|
"scalar test statistic values. To get the future behavior now, "
|
||
|
"set scalar to True. To silence this message while retaining "
|
||
|
"the legacy behavior, set scalar to False.",
|
||
|
FutureWarning
|
||
|
)
|
||
|
scalar = False
|
||
|
if scalar and F.size == 1:
|
||
|
F = float(np.squeeze(F))
|
||
|
if use_f:
|
||
|
F /= J
|
||
|
return ContrastResults(F=F, df_denom=df_resid,
|
||
|
df_num=J) #invcov.shape[0])
|
||
|
else:
|
||
|
return ContrastResults(chi2=F, df_denom=J, statistic=F,
|
||
|
distribution='chi2', distargs=(J,))
|
||
|
|
||
|
def wald_test_terms(self, skip_single=False, extra_constraints=None,
|
||
|
combine_terms=None, scalar=None):
|
||
|
"""
|
||
|
Compute a sequence of Wald tests for terms over multiple columns.
|
||
|
|
||
|
This computes joined Wald tests for the hypothesis that all
|
||
|
coefficients corresponding to a `term` are zero.
|
||
|
`Terms` are defined by the underlying formula or by string matching.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
skip_single : bool
|
||
|
If true, then terms that consist only of a single column and,
|
||
|
therefore, refers only to a single parameter is skipped.
|
||
|
If false, then all terms are included.
|
||
|
extra_constraints : ndarray
|
||
|
Additional constraints to test. Note that this input has not been
|
||
|
tested.
|
||
|
combine_terms : {list[str], None}
|
||
|
Each string in this list is matched to the name of the terms or
|
||
|
the name of the exogenous variables. All columns whose name
|
||
|
includes that string are combined in one joint test.
|
||
|
scalar : bool, optional
|
||
|
Flag indicating whether the Wald test statistic should be returned
|
||
|
as a sclar float. The current behavior is to return an array.
|
||
|
This will switch to a scalar float after 0.14 is released. To
|
||
|
get the future behavior now, set scalar to True. To silence
|
||
|
the warning and retain the legacy behavior, set scalar to
|
||
|
False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
WaldTestResults
|
||
|
The result instance contains `table` which is a pandas DataFrame
|
||
|
with the test results: test statistic, degrees of freedom and
|
||
|
pvalues.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> res_ols = ols("np.log(Days+1) ~ C(Duration, Sum)*C(Weight, Sum)", data).fit()
|
||
|
>>> res_ols.wald_test_terms()
|
||
|
<class 'statsmodels.stats.contrast.WaldTestResults'>
|
||
|
F P>F df constraint df denom
|
||
|
Intercept 279.754525 2.37985521351e-22 1 51
|
||
|
C(Duration, Sum) 5.367071 0.0245738436636 1 51
|
||
|
C(Weight, Sum) 12.432445 3.99943118767e-05 2 51
|
||
|
C(Duration, Sum):C(Weight, Sum) 0.176002 0.83912310946 2 51
|
||
|
|
||
|
>>> res_poi = Poisson.from_formula("Days ~ C(Weight) * C(Duration)", \
|
||
|
data).fit(cov_type='HC0')
|
||
|
>>> wt = res_poi.wald_test_terms(skip_single=False, \
|
||
|
combine_terms=['Duration', 'Weight'])
|
||
|
>>> print(wt)
|
||
|
chi2 P>chi2 df constraint
|
||
|
Intercept 15.695625 7.43960374424e-05 1
|
||
|
C(Weight) 16.132616 0.000313940174705 2
|
||
|
C(Duration) 1.009147 0.315107378931 1
|
||
|
C(Weight):C(Duration) 0.216694 0.897315972824 2
|
||
|
Duration 11.187849 0.010752286833 3
|
||
|
Weight 30.263368 4.32586407145e-06 4
|
||
|
"""
|
||
|
# lazy import
|
||
|
from collections import defaultdict
|
||
|
|
||
|
result = self
|
||
|
if extra_constraints is None:
|
||
|
extra_constraints = []
|
||
|
if combine_terms is None:
|
||
|
combine_terms = []
|
||
|
design_info = getattr(result.model.data, 'design_info', None)
|
||
|
|
||
|
if design_info is None and extra_constraints is None:
|
||
|
raise ValueError('no constraints, nothing to do')
|
||
|
|
||
|
identity = np.eye(len(result.params))
|
||
|
constraints = []
|
||
|
combined = defaultdict(list)
|
||
|
if design_info is not None:
|
||
|
for term in design_info.terms:
|
||
|
cols = design_info.slice(term)
|
||
|
name = term.name()
|
||
|
constraint_matrix = identity[cols]
|
||
|
|
||
|
# check if in combined
|
||
|
for cname in combine_terms:
|
||
|
if cname in name:
|
||
|
combined[cname].append(constraint_matrix)
|
||
|
|
||
|
k_constraint = constraint_matrix.shape[0]
|
||
|
if skip_single:
|
||
|
if k_constraint == 1:
|
||
|
continue
|
||
|
|
||
|
constraints.append((name, constraint_matrix))
|
||
|
|
||
|
combined_constraints = []
|
||
|
for cname in combine_terms:
|
||
|
combined_constraints.append((cname, np.vstack(combined[cname])))
|
||
|
else:
|
||
|
# check by exog/params names if there is no formula info
|
||
|
for col, name in enumerate(result.model.exog_names):
|
||
|
constraint_matrix = np.atleast_2d(identity[col])
|
||
|
|
||
|
# check if in combined
|
||
|
for cname in combine_terms:
|
||
|
if cname in name:
|
||
|
combined[cname].append(constraint_matrix)
|
||
|
|
||
|
if skip_single:
|
||
|
continue
|
||
|
|
||
|
constraints.append((name, constraint_matrix))
|
||
|
|
||
|
combined_constraints = []
|
||
|
for cname in combine_terms:
|
||
|
combined_constraints.append((cname, np.vstack(combined[cname])))
|
||
|
|
||
|
use_t = result.use_t
|
||
|
distribution = ['chi2', 'F'][use_t]
|
||
|
|
||
|
res_wald = []
|
||
|
index = []
|
||
|
for name, constraint in constraints + combined_constraints + extra_constraints:
|
||
|
wt = result.wald_test(constraint, scalar=scalar)
|
||
|
row = [wt.statistic, wt.pvalue, constraint.shape[0]]
|
||
|
if use_t:
|
||
|
row.append(wt.df_denom)
|
||
|
res_wald.append(row)
|
||
|
index.append(name)
|
||
|
|
||
|
# distribution nerutral names
|
||
|
col_names = ['statistic', 'pvalue', 'df_constraint']
|
||
|
if use_t:
|
||
|
col_names.append('df_denom')
|
||
|
# TODO: maybe move DataFrame creation to results class
|
||
|
from pandas import DataFrame
|
||
|
table = DataFrame(res_wald, index=index, columns=col_names)
|
||
|
res = WaldTestResults(None, distribution, None, table=table)
|
||
|
# TODO: remove temp again, added for testing
|
||
|
res.temp = constraints + combined_constraints + extra_constraints
|
||
|
return res
|
||
|
|
||
|
def t_test_pairwise(self, term_name, method='hs', alpha=0.05,
|
||
|
factor_labels=None):
|
||
|
"""
|
||
|
Perform pairwise t_test with multiple testing corrected p-values.
|
||
|
|
||
|
This uses the formula design_info encoding contrast matrix and should
|
||
|
work for all encodings of a main effect.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
term_name : str
|
||
|
The name of the term for which pairwise comparisons are computed.
|
||
|
Term names for categorical effects are created by patsy and
|
||
|
correspond to the main part of the exog names.
|
||
|
method : {str, list[str]}
|
||
|
The multiple testing p-value correction to apply. The default is
|
||
|
'hs'. See stats.multipletesting.
|
||
|
alpha : float
|
||
|
The significance level for multiple testing reject decision.
|
||
|
factor_labels : {list[str], None}
|
||
|
Labels for the factor levels used for pairwise labels. If not
|
||
|
provided, then the labels from the formula design_info are used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MultiCompResult
|
||
|
The results are stored as attributes, the main attributes are the
|
||
|
following two. Other attributes are added for debugging purposes
|
||
|
or as background information.
|
||
|
|
||
|
- result_frame : pandas DataFrame with t_test results and multiple
|
||
|
testing corrected p-values.
|
||
|
- contrasts : matrix of constraints of the null hypothesis in the
|
||
|
t_test.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Status: experimental. Currently only checked for treatment coding with
|
||
|
and without specified reference level.
|
||
|
|
||
|
Currently there are no multiple testing corrected confidence intervals
|
||
|
available.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> res = ols("np.log(Days+1) ~ C(Weight) + C(Duration)", data).fit()
|
||
|
>>> pw = res.t_test_pairwise("C(Weight)")
|
||
|
>>> pw.result_frame
|
||
|
coef std err t P>|t| Conf. Int. Low
|
||
|
2-1 0.632315 0.230003 2.749157 8.028083e-03 0.171563
|
||
|
3-1 1.302555 0.230003 5.663201 5.331513e-07 0.841803
|
||
|
3-2 0.670240 0.230003 2.914044 5.119126e-03 0.209488
|
||
|
Conf. Int. Upp. pvalue-hs reject-hs
|
||
|
2-1 1.093067 0.010212 True
|
||
|
3-1 1.763307 0.000002 True
|
||
|
3-2 1.130992 0.010212 True
|
||
|
"""
|
||
|
res = t_test_pairwise(self, term_name, method=method, alpha=alpha,
|
||
|
factor_labels=factor_labels)
|
||
|
return res
|
||
|
|
||
|
def _get_wald_nonlinear(self, func, deriv=None):
|
||
|
"""Experimental method for nonlinear prediction and tests
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable, f(params)
|
||
|
nonlinear function of the estimation parameters. The return of
|
||
|
the function can be vector valued, i.e. a 1-D array
|
||
|
deriv : function or None
|
||
|
first derivative or Jacobian of func. If deriv is None, then a
|
||
|
numerical derivative will be used. If func returns a 1-D array,
|
||
|
then the `deriv` should have rows corresponding to the elements
|
||
|
of the return of func.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
nl : instance of `NonlinearDeltaCov` with attributes and methods to
|
||
|
calculate the results for the prediction or tests
|
||
|
|
||
|
"""
|
||
|
from statsmodels.stats._delta_method import NonlinearDeltaCov
|
||
|
func_args = None # TODO: not yet implemented, maybe skip - use partial
|
||
|
nl = NonlinearDeltaCov(func, self.params, self.cov_params(),
|
||
|
deriv=deriv, func_args=func_args)
|
||
|
|
||
|
return nl
|
||
|
|
||
|
def conf_int(self, alpha=.05, cols=None):
|
||
|
"""
|
||
|
Construct confidence interval for the fitted parameters.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
alpha : float, optional
|
||
|
The significance level for the confidence interval. The default
|
||
|
`alpha` = .05 returns a 95% confidence interval.
|
||
|
cols : array_like, optional
|
||
|
Specifies which confidence intervals to return.
|
||
|
|
||
|
.. deprecated: 0.13
|
||
|
|
||
|
cols is deprecated and will be removed after 0.14 is released.
|
||
|
cols only works when inputs are NumPy arrays and will fail
|
||
|
when using pandas Series or DataFrames as input. You can
|
||
|
subset the confidence intervals using slices.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
array_like
|
||
|
Each row contains [lower, upper] limits of the confidence interval
|
||
|
for the corresponding parameter. The first column contains all
|
||
|
lower, the second column contains all upper limits.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The confidence interval is based on the standard normal distribution
|
||
|
if self.use_t is False. If self.use_t is True, then uses a Student's t
|
||
|
with self.df_resid_inference (or self.df_resid if df_resid_inference is
|
||
|
not defined) degrees of freedom.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import statsmodels.api as sm
|
||
|
>>> data = sm.datasets.longley.load()
|
||
|
>>> data.exog = sm.add_constant(data.exog)
|
||
|
>>> results = sm.OLS(data.endog, data.exog).fit()
|
||
|
>>> results.conf_int()
|
||
|
array([[-5496529.48322745, -1467987.78596704],
|
||
|
[ -177.02903529, 207.15277984],
|
||
|
[ -0.1115811 , 0.03994274],
|
||
|
[ -3.12506664, -0.91539297],
|
||
|
[ -1.5179487 , -0.54850503],
|
||
|
[ -0.56251721, 0.460309 ],
|
||
|
[ 798.7875153 , 2859.51541392]])
|
||
|
|
||
|
>>> results.conf_int(cols=(2,3))
|
||
|
array([[-0.1115811 , 0.03994274],
|
||
|
[-3.12506664, -0.91539297]])
|
||
|
"""
|
||
|
bse = self.bse
|
||
|
|
||
|
if self.use_t:
|
||
|
dist = stats.t
|
||
|
df_resid = getattr(self, 'df_resid_inference', self.df_resid)
|
||
|
q = dist.ppf(1 - alpha / 2, df_resid)
|
||
|
else:
|
||
|
dist = stats.norm
|
||
|
q = dist.ppf(1 - alpha / 2)
|
||
|
|
||
|
params = self.params
|
||
|
lower = params - q * bse
|
||
|
upper = params + q * bse
|
||
|
if cols is not None:
|
||
|
warnings.warn(
|
||
|
"cols is deprecated and will be removed after 0.14 is "
|
||
|
"released. cols only works when inputs are NumPy arrays and "
|
||
|
"will fail when using pandas Series or DataFrames as input. "
|
||
|
"Subsets of confidence intervals can be selected using slices "
|
||
|
"of the full confidence interval array.",
|
||
|
FutureWarning
|
||
|
)
|
||
|
cols = np.asarray(cols)
|
||
|
lower = lower[cols]
|
||
|
upper = upper[cols]
|
||
|
return np.asarray(lzip(lower, upper))
|
||
|
|
||
|
def save(self, fname, remove_data=False):
|
||
|
"""
|
||
|
Save a pickle of this instance.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fname : {str, handle}
|
||
|
A string filename or a file handle.
|
||
|
remove_data : bool
|
||
|
If False (default), then the instance is pickled without changes.
|
||
|
If True, then all arrays with length nobs are set to None before
|
||
|
pickling. See the remove_data method.
|
||
|
In some cases not all arrays will be set to None.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If remove_data is true and the model result does not implement a
|
||
|
remove_data method then this will raise an exception.
|
||
|
"""
|
||
|
|
||
|
from statsmodels.iolib.smpickle import save_pickle
|
||
|
|
||
|
if remove_data:
|
||
|
self.remove_data()
|
||
|
|
||
|
save_pickle(self, fname)
|
||
|
|
||
|
@classmethod
|
||
|
def load(cls, fname):
|
||
|
"""
|
||
|
Load a pickled results instance
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
Loading pickled models is not secure against erroneous or
|
||
|
maliciously constructed data. Never unpickle data received from
|
||
|
an untrusted or unauthenticated source.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fname : {str, handle, pathlib.Path}
|
||
|
A string filename or a file handle.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Results
|
||
|
The unpickled results instance.
|
||
|
"""
|
||
|
|
||
|
from statsmodels.iolib.smpickle import load_pickle
|
||
|
return load_pickle(fname)
|
||
|
|
||
|
def remove_data(self):
|
||
|
"""
|
||
|
Remove data arrays, all nobs arrays from result and model.
|
||
|
|
||
|
This reduces the size of the instance, so it can be pickled with less
|
||
|
memory. Currently tested for use with predict from an unpickled
|
||
|
results and model instance.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
Since data and some intermediate results have been removed
|
||
|
calculating new statistics that require them will raise exceptions.
|
||
|
The exception will occur the first time an attribute is accessed
|
||
|
that has been set to None.
|
||
|
|
||
|
Not fully tested for time series models, tsa, and might delete too much
|
||
|
for prediction or not all that would be possible.
|
||
|
|
||
|
The lists of arrays to delete are maintained as attributes of
|
||
|
the result and model instance, except for cached values. These
|
||
|
lists could be changed before calling remove_data.
|
||
|
|
||
|
The attributes to remove are named in:
|
||
|
|
||
|
model._data_attr : arrays attached to both the model instance
|
||
|
and the results instance with the same attribute name.
|
||
|
|
||
|
result._data_in_cache : arrays that may exist as values in
|
||
|
result._cache
|
||
|
|
||
|
result._data_attr_model : arrays attached to the model
|
||
|
instance but not to the results instance
|
||
|
"""
|
||
|
cls = self.__class__
|
||
|
# Note: we cannot just use `getattr(cls, x)` or `getattr(self, x)`
|
||
|
# because of redirection involved with property-like accessors
|
||
|
cls_attrs = {}
|
||
|
for name in dir(cls):
|
||
|
try:
|
||
|
attr = object.__getattribute__(cls, name)
|
||
|
except AttributeError:
|
||
|
pass
|
||
|
else:
|
||
|
cls_attrs[name] = attr
|
||
|
data_attrs = [x for x in cls_attrs
|
||
|
if isinstance(cls_attrs[x], cached_data)]
|
||
|
for name in data_attrs:
|
||
|
self._cache[name] = None
|
||
|
|
||
|
def wipe(obj, att):
|
||
|
# get to last element in attribute path
|
||
|
p = att.split('.')
|
||
|
att_ = p.pop(-1)
|
||
|
try:
|
||
|
obj_ = reduce(getattr, [obj] + p)
|
||
|
if hasattr(obj_, att_):
|
||
|
setattr(obj_, att_, None)
|
||
|
except AttributeError:
|
||
|
pass
|
||
|
|
||
|
model_only = ['model.' + i for i in getattr(self, "_data_attr_model", [])]
|
||
|
model_attr = ['model.' + i for i in self.model._data_attr]
|
||
|
for att in self._data_attr + model_attr + model_only:
|
||
|
if att in data_attrs:
|
||
|
# these have been handled above, and trying to call wipe
|
||
|
# would raise an Exception anyway, so skip these
|
||
|
continue
|
||
|
wipe(self, att)
|
||
|
|
||
|
for key in self._data_in_cache:
|
||
|
try:
|
||
|
self._cache[key] = None
|
||
|
except (AttributeError, KeyError):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class LikelihoodResultsWrapper(wrap.ResultsWrapper):
|
||
|
_attrs = {
|
||
|
'params': 'columns',
|
||
|
'bse': 'columns',
|
||
|
'pvalues': 'columns',
|
||
|
'tvalues': 'columns',
|
||
|
'resid': 'rows',
|
||
|
'fittedvalues': 'rows',
|
||
|
'normalized_cov_params': 'cov',
|
||
|
}
|
||
|
|
||
|
_wrap_attrs = _attrs
|
||
|
_wrap_methods = {
|
||
|
'cov_params': 'cov',
|
||
|
'conf_int': 'columns'
|
||
|
}
|
||
|
|
||
|
wrap.populate_wrapper(LikelihoodResultsWrapper, # noqa:E305
|
||
|
LikelihoodModelResults)
|
||
|
|
||
|
|
||
|
class ResultMixin:
|
||
|
|
||
|
@cache_readonly
|
||
|
def df_modelwc(self):
|
||
|
"""Model WC"""
|
||
|
# collect different ways of defining the number of parameters, used for
|
||
|
# aic, bic
|
||
|
k_extra = getattr(self.model, "k_extra", 0)
|
||
|
if hasattr(self, 'df_model'):
|
||
|
if hasattr(self, 'k_constant'):
|
||
|
hasconst = self.k_constant
|
||
|
elif hasattr(self, 'hasconst'):
|
||
|
hasconst = self.hasconst
|
||
|
else:
|
||
|
# default assumption
|
||
|
hasconst = 1
|
||
|
return self.df_model + hasconst + k_extra
|
||
|
else:
|
||
|
return self.params.size
|
||
|
|
||
|
@cache_readonly
|
||
|
def aic(self):
|
||
|
"""Akaike information criterion"""
|
||
|
return -2 * self.llf + 2 * (self.df_modelwc)
|
||
|
|
||
|
@cache_readonly
|
||
|
def bic(self):
|
||
|
"""Bayesian information criterion"""
|
||
|
return -2 * self.llf + np.log(self.nobs) * (self.df_modelwc)
|
||
|
|
||
|
@cache_readonly
|
||
|
def score_obsv(self):
|
||
|
"""cached Jacobian of log-likelihood
|
||
|
"""
|
||
|
return self.model.score_obs(self.params)
|
||
|
|
||
|
@cache_readonly
|
||
|
def hessv(self):
|
||
|
"""cached Hessian of log-likelihood
|
||
|
"""
|
||
|
return self.model.hessian(self.params)
|
||
|
|
||
|
@cache_readonly
|
||
|
def covjac(self):
|
||
|
"""
|
||
|
covariance of parameters based on outer product of jacobian of
|
||
|
log-likelihood
|
||
|
"""
|
||
|
# if not hasattr(self, '_results'):
|
||
|
# raise ValueError('need to call fit first')
|
||
|
# #self.fit()
|
||
|
# self.jacv = jacv = self.jac(self._results.params)
|
||
|
jacv = self.score_obsv
|
||
|
return np.linalg.inv(np.dot(jacv.T, jacv))
|
||
|
|
||
|
@cache_readonly
|
||
|
def covjhj(self):
|
||
|
"""covariance of parameters based on HJJH
|
||
|
|
||
|
dot product of Hessian, Jacobian, Jacobian, Hessian of likelihood
|
||
|
|
||
|
name should be covhjh
|
||
|
"""
|
||
|
jacv = self.score_obsv
|
||
|
hessv = self.hessv
|
||
|
hessinv = np.linalg.inv(hessv)
|
||
|
# self.hessinv = hessin = self.cov_params()
|
||
|
return np.dot(hessinv, np.dot(np.dot(jacv.T, jacv), hessinv))
|
||
|
|
||
|
@cache_readonly
|
||
|
def bsejhj(self):
|
||
|
"""standard deviation of parameter estimates based on covHJH
|
||
|
"""
|
||
|
return np.sqrt(np.diag(self.covjhj))
|
||
|
|
||
|
@cache_readonly
|
||
|
def bsejac(self):
|
||
|
"""standard deviation of parameter estimates based on covjac
|
||
|
"""
|
||
|
return np.sqrt(np.diag(self.covjac))
|
||
|
|
||
|
def bootstrap(self, nrep=100, method='nm', disp=0, store=1):
|
||
|
"""simple bootstrap to get mean and variance of estimator
|
||
|
|
||
|
see notes
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nrep : int
|
||
|
number of bootstrap replications
|
||
|
method : str
|
||
|
optimization method to use
|
||
|
disp : bool
|
||
|
If true, then optimization prints results
|
||
|
store : bool
|
||
|
If true, then parameter estimates for all bootstrap iterations
|
||
|
are attached in self.bootstrap_results
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mean : ndarray
|
||
|
mean of parameter estimates over bootstrap replications
|
||
|
std : ndarray
|
||
|
standard deviation of parameter estimates over bootstrap
|
||
|
replications
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This was mainly written to compare estimators of the standard errors of
|
||
|
the parameter estimates. It uses independent random sampling from the
|
||
|
original endog and exog, and therefore is only correct if observations
|
||
|
are independently distributed.
|
||
|
|
||
|
This will be moved to apply only to models with independently
|
||
|
distributed observations.
|
||
|
"""
|
||
|
results = []
|
||
|
hascloneattr = True if hasattr(self.model, 'cloneattr') else False
|
||
|
for i in range(nrep):
|
||
|
rvsind = np.random.randint(self.nobs, size=self.nobs)
|
||
|
# this needs to set startparam and get other defining attributes
|
||
|
# need a clone method on model
|
||
|
if self.exog is not None:
|
||
|
exog_resamp = self.exog[rvsind, :]
|
||
|
else:
|
||
|
exog_resamp = None
|
||
|
# build auxiliary model and fit
|
||
|
init_kwds = self.model._get_init_kwds()
|
||
|
fitmod = self.model.__class__(self.endog[rvsind],
|
||
|
exog=exog_resamp, **init_kwds)
|
||
|
if hascloneattr:
|
||
|
for attr in self.model.cloneattr:
|
||
|
setattr(fitmod, attr, getattr(self.model, attr))
|
||
|
|
||
|
fitres = fitmod.fit(method=method, disp=disp)
|
||
|
results.append(fitres.params)
|
||
|
results = np.array(results)
|
||
|
if store:
|
||
|
self.bootstrap_results = results
|
||
|
return results.mean(0), results.std(0), results
|
||
|
|
||
|
def get_nlfun(self, fun):
|
||
|
"""
|
||
|
get_nlfun
|
||
|
|
||
|
This is not Implemented
|
||
|
"""
|
||
|
# I think this is supposed to get the delta method that is currently
|
||
|
# in miscmodels count (as part of Poisson example)
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
class _LLRMixin():
|
||
|
"""Mixin class for Null model and likelihood ratio
|
||
|
"""
|
||
|
# methods copied from DiscreteResults, adjusted pseudo R2
|
||
|
|
||
|
def pseudo_rsquared(self, kind="mcf"):
|
||
|
"""
|
||
|
McFadden's pseudo-R-squared. `1 - (llf / llnull)`
|
||
|
"""
|
||
|
kind = kind.lower()
|
||
|
if kind.startswith("mcf"):
|
||
|
prsq = 1 - self.llf / self.llnull
|
||
|
elif kind.startswith("cox") or kind in ["cs", "lr"]:
|
||
|
prsq = 1 - np.exp((self.llnull - self.llf) * (2 / self.nobs))
|
||
|
else:
|
||
|
raise ValueError("only McFadden and Cox-Snell are available")
|
||
|
return prsq
|
||
|
|
||
|
@cache_readonly
|
||
|
def llr(self):
|
||
|
"""
|
||
|
Likelihood ratio chi-squared statistic; `-2*(llnull - llf)`
|
||
|
"""
|
||
|
return -2*(self.llnull - self.llf)
|
||
|
|
||
|
@cache_readonly
|
||
|
def llr_pvalue(self):
|
||
|
"""
|
||
|
The chi-squared probability of getting a log-likelihood ratio
|
||
|
statistic greater than llr. llr has a chi-squared distribution
|
||
|
with degrees of freedom `df_model`.
|
||
|
"""
|
||
|
# see also RegressionModel compare_lr_test
|
||
|
llr = self.llr
|
||
|
df_full = self.df_resid
|
||
|
df_restr = self.df_resid_null
|
||
|
lrdf = (df_restr - df_full)
|
||
|
self.df_lr_null = lrdf
|
||
|
return stats.distributions.chi2.sf(llr, lrdf)
|
||
|
|
||
|
def set_null_options(self, llnull=None, attach_results=True, **kwargs):
|
||
|
"""
|
||
|
Set the fit options for the Null (constant-only) model.
|
||
|
|
||
|
This resets the cache for related attributes which is potentially
|
||
|
fragile. This only sets the option, the null model is estimated
|
||
|
when llnull is accessed, if llnull is not yet in cache.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
llnull : {None, float}
|
||
|
If llnull is not None, then the value will be directly assigned to
|
||
|
the cached attribute "llnull".
|
||
|
attach_results : bool
|
||
|
Sets an internal flag whether the results instance of the null
|
||
|
model should be attached. By default without calling this method,
|
||
|
thenull model results are not attached and only the loglikelihood
|
||
|
value llnull is stored.
|
||
|
**kwargs
|
||
|
Additional keyword arguments used as fit keyword arguments for the
|
||
|
null model. The override and model default values.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Modifies attributes of this instance, and so has no return.
|
||
|
"""
|
||
|
# reset cache, note we need to add here anything that depends on
|
||
|
# llnullor the null model. If something is missing, then the attribute
|
||
|
# might be incorrect.
|
||
|
self._cache.pop('llnull', None)
|
||
|
self._cache.pop('llr', None)
|
||
|
self._cache.pop('llr_pvalue', None)
|
||
|
self._cache.pop('prsquared', None)
|
||
|
if hasattr(self, 'res_null'):
|
||
|
del self.res_null
|
||
|
|
||
|
if llnull is not None:
|
||
|
self._cache['llnull'] = llnull
|
||
|
self._attach_nullmodel = attach_results
|
||
|
self._optim_kwds_null = kwargs
|
||
|
|
||
|
@cache_readonly
|
||
|
def llnull(self):
|
||
|
"""
|
||
|
Value of the constant-only loglikelihood
|
||
|
"""
|
||
|
model = self.model
|
||
|
kwds = model._get_init_kwds().copy()
|
||
|
for key in getattr(model, '_null_drop_keys', []):
|
||
|
del kwds[key]
|
||
|
# TODO: what parameters to pass to fit?
|
||
|
mod_null = model.__class__(model.endog, np.ones(self.nobs), **kwds)
|
||
|
# TODO: consider catching and warning on convergence failure?
|
||
|
# in the meantime, try hard to converge. see
|
||
|
# TestPoissonConstrained1a.test_smoke
|
||
|
|
||
|
optim_kwds = getattr(self, '_optim_kwds_null', {}).copy()
|
||
|
|
||
|
if 'start_params' in optim_kwds:
|
||
|
# user provided
|
||
|
sp_null = optim_kwds.pop('start_params')
|
||
|
elif hasattr(model, '_get_start_params_null'):
|
||
|
# get moment estimates if available
|
||
|
sp_null = model._get_start_params_null()
|
||
|
else:
|
||
|
sp_null = None
|
||
|
|
||
|
opt_kwds = dict(method='bfgs', warn_convergence=False, maxiter=10000,
|
||
|
disp=0)
|
||
|
opt_kwds.update(optim_kwds)
|
||
|
|
||
|
if optim_kwds:
|
||
|
res_null = mod_null.fit(start_params=sp_null, **opt_kwds)
|
||
|
else:
|
||
|
# this should be a reasonably method case across versions
|
||
|
res_null = mod_null.fit(start_params=sp_null, method='nm',
|
||
|
warn_convergence=False,
|
||
|
maxiter=10000, disp=0)
|
||
|
res_null = mod_null.fit(start_params=res_null.params, method='bfgs',
|
||
|
warn_convergence=False,
|
||
|
maxiter=10000, disp=0)
|
||
|
|
||
|
if getattr(self, '_attach_nullmodel', False) is not False:
|
||
|
self.res_null = res_null
|
||
|
|
||
|
self.k_null = len(res_null.params)
|
||
|
self.df_resid_null = res_null.df_resid
|
||
|
return res_null.llf
|
||
|
|
||
|
|
||
|
class GenericLikelihoodModelResults(LikelihoodModelResults, ResultMixin):
|
||
|
"""
|
||
|
A results class for the discrete dependent variable models.
|
||
|
|
||
|
..Warning :
|
||
|
|
||
|
The following description has not been updated to this version/class.
|
||
|
Where are AIC, BIC, ....? docstring looks like copy from discretemod
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
model : A DiscreteModel instance
|
||
|
mlefit : instance of LikelihoodResults
|
||
|
This contains the numerical optimization results as returned by
|
||
|
LikelihoodModel.fit(), in a superclass of GnericLikelihoodModels
|
||
|
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
aic : float
|
||
|
Akaike information criterion. -2*(`llf` - p) where p is the number
|
||
|
of regressors including the intercept.
|
||
|
bic : float
|
||
|
Bayesian information criterion. -2*`llf` + ln(`nobs`)*p where p is the
|
||
|
number of regressors including the intercept.
|
||
|
bse : ndarray
|
||
|
The standard errors of the coefficients.
|
||
|
df_resid : float
|
||
|
See model definition.
|
||
|
df_model : float
|
||
|
See model definition.
|
||
|
fitted_values : ndarray
|
||
|
Linear predictor XB.
|
||
|
llf : float
|
||
|
Value of the loglikelihood
|
||
|
llnull : float
|
||
|
Value of the constant-only loglikelihood
|
||
|
llr : float
|
||
|
Likelihood ratio chi-squared statistic; -2*(`llnull` - `llf`)
|
||
|
llr_pvalue : float
|
||
|
The chi-squared probability of getting a log-likelihood ratio
|
||
|
statistic greater than llr. llr has a chi-squared distribution
|
||
|
with degrees of freedom `df_model`.
|
||
|
prsquared : float
|
||
|
McFadden's pseudo-R-squared. 1 - (`llf`/`llnull`)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, model, mlefit):
|
||
|
self.model = model
|
||
|
self.endog = model.endog
|
||
|
self.exog = model.exog
|
||
|
self.nobs = model.endog.shape[0]
|
||
|
|
||
|
# TODO: possibly move to model.fit()
|
||
|
# and outsource together with patching names
|
||
|
k_extra = getattr(self.model, "k_extra", 0)
|
||
|
if hasattr(model, 'df_model') and not np.isnan(model.df_model):
|
||
|
self.df_model = model.df_model
|
||
|
else:
|
||
|
df_model = len(mlefit.params) - self.model.k_constant - k_extra
|
||
|
self.df_model = df_model
|
||
|
# retrofitting the model, used in t_test TODO: check design
|
||
|
self.model.df_model = df_model
|
||
|
|
||
|
if hasattr(model, 'df_resid') and not np.isnan(model.df_resid):
|
||
|
self.df_resid = model.df_resid
|
||
|
else:
|
||
|
self.df_resid = self.endog.shape[0] - self.df_model - k_extra
|
||
|
# retrofitting the model, used in t_test TODO: check design
|
||
|
self.model.df_resid = self.df_resid
|
||
|
|
||
|
self._cache = {}
|
||
|
self.__dict__.update(mlefit.__dict__)
|
||
|
|
||
|
k_params = len(mlefit.params)
|
||
|
# checks mainly for adding new models or subclassing
|
||
|
|
||
|
if self.df_model + self.model.k_constant + k_extra != k_params:
|
||
|
warnings.warn("df_model + k_constant + k_extra "
|
||
|
"differs from k_params", UserWarning)
|
||
|
|
||
|
if self.df_resid != self.nobs - k_params:
|
||
|
warnings.warn("df_resid differs from nobs - k_params")
|
||
|
|
||
|
def get_prediction(
|
||
|
self,
|
||
|
exog=None,
|
||
|
which="mean",
|
||
|
transform=True,
|
||
|
row_labels=None,
|
||
|
average=False,
|
||
|
agg_weights=None,
|
||
|
**kwargs
|
||
|
):
|
||
|
"""
|
||
|
Compute prediction results when endpoint transformation is valid.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
exog : array_like, optional
|
||
|
The values for which you want to predict.
|
||
|
transform : bool, optional
|
||
|
If the model was fit via a formula, do you want to pass
|
||
|
exog through the formula. Default is True. E.g., if you fit
|
||
|
a model y ~ log(x1) + log(x2), and transform is True, then
|
||
|
you can pass a data structure that contains x1 and x2 in
|
||
|
their original form. Otherwise, you'd need to log the data
|
||
|
first.
|
||
|
which : str
|
||
|
Which statistic is to be predicted. Default is "mean".
|
||
|
The available statistics and options depend on the model.
|
||
|
see the model.predict docstring
|
||
|
row_labels : list of str or None
|
||
|
If row_lables are provided, then they will replace the generated
|
||
|
labels.
|
||
|
average : bool
|
||
|
If average is True, then the mean prediction is computed, that is,
|
||
|
predictions are computed for individual exog and then the average
|
||
|
over observation is used.
|
||
|
If average is False, then the results are the predictions for all
|
||
|
observations, i.e. same length as ``exog``.
|
||
|
agg_weights : ndarray, optional
|
||
|
Aggregation weights, only used if average is True.
|
||
|
The weights are not normalized.
|
||
|
**kwargs :
|
||
|
Some models can take additional keyword arguments, such as offset,
|
||
|
exposure or additional exog in multi-part models like zero inflated
|
||
|
models.
|
||
|
See the predict method of the model for the details.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
prediction_results : PredictionResults
|
||
|
The prediction results instance contains prediction and prediction
|
||
|
variance and can on demand calculate confidence intervals and
|
||
|
summary dataframe for the prediction.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Status: new in 0.14, experimental
|
||
|
"""
|
||
|
from statsmodels.base._prediction_inference import get_prediction
|
||
|
|
||
|
pred_kwds = kwargs
|
||
|
|
||
|
res = get_prediction(
|
||
|
self,
|
||
|
exog=exog,
|
||
|
which=which,
|
||
|
transform=transform,
|
||
|
row_labels=row_labels,
|
||
|
average=average,
|
||
|
agg_weights=agg_weights,
|
||
|
pred_kwds=pred_kwds
|
||
|
)
|
||
|
return res
|
||
|
|
||
|
def summary(self, yname=None, xname=None, title=None, alpha=.05):
|
||
|
"""Summarize the Regression Results
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
yname : str, optional
|
||
|
Default is `y`
|
||
|
xname : list[str], optional
|
||
|
Names for the exogenous variables, default is "var_xx".
|
||
|
Must match the number of parameters in the model
|
||
|
title : str, optional
|
||
|
Title for the top table. If not None, then this replaces the
|
||
|
default title
|
||
|
alpha : float
|
||
|
significance level for the confidence intervals
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
smry : Summary instance
|
||
|
this holds the summary tables and text, which can be printed or
|
||
|
converted to various output formats.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.iolib.summary.Summary : class to hold summary results
|
||
|
"""
|
||
|
|
||
|
top_left = [('Dep. Variable:', None),
|
||
|
('Model:', None),
|
||
|
('Method:', ['Maximum Likelihood']),
|
||
|
('Date:', None),
|
||
|
('Time:', None),
|
||
|
('No. Observations:', None),
|
||
|
('Df Residuals:', None),
|
||
|
('Df Model:', None),
|
||
|
]
|
||
|
|
||
|
top_right = [('Log-Likelihood:', None),
|
||
|
('AIC:', ["%#8.4g" % self.aic]),
|
||
|
('BIC:', ["%#8.4g" % self.bic])
|
||
|
]
|
||
|
|
||
|
if title is None:
|
||
|
title = self.model.__class__.__name__ + ' ' + "Results"
|
||
|
|
||
|
# create summary table instance
|
||
|
from statsmodels.iolib.summary import Summary
|
||
|
smry = Summary()
|
||
|
smry.add_table_2cols(self, gleft=top_left, gright=top_right,
|
||
|
yname=yname, xname=xname, title=title)
|
||
|
smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha,
|
||
|
use_t=self.use_t)
|
||
|
|
||
|
return smry
|