AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/pandas/tests/apply/test_numba.py

119 lines
3.7 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Index,
)
import pandas._testing as tm
pytestmark = [td.skip_if_no("numba"), pytest.mark.single_cpu]
@pytest.fixture(params=[0, 1])
def apply_axis(request):
return request.param
def test_numba_vs_python_noop(float_frame, apply_axis):
func = lambda x: x
result = float_frame.apply(func, engine="numba", axis=apply_axis)
expected = float_frame.apply(func, engine="python", axis=apply_axis)
tm.assert_frame_equal(result, expected)
def test_numba_vs_python_string_index():
# GH#56189
pytest.importorskip("pyarrow")
df = DataFrame(
1,
index=Index(["a", "b"], dtype="string[pyarrow_numpy]"),
columns=Index(["x", "y"], dtype="string[pyarrow_numpy]"),
)
func = lambda x: x
result = df.apply(func, engine="numba", axis=0)
expected = df.apply(func, engine="python", axis=0)
tm.assert_frame_equal(
result, expected, check_column_type=False, check_index_type=False
)
def test_numba_vs_python_indexing():
frame = DataFrame(
{"a": [1, 2, 3], "b": [4, 5, 6], "c": [7.0, 8.0, 9.0]},
index=Index(["A", "B", "C"]),
)
row_func = lambda x: x["c"]
result = frame.apply(row_func, engine="numba", axis=1)
expected = frame.apply(row_func, engine="python", axis=1)
tm.assert_series_equal(result, expected)
col_func = lambda x: x["A"]
result = frame.apply(col_func, engine="numba", axis=0)
expected = frame.apply(col_func, engine="python", axis=0)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"reduction",
[lambda x: x.mean(), lambda x: x.min(), lambda x: x.max(), lambda x: x.sum()],
)
def test_numba_vs_python_reductions(reduction, apply_axis):
df = DataFrame(np.ones((4, 4), dtype=np.float64))
result = df.apply(reduction, engine="numba", axis=apply_axis)
expected = df.apply(reduction, engine="python", axis=apply_axis)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("colnames", [[1, 2, 3], [1.0, 2.0, 3.0]])
def test_numba_numeric_colnames(colnames):
# Check that numeric column names lower properly and can be indxed on
df = DataFrame(
np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int64), columns=colnames
)
first_col = colnames[0]
f = lambda x: x[first_col] # Get the first column
result = df.apply(f, engine="numba", axis=1)
expected = df.apply(f, engine="python", axis=1)
tm.assert_series_equal(result, expected)
def test_numba_parallel_unsupported(float_frame):
f = lambda x: x
with pytest.raises(
NotImplementedError,
match="Parallel apply is not supported when raw=False and engine='numba'",
):
float_frame.apply(f, engine="numba", engine_kwargs={"parallel": True})
def test_numba_nonunique_unsupported(apply_axis):
f = lambda x: x
df = DataFrame({"a": [1, 2]}, index=Index(["a", "a"]))
with pytest.raises(
NotImplementedError,
match="The index/columns must be unique when raw=False and engine='numba'",
):
df.apply(f, engine="numba", axis=apply_axis)
def test_numba_unsupported_dtypes(apply_axis):
f = lambda x: x
df = DataFrame({"a": [1, 2], "b": ["a", "b"], "c": [4, 5]})
df["c"] = df["c"].astype("double[pyarrow]")
with pytest.raises(
ValueError,
match="Column b must have a numeric dtype. Found 'object|string' instead",
):
df.apply(f, engine="numba", axis=apply_axis)
with pytest.raises(
ValueError,
match="Column c is backed by an extension array, "
"which is not supported by the numba engine.",
):
df["c"].to_frame().apply(f, engine="numba", axis=apply_axis)