1076 lines
39 KiB
Python
1076 lines
39 KiB
Python
|
"""
|
|||
|
Tests specific to `np.loadtxt` added during the move of loadtxt to be backed
|
|||
|
by C code.
|
|||
|
These tests complement those found in `test_io.py`.
|
|||
|
"""
|
|||
|
|
|||
|
import sys
|
|||
|
import os
|
|||
|
import pytest
|
|||
|
from tempfile import NamedTemporaryFile, mkstemp
|
|||
|
from io import StringIO
|
|||
|
|
|||
|
import numpy as np
|
|||
|
from numpy.ma.testutils import assert_equal
|
|||
|
from numpy.testing import assert_array_equal, HAS_REFCOUNT, IS_PYPY
|
|||
|
|
|||
|
|
|||
|
def test_scientific_notation():
|
|||
|
"""Test that both 'e' and 'E' are parsed correctly."""
|
|||
|
data = StringIO(
|
|||
|
|
|||
|
"1.0e-1,2.0E1,3.0\n"
|
|||
|
"4.0e-2,5.0E-1,6.0\n"
|
|||
|
"7.0e-3,8.0E1,9.0\n"
|
|||
|
"0.0e-4,1.0E-1,2.0"
|
|||
|
|
|||
|
)
|
|||
|
expected = np.array(
|
|||
|
[[0.1, 20., 3.0], [0.04, 0.5, 6], [0.007, 80., 9], [0, 0.1, 2]]
|
|||
|
)
|
|||
|
assert_array_equal(np.loadtxt(data, delimiter=","), expected)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("comment", ["..", "//", "@-", "this is a comment:"])
|
|||
|
def test_comment_multiple_chars(comment):
|
|||
|
content = "# IGNORE\n1.5, 2.5# ABC\n3.0,4.0# XXX\n5.5,6.0\n"
|
|||
|
txt = StringIO(content.replace("#", comment))
|
|||
|
a = np.loadtxt(txt, delimiter=",", comments=comment)
|
|||
|
assert_equal(a, [[1.5, 2.5], [3.0, 4.0], [5.5, 6.0]])
|
|||
|
|
|||
|
|
|||
|
@pytest.fixture
|
|||
|
def mixed_types_structured():
|
|||
|
"""
|
|||
|
Fixture providing hetergeneous input data with a structured dtype, along
|
|||
|
with the associated structured array.
|
|||
|
"""
|
|||
|
data = StringIO(
|
|||
|
|
|||
|
"1000;2.4;alpha;-34\n"
|
|||
|
"2000;3.1;beta;29\n"
|
|||
|
"3500;9.9;gamma;120\n"
|
|||
|
"4090;8.1;delta;0\n"
|
|||
|
"5001;4.4;epsilon;-99\n"
|
|||
|
"6543;7.8;omega;-1\n"
|
|||
|
|
|||
|
)
|
|||
|
dtype = np.dtype(
|
|||
|
[('f0', np.uint16), ('f1', np.float64), ('f2', 'S7'), ('f3', np.int8)]
|
|||
|
)
|
|||
|
expected = np.array(
|
|||
|
[
|
|||
|
(1000, 2.4, "alpha", -34),
|
|||
|
(2000, 3.1, "beta", 29),
|
|||
|
(3500, 9.9, "gamma", 120),
|
|||
|
(4090, 8.1, "delta", 0),
|
|||
|
(5001, 4.4, "epsilon", -99),
|
|||
|
(6543, 7.8, "omega", -1)
|
|||
|
],
|
|||
|
dtype=dtype
|
|||
|
)
|
|||
|
return data, dtype, expected
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize('skiprows', [0, 1, 2, 3])
|
|||
|
def test_structured_dtype_and_skiprows_no_empty_lines(
|
|||
|
skiprows, mixed_types_structured):
|
|||
|
data, dtype, expected = mixed_types_structured
|
|||
|
a = np.loadtxt(data, dtype=dtype, delimiter=";", skiprows=skiprows)
|
|||
|
assert_array_equal(a, expected[skiprows:])
|
|||
|
|
|||
|
|
|||
|
def test_unpack_structured(mixed_types_structured):
|
|||
|
data, dtype, expected = mixed_types_structured
|
|||
|
|
|||
|
a, b, c, d = np.loadtxt(data, dtype=dtype, delimiter=";", unpack=True)
|
|||
|
assert_array_equal(a, expected["f0"])
|
|||
|
assert_array_equal(b, expected["f1"])
|
|||
|
assert_array_equal(c, expected["f2"])
|
|||
|
assert_array_equal(d, expected["f3"])
|
|||
|
|
|||
|
|
|||
|
def test_structured_dtype_with_shape():
|
|||
|
dtype = np.dtype([("a", "u1", 2), ("b", "u1", 2)])
|
|||
|
data = StringIO("0,1,2,3\n6,7,8,9\n")
|
|||
|
expected = np.array([((0, 1), (2, 3)), ((6, 7), (8, 9))], dtype=dtype)
|
|||
|
assert_array_equal(np.loadtxt(data, delimiter=",", dtype=dtype), expected)
|
|||
|
|
|||
|
|
|||
|
def test_structured_dtype_with_multi_shape():
|
|||
|
dtype = np.dtype([("a", "u1", (2, 2))])
|
|||
|
data = StringIO("0 1 2 3\n")
|
|||
|
expected = np.array([(((0, 1), (2, 3)),)], dtype=dtype)
|
|||
|
assert_array_equal(np.loadtxt(data, dtype=dtype), expected)
|
|||
|
|
|||
|
|
|||
|
def test_nested_structured_subarray():
|
|||
|
# Test from gh-16678
|
|||
|
point = np.dtype([('x', float), ('y', float)])
|
|||
|
dt = np.dtype([('code', int), ('points', point, (2,))])
|
|||
|
data = StringIO("100,1,2,3,4\n200,5,6,7,8\n")
|
|||
|
expected = np.array(
|
|||
|
[
|
|||
|
(100, [(1., 2.), (3., 4.)]),
|
|||
|
(200, [(5., 6.), (7., 8.)]),
|
|||
|
],
|
|||
|
dtype=dt
|
|||
|
)
|
|||
|
assert_array_equal(np.loadtxt(data, dtype=dt, delimiter=","), expected)
|
|||
|
|
|||
|
|
|||
|
def test_structured_dtype_offsets():
|
|||
|
# An aligned structured dtype will have additional padding
|
|||
|
dt = np.dtype("i1, i4, i1, i4, i1, i4", align=True)
|
|||
|
data = StringIO("1,2,3,4,5,6\n7,8,9,10,11,12\n")
|
|||
|
expected = np.array([(1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12)], dtype=dt)
|
|||
|
assert_array_equal(np.loadtxt(data, delimiter=",", dtype=dt), expected)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("param", ("skiprows", "max_rows"))
|
|||
|
def test_exception_negative_row_limits(param):
|
|||
|
"""skiprows and max_rows should raise for negative parameters."""
|
|||
|
with pytest.raises(ValueError, match="argument must be nonnegative"):
|
|||
|
np.loadtxt("foo.bar", **{param: -3})
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("param", ("skiprows", "max_rows"))
|
|||
|
def test_exception_noninteger_row_limits(param):
|
|||
|
with pytest.raises(TypeError, match="argument must be an integer"):
|
|||
|
np.loadtxt("foo.bar", **{param: 1.0})
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize(
|
|||
|
"data, shape",
|
|||
|
[
|
|||
|
("1 2 3 4 5\n", (1, 5)), # Single row
|
|||
|
("1\n2\n3\n4\n5\n", (5, 1)), # Single column
|
|||
|
]
|
|||
|
)
|
|||
|
def test_ndmin_single_row_or_col(data, shape):
|
|||
|
arr = np.array([1, 2, 3, 4, 5])
|
|||
|
arr2d = arr.reshape(shape)
|
|||
|
|
|||
|
assert_array_equal(np.loadtxt(StringIO(data), dtype=int), arr)
|
|||
|
assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=0), arr)
|
|||
|
assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=1), arr)
|
|||
|
assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=2), arr2d)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("badval", [-1, 3, None, "plate of shrimp"])
|
|||
|
def test_bad_ndmin(badval):
|
|||
|
with pytest.raises(ValueError, match="Illegal value of ndmin keyword"):
|
|||
|
np.loadtxt("foo.bar", ndmin=badval)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize(
|
|||
|
"ws",
|
|||
|
(
|
|||
|
" ", # space
|
|||
|
"\t", # tab
|
|||
|
"\u2003", # em
|
|||
|
"\u00A0", # non-break
|
|||
|
"\u3000", # ideographic space
|
|||
|
)
|
|||
|
)
|
|||
|
def test_blank_lines_spaces_delimit(ws):
|
|||
|
txt = StringIO(
|
|||
|
f"1 2{ws}30\n\n{ws}\n"
|
|||
|
f"4 5 60{ws}\n {ws} \n"
|
|||
|
f"7 8 {ws} 90\n # comment\n"
|
|||
|
f"3 2 1"
|
|||
|
)
|
|||
|
# NOTE: It is unclear that the ` # comment` should succeed. Except
|
|||
|
# for delimiter=None, which should use any whitespace (and maybe
|
|||
|
# should just be implemented closer to Python
|
|||
|
expected = np.array([[1, 2, 30], [4, 5, 60], [7, 8, 90], [3, 2, 1]])
|
|||
|
assert_equal(
|
|||
|
np.loadtxt(txt, dtype=int, delimiter=None, comments="#"), expected
|
|||
|
)
|
|||
|
|
|||
|
|
|||
|
def test_blank_lines_normal_delimiter():
|
|||
|
txt = StringIO('1,2,30\n\n4,5,60\n\n7,8,90\n# comment\n3,2,1')
|
|||
|
expected = np.array([[1, 2, 30], [4, 5, 60], [7, 8, 90], [3, 2, 1]])
|
|||
|
assert_equal(
|
|||
|
np.loadtxt(txt, dtype=int, delimiter=',', comments="#"), expected
|
|||
|
)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("dtype", (float, object))
|
|||
|
def test_maxrows_no_blank_lines(dtype):
|
|||
|
txt = StringIO("1.5,2.5\n3.0,4.0\n5.5,6.0")
|
|||
|
res = np.loadtxt(txt, dtype=dtype, delimiter=",", max_rows=2)
|
|||
|
assert_equal(res.dtype, dtype)
|
|||
|
assert_equal(res, np.array([["1.5", "2.5"], ["3.0", "4.0"]], dtype=dtype))
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
|
|||
|
reason="PyPy bug in error formatting")
|
|||
|
@pytest.mark.parametrize("dtype", (np.dtype("f8"), np.dtype("i2")))
|
|||
|
def test_exception_message_bad_values(dtype):
|
|||
|
txt = StringIO("1,2\n3,XXX\n5,6")
|
|||
|
msg = f"could not convert string 'XXX' to {dtype} at row 1, column 2"
|
|||
|
with pytest.raises(ValueError, match=msg):
|
|||
|
np.loadtxt(txt, dtype=dtype, delimiter=",")
|
|||
|
|
|||
|
|
|||
|
def test_converters_negative_indices():
|
|||
|
txt = StringIO('1.5,2.5\n3.0,XXX\n5.5,6.0')
|
|||
|
conv = {-1: lambda s: np.nan if s == 'XXX' else float(s)}
|
|||
|
expected = np.array([[1.5, 2.5], [3.0, np.nan], [5.5, 6.0]])
|
|||
|
res = np.loadtxt(txt, dtype=np.float64, delimiter=",", converters=conv)
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
def test_converters_negative_indices_with_usecols():
|
|||
|
txt = StringIO('1.5,2.5,3.5\n3.0,4.0,XXX\n5.5,6.0,7.5\n')
|
|||
|
conv = {-1: lambda s: np.nan if s == 'XXX' else float(s)}
|
|||
|
expected = np.array([[1.5, 3.5], [3.0, np.nan], [5.5, 7.5]])
|
|||
|
res = np.loadtxt(
|
|||
|
txt,
|
|||
|
dtype=np.float64,
|
|||
|
delimiter=",",
|
|||
|
converters=conv,
|
|||
|
usecols=[0, -1],
|
|||
|
)
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
# Second test with variable number of rows:
|
|||
|
res = np.loadtxt(StringIO('''0,1,2\n0,1,2,3,4'''), delimiter=",",
|
|||
|
usecols=[0, -1], converters={-1: (lambda x: -1)})
|
|||
|
assert_array_equal(res, [[0, -1], [0, -1]])
|
|||
|
|
|||
|
|
|||
|
def test_ragged_error():
|
|||
|
rows = ["1,2,3", "1,2,3", "4,3,2,1"]
|
|||
|
with pytest.raises(ValueError,
|
|||
|
match="the number of columns changed from 3 to 4 at row 3"):
|
|||
|
np.loadtxt(rows, delimiter=",")
|
|||
|
|
|||
|
|
|||
|
def test_ragged_usecols():
|
|||
|
# usecols, and negative ones, work even with varying number of columns.
|
|||
|
txt = StringIO("0,0,XXX\n0,XXX,0,XXX\n0,XXX,XXX,0,XXX\n")
|
|||
|
expected = np.array([[0, 0], [0, 0], [0, 0]])
|
|||
|
res = np.loadtxt(txt, dtype=float, delimiter=",", usecols=[0, -2])
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
txt = StringIO("0,0,XXX\n0\n0,XXX,XXX,0,XXX\n")
|
|||
|
with pytest.raises(ValueError,
|
|||
|
match="invalid column index -2 at row 2 with 1 columns"):
|
|||
|
# There is no -2 column in the second row:
|
|||
|
np.loadtxt(txt, dtype=float, delimiter=",", usecols=[0, -2])
|
|||
|
|
|||
|
|
|||
|
def test_empty_usecols():
|
|||
|
txt = StringIO("0,0,XXX\n0,XXX,0,XXX\n0,XXX,XXX,0,XXX\n")
|
|||
|
res = np.loadtxt(txt, dtype=np.dtype([]), delimiter=",", usecols=[])
|
|||
|
assert res.shape == (3,)
|
|||
|
assert res.dtype == np.dtype([])
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("c1", ["a", "の", "🫕"])
|
|||
|
@pytest.mark.parametrize("c2", ["a", "の", "🫕"])
|
|||
|
def test_large_unicode_characters(c1, c2):
|
|||
|
# c1 and c2 span ascii, 16bit and 32bit range.
|
|||
|
txt = StringIO(f"a,{c1},c,1.0\ne,{c2},2.0,g")
|
|||
|
res = np.loadtxt(txt, dtype=np.dtype('U12'), delimiter=",")
|
|||
|
expected = np.array(
|
|||
|
[f"a,{c1},c,1.0".split(","), f"e,{c2},2.0,g".split(",")],
|
|||
|
dtype=np.dtype('U12')
|
|||
|
)
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
def test_unicode_with_converter():
|
|||
|
txt = StringIO("cat,dog\nαβγ,δεζ\nabc,def\n")
|
|||
|
conv = {0: lambda s: s.upper()}
|
|||
|
res = np.loadtxt(
|
|||
|
txt,
|
|||
|
dtype=np.dtype("U12"),
|
|||
|
converters=conv,
|
|||
|
delimiter=",",
|
|||
|
encoding=None
|
|||
|
)
|
|||
|
expected = np.array([['CAT', 'dog'], ['ΑΒΓ', 'δεζ'], ['ABC', 'def']])
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
def test_converter_with_structured_dtype():
|
|||
|
txt = StringIO('1.5,2.5,Abc\n3.0,4.0,dEf\n5.5,6.0,ghI\n')
|
|||
|
dt = np.dtype([('m', np.int32), ('r', np.float32), ('code', 'U8')])
|
|||
|
conv = {0: lambda s: int(10*float(s)), -1: lambda s: s.upper()}
|
|||
|
res = np.loadtxt(txt, dtype=dt, delimiter=",", converters=conv)
|
|||
|
expected = np.array(
|
|||
|
[(15, 2.5, 'ABC'), (30, 4.0, 'DEF'), (55, 6.0, 'GHI')], dtype=dt
|
|||
|
)
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
def test_converter_with_unicode_dtype():
|
|||
|
"""
|
|||
|
With the 'bytes' encoding, tokens are encoded prior to being
|
|||
|
passed to the converter. This means that the output of the converter may
|
|||
|
be bytes instead of unicode as expected by `read_rows`.
|
|||
|
|
|||
|
This test checks that outputs from the above scenario are properly decoded
|
|||
|
prior to parsing by `read_rows`.
|
|||
|
"""
|
|||
|
txt = StringIO('abc,def\nrst,xyz')
|
|||
|
conv = bytes.upper
|
|||
|
res = np.loadtxt(
|
|||
|
txt, dtype=np.dtype("U3"), converters=conv, delimiter=",",
|
|||
|
encoding="bytes")
|
|||
|
expected = np.array([['ABC', 'DEF'], ['RST', 'XYZ']])
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
def test_read_huge_row():
|
|||
|
row = "1.5, 2.5," * 50000
|
|||
|
row = row[:-1] + "\n"
|
|||
|
txt = StringIO(row * 2)
|
|||
|
res = np.loadtxt(txt, delimiter=",", dtype=float)
|
|||
|
assert_equal(res, np.tile([1.5, 2.5], (2, 50000)))
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("dtype", "edfgFDG")
|
|||
|
def test_huge_float(dtype):
|
|||
|
# Covers a non-optimized path that is rarely taken:
|
|||
|
field = "0" * 1000 + ".123456789"
|
|||
|
dtype = np.dtype(dtype)
|
|||
|
value = np.loadtxt([field], dtype=dtype)[()]
|
|||
|
assert value == dtype.type("0.123456789")
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize(
|
|||
|
("given_dtype", "expected_dtype"),
|
|||
|
[
|
|||
|
("S", np.dtype("S5")),
|
|||
|
("U", np.dtype("U5")),
|
|||
|
],
|
|||
|
)
|
|||
|
def test_string_no_length_given(given_dtype, expected_dtype):
|
|||
|
"""
|
|||
|
The given dtype is just 'S' or 'U' with no length. In these cases, the
|
|||
|
length of the resulting dtype is determined by the longest string found
|
|||
|
in the file.
|
|||
|
"""
|
|||
|
txt = StringIO("AAA,5-1\nBBBBB,0-3\nC,4-9\n")
|
|||
|
res = np.loadtxt(txt, dtype=given_dtype, delimiter=",")
|
|||
|
expected = np.array(
|
|||
|
[['AAA', '5-1'], ['BBBBB', '0-3'], ['C', '4-9']], dtype=expected_dtype
|
|||
|
)
|
|||
|
assert_equal(res, expected)
|
|||
|
assert_equal(res.dtype, expected_dtype)
|
|||
|
|
|||
|
|
|||
|
def test_float_conversion():
|
|||
|
"""
|
|||
|
Some tests that the conversion to float64 works as accurately as the
|
|||
|
Python built-in `float` function. In a naive version of the float parser,
|
|||
|
these strings resulted in values that were off by an ULP or two.
|
|||
|
"""
|
|||
|
strings = [
|
|||
|
'0.9999999999999999',
|
|||
|
'9876543210.123456',
|
|||
|
'5.43215432154321e+300',
|
|||
|
'0.901',
|
|||
|
'0.333',
|
|||
|
]
|
|||
|
txt = StringIO('\n'.join(strings))
|
|||
|
res = np.loadtxt(txt)
|
|||
|
expected = np.array([float(s) for s in strings])
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
def test_bool():
|
|||
|
# Simple test for bool via integer
|
|||
|
txt = StringIO("1, 0\n10, -1")
|
|||
|
res = np.loadtxt(txt, dtype=bool, delimiter=",")
|
|||
|
assert res.dtype == bool
|
|||
|
assert_array_equal(res, [[True, False], [True, True]])
|
|||
|
# Make sure we use only 1 and 0 on the byte level:
|
|||
|
assert_array_equal(res.view(np.uint8), [[1, 0], [1, 1]])
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
|
|||
|
reason="PyPy bug in error formatting")
|
|||
|
@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
|
|||
|
@pytest.mark.filterwarnings("error:.*integer via a float.*:DeprecationWarning")
|
|||
|
def test_integer_signs(dtype):
|
|||
|
dtype = np.dtype(dtype)
|
|||
|
assert np.loadtxt(["+2"], dtype=dtype) == 2
|
|||
|
if dtype.kind == "u":
|
|||
|
with pytest.raises(ValueError):
|
|||
|
np.loadtxt(["-1\n"], dtype=dtype)
|
|||
|
else:
|
|||
|
assert np.loadtxt(["-2\n"], dtype=dtype) == -2
|
|||
|
|
|||
|
for sign in ["++", "+-", "--", "-+"]:
|
|||
|
with pytest.raises(ValueError):
|
|||
|
np.loadtxt([f"{sign}2\n"], dtype=dtype)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
|
|||
|
reason="PyPy bug in error formatting")
|
|||
|
@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
|
|||
|
@pytest.mark.filterwarnings("error:.*integer via a float.*:DeprecationWarning")
|
|||
|
def test_implicit_cast_float_to_int_fails(dtype):
|
|||
|
txt = StringIO("1.0, 2.1, 3.7\n4, 5, 6")
|
|||
|
with pytest.raises(ValueError):
|
|||
|
np.loadtxt(txt, dtype=dtype, delimiter=",")
|
|||
|
|
|||
|
@pytest.mark.parametrize("dtype", (np.complex64, np.complex128))
|
|||
|
@pytest.mark.parametrize("with_parens", (False, True))
|
|||
|
def test_complex_parsing(dtype, with_parens):
|
|||
|
s = "(1.0-2.5j),3.75,(7+-5.0j)\n(4),(-19e2j),(0)"
|
|||
|
if not with_parens:
|
|||
|
s = s.replace("(", "").replace(")", "")
|
|||
|
|
|||
|
res = np.loadtxt(StringIO(s), dtype=dtype, delimiter=",")
|
|||
|
expected = np.array(
|
|||
|
[[1.0-2.5j, 3.75, 7-5j], [4.0, -1900j, 0]], dtype=dtype
|
|||
|
)
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
def test_read_from_generator():
|
|||
|
def gen():
|
|||
|
for i in range(4):
|
|||
|
yield f"{i},{2*i},{i**2}"
|
|||
|
|
|||
|
res = np.loadtxt(gen(), dtype=int, delimiter=",")
|
|||
|
expected = np.array([[0, 0, 0], [1, 2, 1], [2, 4, 4], [3, 6, 9]])
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
def test_read_from_generator_multitype():
|
|||
|
def gen():
|
|||
|
for i in range(3):
|
|||
|
yield f"{i} {i / 4}"
|
|||
|
|
|||
|
res = np.loadtxt(gen(), dtype="i, d", delimiter=" ")
|
|||
|
expected = np.array([(0, 0.0), (1, 0.25), (2, 0.5)], dtype="i, d")
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
def test_read_from_bad_generator():
|
|||
|
def gen():
|
|||
|
yield from ["1,2", b"3, 5", 12738]
|
|||
|
|
|||
|
with pytest.raises(
|
|||
|
TypeError, match=r"non-string returned while reading data"):
|
|||
|
np.loadtxt(gen(), dtype="i, i", delimiter=",")
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
|
|||
|
def test_object_cleanup_on_read_error():
|
|||
|
sentinel = object()
|
|||
|
already_read = 0
|
|||
|
|
|||
|
def conv(x):
|
|||
|
nonlocal already_read
|
|||
|
if already_read > 4999:
|
|||
|
raise ValueError("failed half-way through!")
|
|||
|
already_read += 1
|
|||
|
return sentinel
|
|||
|
|
|||
|
txt = StringIO("x\n" * 10000)
|
|||
|
|
|||
|
with pytest.raises(ValueError, match="at row 5000, column 1"):
|
|||
|
np.loadtxt(txt, dtype=object, converters={0: conv})
|
|||
|
|
|||
|
assert sys.getrefcount(sentinel) == 2
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
|
|||
|
reason="PyPy bug in error formatting")
|
|||
|
def test_character_not_bytes_compatible():
|
|||
|
"""Test exception when a character cannot be encoded as 'S'."""
|
|||
|
data = StringIO("–") # == \u2013
|
|||
|
with pytest.raises(ValueError):
|
|||
|
np.loadtxt(data, dtype="S5")
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("conv", (0, [float], ""))
|
|||
|
def test_invalid_converter(conv):
|
|||
|
msg = (
|
|||
|
"converters must be a dictionary mapping columns to converter "
|
|||
|
"functions or a single callable."
|
|||
|
)
|
|||
|
with pytest.raises(TypeError, match=msg):
|
|||
|
np.loadtxt(StringIO("1 2\n3 4"), converters=conv)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
|
|||
|
reason="PyPy bug in error formatting")
|
|||
|
def test_converters_dict_raises_non_integer_key():
|
|||
|
with pytest.raises(TypeError, match="keys of the converters dict"):
|
|||
|
np.loadtxt(StringIO("1 2\n3 4"), converters={"a": int})
|
|||
|
with pytest.raises(TypeError, match="keys of the converters dict"):
|
|||
|
np.loadtxt(StringIO("1 2\n3 4"), converters={"a": int}, usecols=0)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("bad_col_ind", (3, -3))
|
|||
|
def test_converters_dict_raises_non_col_key(bad_col_ind):
|
|||
|
data = StringIO("1 2\n3 4")
|
|||
|
with pytest.raises(ValueError, match="converter specified for column"):
|
|||
|
np.loadtxt(data, converters={bad_col_ind: int})
|
|||
|
|
|||
|
|
|||
|
def test_converters_dict_raises_val_not_callable():
|
|||
|
with pytest.raises(TypeError,
|
|||
|
match="values of the converters dictionary must be callable"):
|
|||
|
np.loadtxt(StringIO("1 2\n3 4"), converters={0: 1})
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("q", ('"', "'", "`"))
|
|||
|
def test_quoted_field(q):
|
|||
|
txt = StringIO(
|
|||
|
f"{q}alpha, x{q}, 2.5\n{q}beta, y{q}, 4.5\n{q}gamma, z{q}, 5.0\n"
|
|||
|
)
|
|||
|
dtype = np.dtype([('f0', 'U8'), ('f1', np.float64)])
|
|||
|
expected = np.array(
|
|||
|
[("alpha, x", 2.5), ("beta, y", 4.5), ("gamma, z", 5.0)], dtype=dtype
|
|||
|
)
|
|||
|
|
|||
|
res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar=q)
|
|||
|
assert_array_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("q", ('"', "'", "`"))
|
|||
|
def test_quoted_field_with_whitepace_delimiter(q):
|
|||
|
txt = StringIO(
|
|||
|
f"{q}alpha, x{q} 2.5\n{q}beta, y{q} 4.5\n{q}gamma, z{q} 5.0\n"
|
|||
|
)
|
|||
|
dtype = np.dtype([('f0', 'U8'), ('f1', np.float64)])
|
|||
|
expected = np.array(
|
|||
|
[("alpha, x", 2.5), ("beta, y", 4.5), ("gamma, z", 5.0)], dtype=dtype
|
|||
|
)
|
|||
|
|
|||
|
res = np.loadtxt(txt, dtype=dtype, delimiter=None, quotechar=q)
|
|||
|
assert_array_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
def test_quote_support_default():
|
|||
|
"""Support for quoted fields is disabled by default."""
|
|||
|
txt = StringIO('"lat,long", 45, 30\n')
|
|||
|
dtype = np.dtype([('f0', 'U24'), ('f1', np.float64), ('f2', np.float64)])
|
|||
|
|
|||
|
with pytest.raises(ValueError,
|
|||
|
match="the dtype passed requires 3 columns but 4 were"):
|
|||
|
np.loadtxt(txt, dtype=dtype, delimiter=",")
|
|||
|
|
|||
|
# Enable quoting support with non-None value for quotechar param
|
|||
|
txt.seek(0)
|
|||
|
expected = np.array([("lat,long", 45., 30.)], dtype=dtype)
|
|||
|
|
|||
|
res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar='"')
|
|||
|
assert_array_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
|
|||
|
reason="PyPy bug in error formatting")
|
|||
|
def test_quotechar_multichar_error():
|
|||
|
txt = StringIO("1,2\n3,4")
|
|||
|
msg = r".*must be a single unicode character or None"
|
|||
|
with pytest.raises(TypeError, match=msg):
|
|||
|
np.loadtxt(txt, delimiter=",", quotechar="''")
|
|||
|
|
|||
|
|
|||
|
def test_comment_multichar_error_with_quote():
|
|||
|
txt = StringIO("1,2\n3,4")
|
|||
|
msg = (
|
|||
|
"when multiple comments or a multi-character comment is given, "
|
|||
|
"quotes are not supported."
|
|||
|
)
|
|||
|
with pytest.raises(ValueError, match=msg):
|
|||
|
np.loadtxt(txt, delimiter=",", comments="123", quotechar='"')
|
|||
|
with pytest.raises(ValueError, match=msg):
|
|||
|
np.loadtxt(txt, delimiter=",", comments=["#", "%"], quotechar='"')
|
|||
|
|
|||
|
# A single character string in a tuple is unpacked though:
|
|||
|
res = np.loadtxt(txt, delimiter=",", comments=("#",), quotechar="'")
|
|||
|
assert_equal(res, [[1, 2], [3, 4]])
|
|||
|
|
|||
|
|
|||
|
def test_structured_dtype_with_quotes():
|
|||
|
data = StringIO(
|
|||
|
|
|||
|
"1000;2.4;'alpha';-34\n"
|
|||
|
"2000;3.1;'beta';29\n"
|
|||
|
"3500;9.9;'gamma';120\n"
|
|||
|
"4090;8.1;'delta';0\n"
|
|||
|
"5001;4.4;'epsilon';-99\n"
|
|||
|
"6543;7.8;'omega';-1\n"
|
|||
|
|
|||
|
)
|
|||
|
dtype = np.dtype(
|
|||
|
[('f0', np.uint16), ('f1', np.float64), ('f2', 'S7'), ('f3', np.int8)]
|
|||
|
)
|
|||
|
expected = np.array(
|
|||
|
[
|
|||
|
(1000, 2.4, "alpha", -34),
|
|||
|
(2000, 3.1, "beta", 29),
|
|||
|
(3500, 9.9, "gamma", 120),
|
|||
|
(4090, 8.1, "delta", 0),
|
|||
|
(5001, 4.4, "epsilon", -99),
|
|||
|
(6543, 7.8, "omega", -1)
|
|||
|
],
|
|||
|
dtype=dtype
|
|||
|
)
|
|||
|
res = np.loadtxt(data, dtype=dtype, delimiter=";", quotechar="'")
|
|||
|
assert_array_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
def test_quoted_field_is_not_empty():
|
|||
|
txt = StringIO('1\n\n"4"\n""')
|
|||
|
expected = np.array(["1", "4", ""], dtype="U1")
|
|||
|
res = np.loadtxt(txt, delimiter=",", dtype="U1", quotechar='"')
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
def test_quoted_field_is_not_empty_nonstrict():
|
|||
|
# Same as test_quoted_field_is_not_empty but check that we are not strict
|
|||
|
# about missing closing quote (this is the `csv.reader` default also)
|
|||
|
txt = StringIO('1\n\n"4"\n"')
|
|||
|
expected = np.array(["1", "4", ""], dtype="U1")
|
|||
|
res = np.loadtxt(txt, delimiter=",", dtype="U1", quotechar='"')
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
def test_consecutive_quotechar_escaped():
|
|||
|
txt = StringIO('"Hello, my name is ""Monty""!"')
|
|||
|
expected = np.array('Hello, my name is "Monty"!', dtype="U40")
|
|||
|
res = np.loadtxt(txt, dtype="U40", delimiter=",", quotechar='"')
|
|||
|
assert_equal(res, expected)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("data", ("", "\n\n\n", "# 1 2 3\n# 4 5 6\n"))
|
|||
|
@pytest.mark.parametrize("ndmin", (0, 1, 2))
|
|||
|
@pytest.mark.parametrize("usecols", [None, (1, 2, 3)])
|
|||
|
def test_warn_on_no_data(data, ndmin, usecols):
|
|||
|
"""Check that a UserWarning is emitted when no data is read from input."""
|
|||
|
if usecols is not None:
|
|||
|
expected_shape = (0, 3)
|
|||
|
elif ndmin == 2:
|
|||
|
expected_shape = (0, 1) # guess a single column?!
|
|||
|
else:
|
|||
|
expected_shape = (0,)
|
|||
|
|
|||
|
txt = StringIO(data)
|
|||
|
with pytest.warns(UserWarning, match="input contained no data"):
|
|||
|
res = np.loadtxt(txt, ndmin=ndmin, usecols=usecols)
|
|||
|
assert res.shape == expected_shape
|
|||
|
|
|||
|
with NamedTemporaryFile(mode="w") as fh:
|
|||
|
fh.write(data)
|
|||
|
fh.seek(0)
|
|||
|
with pytest.warns(UserWarning, match="input contained no data"):
|
|||
|
res = np.loadtxt(txt, ndmin=ndmin, usecols=usecols)
|
|||
|
assert res.shape == expected_shape
|
|||
|
|
|||
|
@pytest.mark.parametrize("skiprows", (2, 3))
|
|||
|
def test_warn_on_skipped_data(skiprows):
|
|||
|
data = "1 2 3\n4 5 6"
|
|||
|
txt = StringIO(data)
|
|||
|
with pytest.warns(UserWarning, match="input contained no data"):
|
|||
|
np.loadtxt(txt, skiprows=skiprows)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize(["dtype", "value"], [
|
|||
|
("i2", 0x0001), ("u2", 0x0001),
|
|||
|
("i4", 0x00010203), ("u4", 0x00010203),
|
|||
|
("i8", 0x0001020304050607), ("u8", 0x0001020304050607),
|
|||
|
# The following values are constructed to lead to unique bytes:
|
|||
|
("float16", 3.07e-05),
|
|||
|
("float32", 9.2557e-41), ("complex64", 9.2557e-41+2.8622554e-29j),
|
|||
|
("float64", -1.758571353180402e-24),
|
|||
|
# Here and below, the repr side-steps a small loss of precision in
|
|||
|
# complex `str` in PyPy (which is probably fine, as repr works):
|
|||
|
("complex128", repr(5.406409232372729e-29-1.758571353180402e-24j)),
|
|||
|
# Use integer values that fit into double. Everything else leads to
|
|||
|
# problems due to longdoubles going via double and decimal strings
|
|||
|
# causing rounding errors.
|
|||
|
("longdouble", 0x01020304050607),
|
|||
|
("clongdouble", repr(0x01020304050607 + (0x00121314151617 * 1j))),
|
|||
|
("U2", "\U00010203\U000a0b0c")])
|
|||
|
@pytest.mark.parametrize("swap", [True, False])
|
|||
|
def test_byteswapping_and_unaligned(dtype, value, swap):
|
|||
|
# Try to create "interesting" values within the valid unicode range:
|
|||
|
dtype = np.dtype(dtype)
|
|||
|
data = [f"x,{value}\n"] # repr as PyPy `str` truncates some
|
|||
|
if swap:
|
|||
|
dtype = dtype.newbyteorder()
|
|||
|
full_dt = np.dtype([("a", "S1"), ("b", dtype)], align=False)
|
|||
|
# The above ensures that the interesting "b" field is unaligned:
|
|||
|
assert full_dt.fields["b"][1] == 1
|
|||
|
res = np.loadtxt(data, dtype=full_dt, delimiter=",",
|
|||
|
max_rows=1) # max-rows prevents over-allocation
|
|||
|
assert res["b"] == dtype.type(value)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("dtype",
|
|||
|
np.typecodes["AllInteger"] + "efdFD" + "?")
|
|||
|
def test_unicode_whitespace_stripping(dtype):
|
|||
|
# Test that all numeric types (and bool) strip whitespace correctly
|
|||
|
# \u202F is a narrow no-break space, `\n` is just a whitespace if quoted.
|
|||
|
# Currently, skip float128 as it did not always support this and has no
|
|||
|
# "custom" parsing:
|
|||
|
txt = StringIO(' 3 ,"\u202F2\n"')
|
|||
|
res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar='"')
|
|||
|
assert_array_equal(res, np.array([3, 2]).astype(dtype))
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("dtype", "FD")
|
|||
|
def test_unicode_whitespace_stripping_complex(dtype):
|
|||
|
# Complex has a few extra cases since it has two components and
|
|||
|
# parentheses
|
|||
|
line = " 1 , 2+3j , ( 4+5j ), ( 6+-7j ) , 8j , ( 9j ) \n"
|
|||
|
data = [line, line.replace(" ", "\u202F")]
|
|||
|
res = np.loadtxt(data, dtype=dtype, delimiter=',')
|
|||
|
assert_array_equal(res, np.array([[1, 2+3j, 4+5j, 6-7j, 8j, 9j]] * 2))
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
|
|||
|
reason="PyPy bug in error formatting")
|
|||
|
@pytest.mark.parametrize("dtype", "FD")
|
|||
|
@pytest.mark.parametrize("field",
|
|||
|
["1 +2j", "1+ 2j", "1+2 j", "1+-+3", "(1j", "(1", "(1+2j", "1+2j)"])
|
|||
|
def test_bad_complex(dtype, field):
|
|||
|
with pytest.raises(ValueError):
|
|||
|
np.loadtxt([field + "\n"], dtype=dtype, delimiter=",")
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
|
|||
|
reason="PyPy bug in error formatting")
|
|||
|
@pytest.mark.parametrize("dtype",
|
|||
|
np.typecodes["AllInteger"] + "efgdFDG" + "?")
|
|||
|
def test_nul_character_error(dtype):
|
|||
|
# Test that a \0 character is correctly recognized as an error even if
|
|||
|
# what comes before is valid (not everything gets parsed internally).
|
|||
|
if dtype.lower() == "g":
|
|||
|
pytest.xfail("longdouble/clongdouble assignment may misbehave.")
|
|||
|
with pytest.raises(ValueError):
|
|||
|
np.loadtxt(["1\000"], dtype=dtype, delimiter=",", quotechar='"')
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
|
|||
|
reason="PyPy bug in error formatting")
|
|||
|
@pytest.mark.parametrize("dtype",
|
|||
|
np.typecodes["AllInteger"] + "efgdFDG" + "?")
|
|||
|
def test_no_thousands_support(dtype):
|
|||
|
# Mainly to document behaviour, Python supports thousands like 1_1.
|
|||
|
# (e and G may end up using different conversion and support it, this is
|
|||
|
# a bug but happens...)
|
|||
|
if dtype == "e":
|
|||
|
pytest.skip("half assignment currently uses Python float converter")
|
|||
|
if dtype in "eG":
|
|||
|
pytest.xfail("clongdouble assignment is buggy (uses `complex`?).")
|
|||
|
|
|||
|
assert int("1_1") == float("1_1") == complex("1_1") == 11
|
|||
|
with pytest.raises(ValueError):
|
|||
|
np.loadtxt(["1_1\n"], dtype=dtype)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("data", [
|
|||
|
["1,2\n", "2\n,3\n"],
|
|||
|
["1,2\n", "2\r,3\n"]])
|
|||
|
def test_bad_newline_in_iterator(data):
|
|||
|
# In NumPy <=1.22 this was accepted, because newlines were completely
|
|||
|
# ignored when the input was an iterable. This could be changed, but right
|
|||
|
# now, we raise an error.
|
|||
|
msg = "Found an unquoted embedded newline within a single line"
|
|||
|
with pytest.raises(ValueError, match=msg):
|
|||
|
np.loadtxt(data, delimiter=",")
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("data", [
|
|||
|
["1,2\n", "2,3\r\n"], # a universal newline
|
|||
|
["1,2\n", "'2\n',3\n"], # a quoted newline
|
|||
|
["1,2\n", "'2\r',3\n"],
|
|||
|
["1,2\n", "'2\r\n',3\n"],
|
|||
|
])
|
|||
|
def test_good_newline_in_iterator(data):
|
|||
|
# The quoted newlines will be untransformed here, but are just whitespace.
|
|||
|
res = np.loadtxt(data, delimiter=",", quotechar="'")
|
|||
|
assert_array_equal(res, [[1., 2.], [2., 3.]])
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("newline", ["\n", "\r", "\r\n"])
|
|||
|
def test_universal_newlines_quoted(newline):
|
|||
|
# Check that universal newline support within the tokenizer is not applied
|
|||
|
# to quoted fields. (note that lines must end in newline or quoted
|
|||
|
# fields will not include a newline at all)
|
|||
|
data = ['1,"2\n"\n', '3,"4\n', '1"\n']
|
|||
|
data = [row.replace("\n", newline) for row in data]
|
|||
|
res = np.loadtxt(data, dtype=object, delimiter=",", quotechar='"')
|
|||
|
assert_array_equal(res, [['1', f'2{newline}'], ['3', f'4{newline}1']])
|
|||
|
|
|||
|
|
|||
|
def test_null_character():
|
|||
|
# Basic tests to check that the NUL character is not special:
|
|||
|
res = np.loadtxt(["1\0002\0003\n", "4\0005\0006"], delimiter="\000")
|
|||
|
assert_array_equal(res, [[1, 2, 3], [4, 5, 6]])
|
|||
|
|
|||
|
# Also not as part of a field (avoid unicode/arrays as unicode strips \0)
|
|||
|
res = np.loadtxt(["1\000,2\000,3\n", "4\000,5\000,6"],
|
|||
|
delimiter=",", dtype=object)
|
|||
|
assert res.tolist() == [["1\000", "2\000", "3"], ["4\000", "5\000", "6"]]
|
|||
|
|
|||
|
|
|||
|
def test_iterator_fails_getting_next_line():
|
|||
|
class BadSequence:
|
|||
|
def __len__(self):
|
|||
|
return 100
|
|||
|
|
|||
|
def __getitem__(self, item):
|
|||
|
if item == 50:
|
|||
|
raise RuntimeError("Bad things happened!")
|
|||
|
return f"{item}, {item+1}"
|
|||
|
|
|||
|
with pytest.raises(RuntimeError, match="Bad things happened!"):
|
|||
|
np.loadtxt(BadSequence(), dtype=int, delimiter=",")
|
|||
|
|
|||
|
|
|||
|
class TestCReaderUnitTests:
|
|||
|
# These are internal tests for path that should not be possible to hit
|
|||
|
# unless things go very very wrong somewhere.
|
|||
|
def test_not_an_filelike(self):
|
|||
|
with pytest.raises(AttributeError, match=".*read"):
|
|||
|
np._core._multiarray_umath._load_from_filelike(
|
|||
|
object(), dtype=np.dtype("i"), filelike=True)
|
|||
|
|
|||
|
def test_filelike_read_fails(self):
|
|||
|
# Can only be reached if loadtxt opens the file, so it is hard to do
|
|||
|
# via the public interface (although maybe not impossible considering
|
|||
|
# the current "DataClass" backing).
|
|||
|
class BadFileLike:
|
|||
|
counter = 0
|
|||
|
|
|||
|
def read(self, size):
|
|||
|
self.counter += 1
|
|||
|
if self.counter > 20:
|
|||
|
raise RuntimeError("Bad bad bad!")
|
|||
|
return "1,2,3\n"
|
|||
|
|
|||
|
with pytest.raises(RuntimeError, match="Bad bad bad!"):
|
|||
|
np._core._multiarray_umath._load_from_filelike(
|
|||
|
BadFileLike(), dtype=np.dtype("i"), filelike=True)
|
|||
|
|
|||
|
def test_filelike_bad_read(self):
|
|||
|
# Can only be reached if loadtxt opens the file, so it is hard to do
|
|||
|
# via the public interface (although maybe not impossible considering
|
|||
|
# the current "DataClass" backing).
|
|||
|
|
|||
|
class BadFileLike:
|
|||
|
counter = 0
|
|||
|
|
|||
|
def read(self, size):
|
|||
|
return 1234 # not a string!
|
|||
|
|
|||
|
with pytest.raises(TypeError,
|
|||
|
match="non-string returned while reading data"):
|
|||
|
np._core._multiarray_umath._load_from_filelike(
|
|||
|
BadFileLike(), dtype=np.dtype("i"), filelike=True)
|
|||
|
|
|||
|
def test_not_an_iter(self):
|
|||
|
with pytest.raises(TypeError,
|
|||
|
match="error reading from object, expected an iterable"):
|
|||
|
np._core._multiarray_umath._load_from_filelike(
|
|||
|
object(), dtype=np.dtype("i"), filelike=False)
|
|||
|
|
|||
|
def test_bad_type(self):
|
|||
|
with pytest.raises(TypeError, match="internal error: dtype must"):
|
|||
|
np._core._multiarray_umath._load_from_filelike(
|
|||
|
object(), dtype="i", filelike=False)
|
|||
|
|
|||
|
def test_bad_encoding(self):
|
|||
|
with pytest.raises(TypeError, match="encoding must be a unicode"):
|
|||
|
np._core._multiarray_umath._load_from_filelike(
|
|||
|
object(), dtype=np.dtype("i"), filelike=False, encoding=123)
|
|||
|
|
|||
|
@pytest.mark.parametrize("newline", ["\r", "\n", "\r\n"])
|
|||
|
def test_manual_universal_newlines(self, newline):
|
|||
|
# This is currently not available to users, because we should always
|
|||
|
# open files with universal newlines enabled `newlines=None`.
|
|||
|
# (And reading from an iterator uses slightly different code paths.)
|
|||
|
# We have no real support for `newline="\r"` or `newline="\n" as the
|
|||
|
# user cannot specify those options.
|
|||
|
data = StringIO('0\n1\n"2\n"\n3\n4 #\n'.replace("\n", newline),
|
|||
|
newline="")
|
|||
|
|
|||
|
res = np._core._multiarray_umath._load_from_filelike(
|
|||
|
data, dtype=np.dtype("U10"), filelike=True,
|
|||
|
quote='"', comment="#", skiplines=1)
|
|||
|
assert_array_equal(res[:, 0], ["1", f"2{newline}", "3", "4 "])
|
|||
|
|
|||
|
|
|||
|
def test_delimiter_comment_collision_raises():
|
|||
|
with pytest.raises(TypeError, match=".*control characters.*incompatible"):
|
|||
|
np.loadtxt(StringIO("1, 2, 3"), delimiter=",", comments=",")
|
|||
|
|
|||
|
|
|||
|
def test_delimiter_quotechar_collision_raises():
|
|||
|
with pytest.raises(TypeError, match=".*control characters.*incompatible"):
|
|||
|
np.loadtxt(StringIO("1, 2, 3"), delimiter=",", quotechar=",")
|
|||
|
|
|||
|
|
|||
|
def test_comment_quotechar_collision_raises():
|
|||
|
with pytest.raises(TypeError, match=".*control characters.*incompatible"):
|
|||
|
np.loadtxt(StringIO("1 2 3"), comments="#", quotechar="#")
|
|||
|
|
|||
|
|
|||
|
def test_delimiter_and_multiple_comments_collision_raises():
|
|||
|
with pytest.raises(
|
|||
|
TypeError, match="Comment characters.*cannot include the delimiter"
|
|||
|
):
|
|||
|
np.loadtxt(StringIO("1, 2, 3"), delimiter=",", comments=["#", ","])
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize(
|
|||
|
"ws",
|
|||
|
(
|
|||
|
" ", # space
|
|||
|
"\t", # tab
|
|||
|
"\u2003", # em
|
|||
|
"\u00A0", # non-break
|
|||
|
"\u3000", # ideographic space
|
|||
|
)
|
|||
|
)
|
|||
|
def test_collision_with_default_delimiter_raises(ws):
|
|||
|
with pytest.raises(TypeError, match=".*control characters.*incompatible"):
|
|||
|
np.loadtxt(StringIO(f"1{ws}2{ws}3\n4{ws}5{ws}6\n"), comments=ws)
|
|||
|
with pytest.raises(TypeError, match=".*control characters.*incompatible"):
|
|||
|
np.loadtxt(StringIO(f"1{ws}2{ws}3\n4{ws}5{ws}6\n"), quotechar=ws)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize("nl", ("\n", "\r"))
|
|||
|
def test_control_character_newline_raises(nl):
|
|||
|
txt = StringIO(f"1{nl}2{nl}3{nl}{nl}4{nl}5{nl}6{nl}{nl}")
|
|||
|
msg = "control character.*cannot be a newline"
|
|||
|
with pytest.raises(TypeError, match=msg):
|
|||
|
np.loadtxt(txt, delimiter=nl)
|
|||
|
with pytest.raises(TypeError, match=msg):
|
|||
|
np.loadtxt(txt, comments=nl)
|
|||
|
with pytest.raises(TypeError, match=msg):
|
|||
|
np.loadtxt(txt, quotechar=nl)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.parametrize(
|
|||
|
("generic_data", "long_datum", "unitless_dtype", "expected_dtype"),
|
|||
|
[
|
|||
|
("2012-03", "2013-01-15", "M8", "M8[D]"), # Datetimes
|
|||
|
("spam-a-lot", "tis_but_a_scratch", "U", "U17"), # str
|
|||
|
],
|
|||
|
)
|
|||
|
@pytest.mark.parametrize("nrows", (10, 50000, 60000)) # lt, eq, gt chunksize
|
|||
|
def test_parametric_unit_discovery(
|
|||
|
generic_data, long_datum, unitless_dtype, expected_dtype, nrows
|
|||
|
):
|
|||
|
"""Check that the correct unit (e.g. month, day, second) is discovered from
|
|||
|
the data when a user specifies a unitless datetime."""
|
|||
|
# Unit should be "D" (days) due to last entry
|
|||
|
data = [generic_data] * nrows + [long_datum]
|
|||
|
expected = np.array(data, dtype=expected_dtype)
|
|||
|
assert len(data) == nrows+1
|
|||
|
assert len(data) == len(expected)
|
|||
|
|
|||
|
# file-like path
|
|||
|
txt = StringIO("\n".join(data))
|
|||
|
a = np.loadtxt(txt, dtype=unitless_dtype)
|
|||
|
assert len(a) == len(expected)
|
|||
|
assert a.dtype == expected.dtype
|
|||
|
assert_equal(a, expected)
|
|||
|
|
|||
|
# file-obj path
|
|||
|
fd, fname = mkstemp()
|
|||
|
os.close(fd)
|
|||
|
with open(fname, "w") as fh:
|
|||
|
fh.write("\n".join(data)+"\n")
|
|||
|
# loading the full file...
|
|||
|
a = np.loadtxt(fname, dtype=unitless_dtype)
|
|||
|
assert len(a) == len(expected)
|
|||
|
assert a.dtype == expected.dtype
|
|||
|
assert_equal(a, expected)
|
|||
|
# loading half of the file...
|
|||
|
a = np.loadtxt(fname, dtype=unitless_dtype, max_rows=int(nrows/2))
|
|||
|
os.remove(fname)
|
|||
|
assert len(a) == int(nrows/2)
|
|||
|
assert_equal(a, expected[:int(nrows/2)])
|
|||
|
|
|||
|
|
|||
|
def test_str_dtype_unit_discovery_with_converter():
|
|||
|
data = ["spam-a-lot"] * 60000 + ["XXXtis_but_a_scratch"]
|
|||
|
expected = np.array(
|
|||
|
["spam-a-lot"] * 60000 + ["tis_but_a_scratch"], dtype="U17"
|
|||
|
)
|
|||
|
conv = lambda s: s.removeprefix("XXX")
|
|||
|
|
|||
|
# file-like path
|
|||
|
txt = StringIO("\n".join(data))
|
|||
|
a = np.loadtxt(txt, dtype="U", converters=conv)
|
|||
|
assert a.dtype == expected.dtype
|
|||
|
assert_equal(a, expected)
|
|||
|
|
|||
|
# file-obj path
|
|||
|
fd, fname = mkstemp()
|
|||
|
os.close(fd)
|
|||
|
with open(fname, "w") as fh:
|
|||
|
fh.write("\n".join(data))
|
|||
|
a = np.loadtxt(fname, dtype="U", converters=conv)
|
|||
|
os.remove(fname)
|
|||
|
assert a.dtype == expected.dtype
|
|||
|
assert_equal(a, expected)
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
|
|||
|
reason="PyPy bug in error formatting")
|
|||
|
def test_control_character_empty():
|
|||
|
with pytest.raises(TypeError, match="Text reading control character must"):
|
|||
|
np.loadtxt(StringIO("1 2 3"), delimiter="")
|
|||
|
with pytest.raises(TypeError, match="Text reading control character must"):
|
|||
|
np.loadtxt(StringIO("1 2 3"), quotechar="")
|
|||
|
with pytest.raises(ValueError, match="comments cannot be an empty string"):
|
|||
|
np.loadtxt(StringIO("1 2 3"), comments="")
|
|||
|
with pytest.raises(ValueError, match="comments cannot be an empty string"):
|
|||
|
np.loadtxt(StringIO("1 2 3"), comments=["#", ""])
|
|||
|
|
|||
|
|
|||
|
def test_control_characters_as_bytes():
|
|||
|
"""Byte control characters (comments, delimiter) are supported."""
|
|||
|
a = np.loadtxt(StringIO("#header\n1,2,3"), comments=b"#", delimiter=b",")
|
|||
|
assert_equal(a, [1, 2, 3])
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.filterwarnings('ignore::UserWarning')
|
|||
|
def test_field_growing_cases():
|
|||
|
# Test empty field appending/growing (each field still takes 1 character)
|
|||
|
# to see if the final field appending does not create issues.
|
|||
|
res = np.loadtxt([""], delimiter=",", dtype=bytes)
|
|||
|
assert len(res) == 0
|
|||
|
|
|||
|
for i in range(1, 1024):
|
|||
|
res = np.loadtxt(["," * i], delimiter=",", dtype=bytes, max_rows=10)
|
|||
|
assert len(res) == i+1
|
|||
|
|
|||
|
@pytest.mark.parametrize("nmax", (10000, 50000, 55000, 60000))
|
|||
|
def test_maxrows_exceeding_chunksize(nmax):
|
|||
|
# tries to read all of the file,
|
|||
|
# or less, equal, greater than _loadtxt_chunksize
|
|||
|
file_length = 60000
|
|||
|
|
|||
|
# file-like path
|
|||
|
data = ["a 0.5 1"]*file_length
|
|||
|
txt = StringIO("\n".join(data))
|
|||
|
res = np.loadtxt(txt, dtype=str, delimiter=" ", max_rows=nmax)
|
|||
|
assert len(res) == nmax
|
|||
|
|
|||
|
# file-obj path
|
|||
|
fd, fname = mkstemp()
|
|||
|
os.close(fd)
|
|||
|
with open(fname, "w") as fh:
|
|||
|
fh.write("\n".join(data))
|
|||
|
res = np.loadtxt(fname, dtype=str, delimiter=" ", max_rows=nmax)
|
|||
|
os.remove(fname)
|
|||
|
assert len(res) == nmax
|