336 lines
12 KiB
Python
336 lines
12 KiB
Python
|
import re
|
||
|
from itertools import zip_longest
|
||
|
|
||
|
from parso.python import tree
|
||
|
|
||
|
from jedi import debug
|
||
|
from jedi.inference.utils import PushBackIterator
|
||
|
from jedi.inference import analysis
|
||
|
from jedi.inference.lazy_value import LazyKnownValue, LazyKnownValues, \
|
||
|
LazyTreeValue, get_merged_lazy_value
|
||
|
from jedi.inference.names import ParamName, TreeNameDefinition, AnonymousParamName
|
||
|
from jedi.inference.base_value import NO_VALUES, ValueSet, ContextualizedNode
|
||
|
from jedi.inference.value import iterable
|
||
|
from jedi.inference.cache import inference_state_as_method_param_cache
|
||
|
|
||
|
|
||
|
def try_iter_content(types, depth=0):
|
||
|
"""Helper method for static analysis."""
|
||
|
if depth > 10:
|
||
|
# It's possible that a loop has references on itself (especially with
|
||
|
# CompiledValue). Therefore don't loop infinitely.
|
||
|
return
|
||
|
|
||
|
for typ in types:
|
||
|
try:
|
||
|
f = typ.py__iter__
|
||
|
except AttributeError:
|
||
|
pass
|
||
|
else:
|
||
|
for lazy_value in f():
|
||
|
try_iter_content(lazy_value.infer(), depth + 1)
|
||
|
|
||
|
|
||
|
class ParamIssue(Exception):
|
||
|
pass
|
||
|
|
||
|
|
||
|
def repack_with_argument_clinic(clinic_string):
|
||
|
"""
|
||
|
Transforms a function or method with arguments to the signature that is
|
||
|
given as an argument clinic notation.
|
||
|
|
||
|
Argument clinic is part of CPython and used for all the functions that are
|
||
|
implemented in C (Python 3.7):
|
||
|
|
||
|
str.split.__text_signature__
|
||
|
# Results in: '($self, /, sep=None, maxsplit=-1)'
|
||
|
"""
|
||
|
def decorator(func):
|
||
|
def wrapper(value, arguments):
|
||
|
try:
|
||
|
args = tuple(iterate_argument_clinic(
|
||
|
value.inference_state,
|
||
|
arguments,
|
||
|
clinic_string,
|
||
|
))
|
||
|
except ParamIssue:
|
||
|
return NO_VALUES
|
||
|
else:
|
||
|
return func(value, *args)
|
||
|
|
||
|
return wrapper
|
||
|
return decorator
|
||
|
|
||
|
|
||
|
def iterate_argument_clinic(inference_state, arguments, clinic_string):
|
||
|
"""Uses a list with argument clinic information (see PEP 436)."""
|
||
|
clinic_args = list(_parse_argument_clinic(clinic_string))
|
||
|
|
||
|
iterator = PushBackIterator(arguments.unpack())
|
||
|
for i, (name, optional, allow_kwargs, stars) in enumerate(clinic_args):
|
||
|
if stars == 1:
|
||
|
lazy_values = []
|
||
|
for key, argument in iterator:
|
||
|
if key is not None:
|
||
|
iterator.push_back((key, argument))
|
||
|
break
|
||
|
|
||
|
lazy_values.append(argument)
|
||
|
yield ValueSet([iterable.FakeTuple(inference_state, lazy_values)])
|
||
|
lazy_values
|
||
|
continue
|
||
|
elif stars == 2:
|
||
|
raise NotImplementedError()
|
||
|
key, argument = next(iterator, (None, None))
|
||
|
if key is not None:
|
||
|
debug.warning('Keyword arguments in argument clinic are currently not supported.')
|
||
|
raise ParamIssue
|
||
|
if argument is None and not optional:
|
||
|
debug.warning('TypeError: %s expected at least %s arguments, got %s',
|
||
|
name, len(clinic_args), i)
|
||
|
raise ParamIssue
|
||
|
|
||
|
value_set = NO_VALUES if argument is None else argument.infer()
|
||
|
|
||
|
if not value_set and not optional:
|
||
|
# For the stdlib we always want values. If we don't get them,
|
||
|
# that's ok, maybe something is too hard to resolve, however,
|
||
|
# we will not proceed with the type inference of that function.
|
||
|
debug.warning('argument_clinic "%s" not resolvable.', name)
|
||
|
raise ParamIssue
|
||
|
yield value_set
|
||
|
|
||
|
|
||
|
def _parse_argument_clinic(string):
|
||
|
allow_kwargs = False
|
||
|
optional = False
|
||
|
while string:
|
||
|
# Optional arguments have to begin with a bracket. And should always be
|
||
|
# at the end of the arguments. This is therefore not a proper argument
|
||
|
# clinic implementation. `range()` for exmple allows an optional start
|
||
|
# value at the beginning.
|
||
|
match = re.match(r'(?:(?:(\[),? ?|, ?|)(\**\w+)|, ?/)\]*', string)
|
||
|
string = string[len(match.group(0)):]
|
||
|
if not match.group(2): # A slash -> allow named arguments
|
||
|
allow_kwargs = True
|
||
|
continue
|
||
|
optional = optional or bool(match.group(1))
|
||
|
word = match.group(2)
|
||
|
stars = word.count('*')
|
||
|
word = word[stars:]
|
||
|
yield (word, optional, allow_kwargs, stars)
|
||
|
if stars:
|
||
|
allow_kwargs = True
|
||
|
|
||
|
|
||
|
class _AbstractArgumentsMixin:
|
||
|
def unpack(self, funcdef=None):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def get_calling_nodes(self):
|
||
|
return []
|
||
|
|
||
|
|
||
|
class AbstractArguments(_AbstractArgumentsMixin):
|
||
|
context = None
|
||
|
argument_node = None
|
||
|
trailer = None
|
||
|
|
||
|
|
||
|
def unpack_arglist(arglist):
|
||
|
if arglist is None:
|
||
|
return
|
||
|
|
||
|
if arglist.type != 'arglist' and not (
|
||
|
arglist.type == 'argument' and arglist.children[0] in ('*', '**')):
|
||
|
yield 0, arglist
|
||
|
return
|
||
|
|
||
|
iterator = iter(arglist.children)
|
||
|
for child in iterator:
|
||
|
if child == ',':
|
||
|
continue
|
||
|
elif child in ('*', '**'):
|
||
|
c = next(iterator, None)
|
||
|
assert c is not None
|
||
|
yield len(child.value), c
|
||
|
elif child.type == 'argument' and \
|
||
|
child.children[0] in ('*', '**'):
|
||
|
assert len(child.children) == 2
|
||
|
yield len(child.children[0].value), child.children[1]
|
||
|
else:
|
||
|
yield 0, child
|
||
|
|
||
|
|
||
|
class TreeArguments(AbstractArguments):
|
||
|
def __init__(self, inference_state, context, argument_node, trailer=None):
|
||
|
"""
|
||
|
:param argument_node: May be an argument_node or a list of nodes.
|
||
|
"""
|
||
|
self.argument_node = argument_node
|
||
|
self.context = context
|
||
|
self._inference_state = inference_state
|
||
|
self.trailer = trailer # Can be None, e.g. in a class definition.
|
||
|
|
||
|
@classmethod
|
||
|
@inference_state_as_method_param_cache()
|
||
|
def create_cached(cls, *args, **kwargs):
|
||
|
return cls(*args, **kwargs)
|
||
|
|
||
|
def unpack(self, funcdef=None):
|
||
|
named_args = []
|
||
|
for star_count, el in unpack_arglist(self.argument_node):
|
||
|
if star_count == 1:
|
||
|
arrays = self.context.infer_node(el)
|
||
|
iterators = [_iterate_star_args(self.context, a, el, funcdef)
|
||
|
for a in arrays]
|
||
|
for values in list(zip_longest(*iterators)):
|
||
|
yield None, get_merged_lazy_value(
|
||
|
[v for v in values if v is not None]
|
||
|
)
|
||
|
elif star_count == 2:
|
||
|
arrays = self.context.infer_node(el)
|
||
|
for dct in arrays:
|
||
|
yield from _star_star_dict(self.context, dct, el, funcdef)
|
||
|
else:
|
||
|
if el.type == 'argument':
|
||
|
c = el.children
|
||
|
if len(c) == 3: # Keyword argument.
|
||
|
named_args.append((c[0].value, LazyTreeValue(self.context, c[2]),))
|
||
|
else: # Generator comprehension.
|
||
|
# Include the brackets with the parent.
|
||
|
sync_comp_for = el.children[1]
|
||
|
if sync_comp_for.type == 'comp_for':
|
||
|
sync_comp_for = sync_comp_for.children[1]
|
||
|
comp = iterable.GeneratorComprehension(
|
||
|
self._inference_state,
|
||
|
defining_context=self.context,
|
||
|
sync_comp_for_node=sync_comp_for,
|
||
|
entry_node=el.children[0],
|
||
|
)
|
||
|
yield None, LazyKnownValue(comp)
|
||
|
else:
|
||
|
yield None, LazyTreeValue(self.context, el)
|
||
|
|
||
|
# Reordering arguments is necessary, because star args sometimes appear
|
||
|
# after named argument, but in the actual order it's prepended.
|
||
|
yield from named_args
|
||
|
|
||
|
def _as_tree_tuple_objects(self):
|
||
|
for star_count, argument in unpack_arglist(self.argument_node):
|
||
|
default = None
|
||
|
if argument.type == 'argument':
|
||
|
if len(argument.children) == 3: # Keyword argument.
|
||
|
argument, default = argument.children[::2]
|
||
|
yield argument, default, star_count
|
||
|
|
||
|
def iter_calling_names_with_star(self):
|
||
|
for name, default, star_count in self._as_tree_tuple_objects():
|
||
|
# TODO this function is a bit strange. probably refactor?
|
||
|
if not star_count or not isinstance(name, tree.Name):
|
||
|
continue
|
||
|
|
||
|
yield TreeNameDefinition(self.context, name)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return '<%s: %s>' % (self.__class__.__name__, self.argument_node)
|
||
|
|
||
|
def get_calling_nodes(self):
|
||
|
old_arguments_list = []
|
||
|
arguments = self
|
||
|
|
||
|
while arguments not in old_arguments_list:
|
||
|
if not isinstance(arguments, TreeArguments):
|
||
|
break
|
||
|
|
||
|
old_arguments_list.append(arguments)
|
||
|
for calling_name in reversed(list(arguments.iter_calling_names_with_star())):
|
||
|
names = calling_name.goto()
|
||
|
if len(names) != 1:
|
||
|
break
|
||
|
if isinstance(names[0], AnonymousParamName):
|
||
|
# Dynamic parameters should not have calling nodes, because
|
||
|
# they are dynamic and extremely random.
|
||
|
return []
|
||
|
if not isinstance(names[0], ParamName):
|
||
|
break
|
||
|
executed_param_name = names[0].get_executed_param_name()
|
||
|
arguments = executed_param_name.arguments
|
||
|
break
|
||
|
|
||
|
if arguments.argument_node is not None:
|
||
|
return [ContextualizedNode(arguments.context, arguments.argument_node)]
|
||
|
if arguments.trailer is not None:
|
||
|
return [ContextualizedNode(arguments.context, arguments.trailer)]
|
||
|
return []
|
||
|
|
||
|
|
||
|
class ValuesArguments(AbstractArguments):
|
||
|
def __init__(self, values_list):
|
||
|
self._values_list = values_list
|
||
|
|
||
|
def unpack(self, funcdef=None):
|
||
|
for values in self._values_list:
|
||
|
yield None, LazyKnownValues(values)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return '<%s: %s>' % (self.__class__.__name__, self._values_list)
|
||
|
|
||
|
|
||
|
class TreeArgumentsWrapper(_AbstractArgumentsMixin):
|
||
|
def __init__(self, arguments):
|
||
|
self._wrapped_arguments = arguments
|
||
|
|
||
|
@property
|
||
|
def context(self):
|
||
|
return self._wrapped_arguments.context
|
||
|
|
||
|
@property
|
||
|
def argument_node(self):
|
||
|
return self._wrapped_arguments.argument_node
|
||
|
|
||
|
@property
|
||
|
def trailer(self):
|
||
|
return self._wrapped_arguments.trailer
|
||
|
|
||
|
def unpack(self, func=None):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def get_calling_nodes(self):
|
||
|
return self._wrapped_arguments.get_calling_nodes()
|
||
|
|
||
|
def __repr__(self):
|
||
|
return '<%s: %s>' % (self.__class__.__name__, self._wrapped_arguments)
|
||
|
|
||
|
|
||
|
def _iterate_star_args(context, array, input_node, funcdef=None):
|
||
|
if not array.py__getattribute__('__iter__'):
|
||
|
if funcdef is not None:
|
||
|
# TODO this funcdef should not be needed.
|
||
|
m = "TypeError: %s() argument after * must be a sequence, not %s" \
|
||
|
% (funcdef.name.value, array)
|
||
|
analysis.add(context, 'type-error-star', input_node, message=m)
|
||
|
try:
|
||
|
iter_ = array.py__iter__
|
||
|
except AttributeError:
|
||
|
pass
|
||
|
else:
|
||
|
yield from iter_()
|
||
|
|
||
|
|
||
|
def _star_star_dict(context, array, input_node, funcdef):
|
||
|
from jedi.inference.value.instance import CompiledInstance
|
||
|
if isinstance(array, CompiledInstance) and array.name.string_name == 'dict':
|
||
|
# For now ignore this case. In the future add proper iterators and just
|
||
|
# make one call without crazy isinstance checks.
|
||
|
return {}
|
||
|
elif isinstance(array, iterable.Sequence) and array.array_type == 'dict':
|
||
|
return array.exact_key_items()
|
||
|
else:
|
||
|
if funcdef is not None:
|
||
|
m = "TypeError: %s argument after ** must be a mapping, not %s" \
|
||
|
% (funcdef.name.value, array)
|
||
|
analysis.add(context, 'type-error-star-star', input_node, message=m)
|
||
|
return {}
|