508 lines
14 KiB
Python
508 lines
14 KiB
Python
|
"""Affine 2D transformation matrix class.
|
||
|
|
||
|
The Transform class implements various transformation matrix operations,
|
||
|
both on the matrix itself, as well as on 2D coordinates.
|
||
|
|
||
|
Transform instances are effectively immutable: all methods that operate on the
|
||
|
transformation itself always return a new instance. This has as the
|
||
|
interesting side effect that Transform instances are hashable, ie. they can be
|
||
|
used as dictionary keys.
|
||
|
|
||
|
This module exports the following symbols:
|
||
|
|
||
|
Transform
|
||
|
this is the main class
|
||
|
Identity
|
||
|
Transform instance set to the identity transformation
|
||
|
Offset
|
||
|
Convenience function that returns a translating transformation
|
||
|
Scale
|
||
|
Convenience function that returns a scaling transformation
|
||
|
|
||
|
The DecomposedTransform class implements a transformation with separate
|
||
|
translate, rotation, scale, skew, and transformation-center components.
|
||
|
|
||
|
:Example:
|
||
|
|
||
|
>>> t = Transform(2, 0, 0, 3, 0, 0)
|
||
|
>>> t.transformPoint((100, 100))
|
||
|
(200, 300)
|
||
|
>>> t = Scale(2, 3)
|
||
|
>>> t.transformPoint((100, 100))
|
||
|
(200, 300)
|
||
|
>>> t.transformPoint((0, 0))
|
||
|
(0, 0)
|
||
|
>>> t = Offset(2, 3)
|
||
|
>>> t.transformPoint((100, 100))
|
||
|
(102, 103)
|
||
|
>>> t.transformPoint((0, 0))
|
||
|
(2, 3)
|
||
|
>>> t2 = t.scale(0.5)
|
||
|
>>> t2.transformPoint((100, 100))
|
||
|
(52.0, 53.0)
|
||
|
>>> import math
|
||
|
>>> t3 = t2.rotate(math.pi / 2)
|
||
|
>>> t3.transformPoint((0, 0))
|
||
|
(2.0, 3.0)
|
||
|
>>> t3.transformPoint((100, 100))
|
||
|
(-48.0, 53.0)
|
||
|
>>> t = Identity.scale(0.5).translate(100, 200).skew(0.1, 0.2)
|
||
|
>>> t.transformPoints([(0, 0), (1, 1), (100, 100)])
|
||
|
[(50.0, 100.0), (50.550167336042726, 100.60135501775433), (105.01673360427253, 160.13550177543362)]
|
||
|
>>>
|
||
|
"""
|
||
|
|
||
|
import math
|
||
|
from typing import NamedTuple
|
||
|
from dataclasses import dataclass
|
||
|
|
||
|
|
||
|
__all__ = ["Transform", "Identity", "Offset", "Scale", "DecomposedTransform"]
|
||
|
|
||
|
|
||
|
_EPSILON = 1e-15
|
||
|
_ONE_EPSILON = 1 - _EPSILON
|
||
|
_MINUS_ONE_EPSILON = -1 + _EPSILON
|
||
|
|
||
|
|
||
|
def _normSinCos(v):
|
||
|
if abs(v) < _EPSILON:
|
||
|
v = 0
|
||
|
elif v > _ONE_EPSILON:
|
||
|
v = 1
|
||
|
elif v < _MINUS_ONE_EPSILON:
|
||
|
v = -1
|
||
|
return v
|
||
|
|
||
|
|
||
|
class Transform(NamedTuple):
|
||
|
"""2x2 transformation matrix plus offset, a.k.a. Affine transform.
|
||
|
Transform instances are immutable: all transforming methods, eg.
|
||
|
rotate(), return a new Transform instance.
|
||
|
|
||
|
:Example:
|
||
|
|
||
|
>>> t = Transform()
|
||
|
>>> t
|
||
|
<Transform [1 0 0 1 0 0]>
|
||
|
>>> t.scale(2)
|
||
|
<Transform [2 0 0 2 0 0]>
|
||
|
>>> t.scale(2.5, 5.5)
|
||
|
<Transform [2.5 0 0 5.5 0 0]>
|
||
|
>>>
|
||
|
>>> t.scale(2, 3).transformPoint((100, 100))
|
||
|
(200, 300)
|
||
|
|
||
|
Transform's constructor takes six arguments, all of which are
|
||
|
optional, and can be used as keyword arguments::
|
||
|
|
||
|
>>> Transform(12)
|
||
|
<Transform [12 0 0 1 0 0]>
|
||
|
>>> Transform(dx=12)
|
||
|
<Transform [1 0 0 1 12 0]>
|
||
|
>>> Transform(yx=12)
|
||
|
<Transform [1 0 12 1 0 0]>
|
||
|
|
||
|
Transform instances also behave like sequences of length 6::
|
||
|
|
||
|
>>> len(Identity)
|
||
|
6
|
||
|
>>> list(Identity)
|
||
|
[1, 0, 0, 1, 0, 0]
|
||
|
>>> tuple(Identity)
|
||
|
(1, 0, 0, 1, 0, 0)
|
||
|
|
||
|
Transform instances are comparable::
|
||
|
|
||
|
>>> t1 = Identity.scale(2, 3).translate(4, 6)
|
||
|
>>> t2 = Identity.translate(8, 18).scale(2, 3)
|
||
|
>>> t1 == t2
|
||
|
1
|
||
|
|
||
|
But beware of floating point rounding errors::
|
||
|
|
||
|
>>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6)
|
||
|
>>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3)
|
||
|
>>> t1
|
||
|
<Transform [0.2 0 0 0.3 0.08 0.18]>
|
||
|
>>> t2
|
||
|
<Transform [0.2 0 0 0.3 0.08 0.18]>
|
||
|
>>> t1 == t2
|
||
|
0
|
||
|
|
||
|
Transform instances are hashable, meaning you can use them as
|
||
|
keys in dictionaries::
|
||
|
|
||
|
>>> d = {Scale(12, 13): None}
|
||
|
>>> d
|
||
|
{<Transform [12 0 0 13 0 0]>: None}
|
||
|
|
||
|
But again, beware of floating point rounding errors::
|
||
|
|
||
|
>>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6)
|
||
|
>>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3)
|
||
|
>>> t1
|
||
|
<Transform [0.2 0 0 0.3 0.08 0.18]>
|
||
|
>>> t2
|
||
|
<Transform [0.2 0 0 0.3 0.08 0.18]>
|
||
|
>>> d = {t1: None}
|
||
|
>>> d
|
||
|
{<Transform [0.2 0 0 0.3 0.08 0.18]>: None}
|
||
|
>>> d[t2]
|
||
|
Traceback (most recent call last):
|
||
|
File "<stdin>", line 1, in ?
|
||
|
KeyError: <Transform [0.2 0 0 0.3 0.08 0.18]>
|
||
|
"""
|
||
|
|
||
|
xx: float = 1
|
||
|
xy: float = 0
|
||
|
yx: float = 0
|
||
|
yy: float = 1
|
||
|
dx: float = 0
|
||
|
dy: float = 0
|
||
|
|
||
|
def transformPoint(self, p):
|
||
|
"""Transform a point.
|
||
|
|
||
|
:Example:
|
||
|
|
||
|
>>> t = Transform()
|
||
|
>>> t = t.scale(2.5, 5.5)
|
||
|
>>> t.transformPoint((100, 100))
|
||
|
(250.0, 550.0)
|
||
|
"""
|
||
|
(x, y) = p
|
||
|
xx, xy, yx, yy, dx, dy = self
|
||
|
return (xx * x + yx * y + dx, xy * x + yy * y + dy)
|
||
|
|
||
|
def transformPoints(self, points):
|
||
|
"""Transform a list of points.
|
||
|
|
||
|
:Example:
|
||
|
|
||
|
>>> t = Scale(2, 3)
|
||
|
>>> t.transformPoints([(0, 0), (0, 100), (100, 100), (100, 0)])
|
||
|
[(0, 0), (0, 300), (200, 300), (200, 0)]
|
||
|
>>>
|
||
|
"""
|
||
|
xx, xy, yx, yy, dx, dy = self
|
||
|
return [(xx * x + yx * y + dx, xy * x + yy * y + dy) for x, y in points]
|
||
|
|
||
|
def transformVector(self, v):
|
||
|
"""Transform an (dx, dy) vector, treating translation as zero.
|
||
|
|
||
|
:Example:
|
||
|
|
||
|
>>> t = Transform(2, 0, 0, 2, 10, 20)
|
||
|
>>> t.transformVector((3, -4))
|
||
|
(6, -8)
|
||
|
>>>
|
||
|
"""
|
||
|
(dx, dy) = v
|
||
|
xx, xy, yx, yy = self[:4]
|
||
|
return (xx * dx + yx * dy, xy * dx + yy * dy)
|
||
|
|
||
|
def transformVectors(self, vectors):
|
||
|
"""Transform a list of (dx, dy) vector, treating translation as zero.
|
||
|
|
||
|
:Example:
|
||
|
>>> t = Transform(2, 0, 0, 2, 10, 20)
|
||
|
>>> t.transformVectors([(3, -4), (5, -6)])
|
||
|
[(6, -8), (10, -12)]
|
||
|
>>>
|
||
|
"""
|
||
|
xx, xy, yx, yy = self[:4]
|
||
|
return [(xx * dx + yx * dy, xy * dx + yy * dy) for dx, dy in vectors]
|
||
|
|
||
|
def translate(self, x=0, y=0):
|
||
|
"""Return a new transformation, translated (offset) by x, y.
|
||
|
|
||
|
:Example:
|
||
|
>>> t = Transform()
|
||
|
>>> t.translate(20, 30)
|
||
|
<Transform [1 0 0 1 20 30]>
|
||
|
>>>
|
||
|
"""
|
||
|
return self.transform((1, 0, 0, 1, x, y))
|
||
|
|
||
|
def scale(self, x=1, y=None):
|
||
|
"""Return a new transformation, scaled by x, y. The 'y' argument
|
||
|
may be None, which implies to use the x value for y as well.
|
||
|
|
||
|
:Example:
|
||
|
>>> t = Transform()
|
||
|
>>> t.scale(5)
|
||
|
<Transform [5 0 0 5 0 0]>
|
||
|
>>> t.scale(5, 6)
|
||
|
<Transform [5 0 0 6 0 0]>
|
||
|
>>>
|
||
|
"""
|
||
|
if y is None:
|
||
|
y = x
|
||
|
return self.transform((x, 0, 0, y, 0, 0))
|
||
|
|
||
|
def rotate(self, angle):
|
||
|
"""Return a new transformation, rotated by 'angle' (radians).
|
||
|
|
||
|
:Example:
|
||
|
>>> import math
|
||
|
>>> t = Transform()
|
||
|
>>> t.rotate(math.pi / 2)
|
||
|
<Transform [0 1 -1 0 0 0]>
|
||
|
>>>
|
||
|
"""
|
||
|
import math
|
||
|
|
||
|
c = _normSinCos(math.cos(angle))
|
||
|
s = _normSinCos(math.sin(angle))
|
||
|
return self.transform((c, s, -s, c, 0, 0))
|
||
|
|
||
|
def skew(self, x=0, y=0):
|
||
|
"""Return a new transformation, skewed by x and y.
|
||
|
|
||
|
:Example:
|
||
|
>>> import math
|
||
|
>>> t = Transform()
|
||
|
>>> t.skew(math.pi / 4)
|
||
|
<Transform [1 0 1 1 0 0]>
|
||
|
>>>
|
||
|
"""
|
||
|
import math
|
||
|
|
||
|
return self.transform((1, math.tan(y), math.tan(x), 1, 0, 0))
|
||
|
|
||
|
def transform(self, other):
|
||
|
"""Return a new transformation, transformed by another
|
||
|
transformation.
|
||
|
|
||
|
:Example:
|
||
|
>>> t = Transform(2, 0, 0, 3, 1, 6)
|
||
|
>>> t.transform((4, 3, 2, 1, 5, 6))
|
||
|
<Transform [8 9 4 3 11 24]>
|
||
|
>>>
|
||
|
"""
|
||
|
xx1, xy1, yx1, yy1, dx1, dy1 = other
|
||
|
xx2, xy2, yx2, yy2, dx2, dy2 = self
|
||
|
return self.__class__(
|
||
|
xx1 * xx2 + xy1 * yx2,
|
||
|
xx1 * xy2 + xy1 * yy2,
|
||
|
yx1 * xx2 + yy1 * yx2,
|
||
|
yx1 * xy2 + yy1 * yy2,
|
||
|
xx2 * dx1 + yx2 * dy1 + dx2,
|
||
|
xy2 * dx1 + yy2 * dy1 + dy2,
|
||
|
)
|
||
|
|
||
|
def reverseTransform(self, other):
|
||
|
"""Return a new transformation, which is the other transformation
|
||
|
transformed by self. self.reverseTransform(other) is equivalent to
|
||
|
other.transform(self).
|
||
|
|
||
|
:Example:
|
||
|
>>> t = Transform(2, 0, 0, 3, 1, 6)
|
||
|
>>> t.reverseTransform((4, 3, 2, 1, 5, 6))
|
||
|
<Transform [8 6 6 3 21 15]>
|
||
|
>>> Transform(4, 3, 2, 1, 5, 6).transform((2, 0, 0, 3, 1, 6))
|
||
|
<Transform [8 6 6 3 21 15]>
|
||
|
>>>
|
||
|
"""
|
||
|
xx1, xy1, yx1, yy1, dx1, dy1 = self
|
||
|
xx2, xy2, yx2, yy2, dx2, dy2 = other
|
||
|
return self.__class__(
|
||
|
xx1 * xx2 + xy1 * yx2,
|
||
|
xx1 * xy2 + xy1 * yy2,
|
||
|
yx1 * xx2 + yy1 * yx2,
|
||
|
yx1 * xy2 + yy1 * yy2,
|
||
|
xx2 * dx1 + yx2 * dy1 + dx2,
|
||
|
xy2 * dx1 + yy2 * dy1 + dy2,
|
||
|
)
|
||
|
|
||
|
def inverse(self):
|
||
|
"""Return the inverse transformation.
|
||
|
|
||
|
:Example:
|
||
|
>>> t = Identity.translate(2, 3).scale(4, 5)
|
||
|
>>> t.transformPoint((10, 20))
|
||
|
(42, 103)
|
||
|
>>> it = t.inverse()
|
||
|
>>> it.transformPoint((42, 103))
|
||
|
(10.0, 20.0)
|
||
|
>>>
|
||
|
"""
|
||
|
if self == Identity:
|
||
|
return self
|
||
|
xx, xy, yx, yy, dx, dy = self
|
||
|
det = xx * yy - yx * xy
|
||
|
xx, xy, yx, yy = yy / det, -xy / det, -yx / det, xx / det
|
||
|
dx, dy = -xx * dx - yx * dy, -xy * dx - yy * dy
|
||
|
return self.__class__(xx, xy, yx, yy, dx, dy)
|
||
|
|
||
|
def toPS(self):
|
||
|
"""Return a PostScript representation
|
||
|
|
||
|
:Example:
|
||
|
|
||
|
>>> t = Identity.scale(2, 3).translate(4, 5)
|
||
|
>>> t.toPS()
|
||
|
'[2 0 0 3 8 15]'
|
||
|
>>>
|
||
|
"""
|
||
|
return "[%s %s %s %s %s %s]" % self
|
||
|
|
||
|
def toDecomposed(self) -> "DecomposedTransform":
|
||
|
"""Decompose into a DecomposedTransform."""
|
||
|
return DecomposedTransform.fromTransform(self)
|
||
|
|
||
|
def __bool__(self):
|
||
|
"""Returns True if transform is not identity, False otherwise.
|
||
|
|
||
|
:Example:
|
||
|
|
||
|
>>> bool(Identity)
|
||
|
False
|
||
|
>>> bool(Transform())
|
||
|
False
|
||
|
>>> bool(Scale(1.))
|
||
|
False
|
||
|
>>> bool(Scale(2))
|
||
|
True
|
||
|
>>> bool(Offset())
|
||
|
False
|
||
|
>>> bool(Offset(0))
|
||
|
False
|
||
|
>>> bool(Offset(2))
|
||
|
True
|
||
|
"""
|
||
|
return self != Identity
|
||
|
|
||
|
def __repr__(self):
|
||
|
return "<%s [%g %g %g %g %g %g]>" % ((self.__class__.__name__,) + self)
|
||
|
|
||
|
|
||
|
Identity = Transform()
|
||
|
|
||
|
|
||
|
def Offset(x=0, y=0):
|
||
|
"""Return the identity transformation offset by x, y.
|
||
|
|
||
|
:Example:
|
||
|
>>> Offset(2, 3)
|
||
|
<Transform [1 0 0 1 2 3]>
|
||
|
>>>
|
||
|
"""
|
||
|
return Transform(1, 0, 0, 1, x, y)
|
||
|
|
||
|
|
||
|
def Scale(x, y=None):
|
||
|
"""Return the identity transformation scaled by x, y. The 'y' argument
|
||
|
may be None, which implies to use the x value for y as well.
|
||
|
|
||
|
:Example:
|
||
|
>>> Scale(2, 3)
|
||
|
<Transform [2 0 0 3 0 0]>
|
||
|
>>>
|
||
|
"""
|
||
|
if y is None:
|
||
|
y = x
|
||
|
return Transform(x, 0, 0, y, 0, 0)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class DecomposedTransform:
|
||
|
"""The DecomposedTransform class implements a transformation with separate
|
||
|
translate, rotation, scale, skew, and transformation-center components.
|
||
|
"""
|
||
|
|
||
|
translateX: float = 0
|
||
|
translateY: float = 0
|
||
|
rotation: float = 0 # in degrees, counter-clockwise
|
||
|
scaleX: float = 1
|
||
|
scaleY: float = 1
|
||
|
skewX: float = 0 # in degrees, clockwise
|
||
|
skewY: float = 0 # in degrees, counter-clockwise
|
||
|
tCenterX: float = 0
|
||
|
tCenterY: float = 0
|
||
|
|
||
|
def __bool__(self):
|
||
|
return (
|
||
|
self.translateX != 0
|
||
|
or self.translateY != 0
|
||
|
or self.rotation != 0
|
||
|
or self.scaleX != 1
|
||
|
or self.scaleY != 1
|
||
|
or self.skewX != 0
|
||
|
or self.skewY != 0
|
||
|
or self.tCenterX != 0
|
||
|
or self.tCenterY != 0
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def fromTransform(self, transform):
|
||
|
# Adapted from an answer on
|
||
|
# https://math.stackexchange.com/questions/13150/extracting-rotation-scale-values-from-2d-transformation-matrix
|
||
|
a, b, c, d, x, y = transform
|
||
|
|
||
|
sx = math.copysign(1, a)
|
||
|
if sx < 0:
|
||
|
a *= sx
|
||
|
b *= sx
|
||
|
|
||
|
delta = a * d - b * c
|
||
|
|
||
|
rotation = 0
|
||
|
scaleX = scaleY = 0
|
||
|
skewX = skewY = 0
|
||
|
|
||
|
# Apply the QR-like decomposition.
|
||
|
if a != 0 or b != 0:
|
||
|
r = math.sqrt(a * a + b * b)
|
||
|
rotation = math.acos(a / r) if b >= 0 else -math.acos(a / r)
|
||
|
scaleX, scaleY = (r, delta / r)
|
||
|
skewX, skewY = (math.atan((a * c + b * d) / (r * r)), 0)
|
||
|
elif c != 0 or d != 0:
|
||
|
s = math.sqrt(c * c + d * d)
|
||
|
rotation = math.pi / 2 - (
|
||
|
math.acos(-c / s) if d >= 0 else -math.acos(c / s)
|
||
|
)
|
||
|
scaleX, scaleY = (delta / s, s)
|
||
|
skewX, skewY = (0, math.atan((a * c + b * d) / (s * s)))
|
||
|
else:
|
||
|
# a = b = c = d = 0
|
||
|
pass
|
||
|
|
||
|
return DecomposedTransform(
|
||
|
x,
|
||
|
y,
|
||
|
math.degrees(rotation),
|
||
|
scaleX * sx,
|
||
|
scaleY,
|
||
|
math.degrees(skewX) * sx,
|
||
|
math.degrees(skewY),
|
||
|
0,
|
||
|
0,
|
||
|
)
|
||
|
|
||
|
def toTransform(self):
|
||
|
"""Return the Transform() equivalent of this transformation.
|
||
|
|
||
|
:Example:
|
||
|
>>> DecomposedTransform(scaleX=2, scaleY=2).toTransform()
|
||
|
<Transform [2 0 0 2 0 0]>
|
||
|
>>>
|
||
|
"""
|
||
|
t = Transform()
|
||
|
t = t.translate(
|
||
|
self.translateX + self.tCenterX, self.translateY + self.tCenterY
|
||
|
)
|
||
|
t = t.rotate(math.radians(self.rotation))
|
||
|
t = t.scale(self.scaleX, self.scaleY)
|
||
|
t = t.skew(math.radians(self.skewX), math.radians(self.skewY))
|
||
|
t = t.translate(-self.tCenterX, -self.tCenterY)
|
||
|
return t
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import sys
|
||
|
import doctest
|
||
|
|
||
|
sys.exit(doctest.testmod().failed)
|